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Abstract
Prediction markets are well-studied in the case where predictions are probabilities or expectations
of future random variables. In 2008, Lambert, et al. proposed a generalization, which we call
“scoring rule markets” (SRMs), in which traders predict the value of arbitrary statistics of the
random variables, provided these statistics can be elicited by a scoring rule. Surprisingly, despite
active recent work on prediction markets, there has not yet been any investigation into more
general SRMs. To initiate such a study, we ask the following question: in what sense are SRMs
“markets”? We classify SRMs according to several axioms that capture potentially desirable
qualities of a market, such as the ability to freely exchange goods (contracts) for money. Not all
SRMs satisfy our axioms: once a contract is purchased in any market for prediction the median
of some variable, there will not necessarily be any way to sell that contract back, even in a
very weak sense. Our main result is a characterization showing that slight generalizations of
cost-function-based markets are the only markets to satisfy all of our axioms for finite-outcome
random variables. Nonetheless, we find that several SRMs satisfy weaker versions of our axioms,
including a novel share-based market mechanism for ratios of expected values.
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1 Introduction

The goal of a prediction market is to collect and aggregate predictions about some future
outcome Y taking values in Y ; common examples arise from sporting, political, meteorological,
or financial events. Prediction markets work by offering financial contracts whose payoffs
are contingent on the eventually-observed value of Y . The agent’s choices are interpreted,
by revealed preference, as predictions about Y , and thus the final state of the market is
interpreted as an aggregation of agent beliefs.

Hanson [13] observed that one can design a prediction market using a proper scoring rule,
which is a contract S(p′, y) that scores the accuracy of prediction p′ (a probability distribution
over outcomes) upon outcome Y = y. The relevant guarantee is that the expected score
EY∼pS(p′, Y ) is maximized when the agent reports their true belief p′ = p. In Hanson’s
scoring rule market (SRM),1 traders arrive sequentially and report their belief pt, and are
eventually paid S(pt, y)− S(pt−1, y) when Y = y is revealed.

∗ A full version of the paper is available at https://arxiv.org/abs/1709.10065
1 We will use this term in lieu of the standard market scoring rule (MSR), as the latter could refer to

either the scoring rule or the market mechanism.
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15:2 An Axiomatic Study of Scoring Rule Markets

In many cases, a market designer may only be interested in specific statistics, called
properties, of trader beliefs, rather than the entire distribution over the outcome Y . Lambert
et al. [14] observed that SRMs can be generalized to arbitrary scoring rules S(r, y), wherein
traders are paid S(rt, y)−S(rt−1, y); if the expected value of S is maximized by reporting the
value of a particular property, in which case we say S elicits the property, then the market
should intuitively aggregate trader beliefs about the property in question. For example, one
could design a “median market” by leveraging the fact that S(r, y) = −|r − y| elicits the
median of the distribution of Y , and we might expect the corresponding SRM to aggregate
predictions about the median of Y .

Surprisingly, apart from exploring which properties are elicitable, practically nothing is
known about these general SRMs beyond those for expected values [13, 8, 2]. Here SRMs
can be rephrased into a dual “cost-function-based” formulation where traders buy and sell
shares in some securities φ1, . . . , φk ∈ RY , and the market prices reveal the trader’s belief
about the expected value of φ : Y → Rk (§ 2.2, 5). The literature on prediction markets
focuses on this setting, in which one can more easily study traditional market quantities like
liquidity and depth.

In this paper, we step beyond expected values and study SRMs as a whole. Our first
contribution is identifying which questions to ask of general SRMs. In particular, we ask the
following.
(1) In what sense can we think of SRMs as “markets” in the traditional sense?
(2) Specifically, which SRMs behave like share-based markets, in the sense that traders can

always “sell” their shares for some nontrivial price?
(3) Which SRMs if any maintain the known desirable characteristics of the cost-function-

based framework, such as bounded worst-case loss and no arbitrage?
To answer these questions, we introduce axioms, and then study SRMs based on the property
they elicit—as we will see, for example, markets eliciting modes will satisfy different axioms
than those for medians, regardless of the scoring rules chosen. Our primary focus is the trade
neutralization (TN) axiom, which captures question (2) above: traders holding a contract
from the market maker can “sell” it for a nontrivial price, receiving more from transaction
than the worst-case payoff of the contract. (Otherwise, traders would just keep their holdings
regardless of their belief.)

Summary and results. After reviewing prediction markets and scoring rules (§ 2), we
introduce our axioms (§ 3). We then classify modes, finite properties, medians, quantiles,
and expectations, according to what axioms their markets can satisfy (§ 4).

In § 5, we give our main result: any SRM satisfying trade neutralization must be a certain
form of generalized cost-function-based market (Theorem 16). We note that unlike in prior
work on cost functions [2], this result applies to any SRM for any property; so in a sense, it
says that only close relatives of expectations can be elicited by any market satisfying trade
neutralization.

Our main result raises the question of whether a meaningful relaxation of trade neut-
ralization is satisfied by a broader class of markets. We show that this is indeed the case:
markets for ratios of expectations (§ 6) and for expectiles (full version of the paper) both
satisfy “weak neutralization” (Axiom 5) but not trade neutralization. While these results
suggest that a characterization of weak neutralization is an exciting future direction, they
also yield new prediction market mechanisms worthy of attention on their own. For example,
as we describe in § 6, our new market framework for ratios of expectations exchanges a
security (random variable) not for cash but for units of another security, thereby revealing
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trader beliefs about the ratio of their expectations.2 Finally, we conclude in § 7 with open
questions, and a discussion of other properties, elicitation complexity, and alternative market
formulations. The Appendix contains all omitted proofs.

Relation to prior work. While we discuss related work in § 2, it is important to distinguish
our main result from prior characterizations of cost-function-based markets in the literature.
In particular, as mentioned above, cost-function-based markets are known to be equivalent
to scoring rules that elicit expected values [13, 8, 2]. In contrast, we ask which among a
very broad family of mechanisms satisfy certain basic “market” axioms, and find that such
mechanisms must fall into (a minor generalization of) the cost-function-based framework.
Indeed, based on the above known equivalence, we further conclude that our axioms imply
the elicitation of expected values, though weakening them slightly allows us to elicit ratios of
expectations (§ 6) and expectiles (full version) while still retaining some sense of a “market”.

2 Aggregating Information with Prediction Markets

The goal of a prediction market is to crowdsource and aggregate beliefs of participants about
some future event. It does so by allowing participants to buy and sell contracts which have
different payoffs depending on the outcome of the event, and inferring a prediction from the
participants’ choices. In this section, we formally define the class of such markets that we
study, scoring rule markets (SRMs), with references to previous work. For other related
work, see above and § 7.

2.1 Outcomes and contracts
Let Y denote the outcome space of interest to the market designer and Y a future event
or random variable taking values in Y. The designer will in general allow traders to select
contracts d ∈ RY from a list offered by the market, which can be thought of as vectors when
Y is a finite set. The interpretation of a contract d is that, when Y is eventually revealed,
the market maker will pay the agent a net payoff d(Y ), which may be negative. Its expected
payoff under distribution p on Y is written Ep d(Y ), which could be thought of as an inner
product between p and d.

Note that under this formulation, any initial payment the agent might make is folded in to
d. Specifically, letting 1 ∈ RY denote the “all-ones” contract 1(y) = 1∀y ∈ Y , then a contract
d could be written d = d′ − α1, interpreted as paying a price of α now for the contract
d′, whose payoff will be revealed when Y is observed. We assume agents are indifferent to
timing of payments and just wish to maximize total expected payoff. We may occasionally
abuse terminology by referring both to contracts d which “fold in” initial payments and to
contracts d′ having an additional “price” α.

2.2 Automated market makers
When designing prediction markets, rather than a typical continuous double auction (“stock
exchange”) mechanism, it is common to employ a centralized automated market maker, which

2 To see this, note that a trader willing to “buy” one unit of d ∈ RY in exchange for c units of b ∈ RY is
effectively expressing the belief E d > cE b, i.e., E d/E b > c. Similarly, selling at this “price” reveals the
belief E d/E b < c.

ITCS 2018



15:4 An Axiomatic Study of Scoring Rule Markets

offers to buy or sell any available contracts, and through which all trades are executed. See
[2] for practical reasons behind this design choice.

Formally, a sequence of participants (traders) arrive at times t = 1, . . . , T and each selects
a contract from a list offered by the market at that time. It will be convenient to let the
set of contracts available be indexed at each time by some report space R ⊆ Rk. Following
Abernethy et al. [5], we consider a generic market making algorithm, termed a mechanism,
that specifies the set of contracts available at each time. In general, this may depend on the
entire past history of the market, and is represented as a mapping F that, given a report
r ∈ R of the participant, returns the corresponding contract. More formally, the contract
given to a participant who chooses report rt given the past history of reports r1, . . . , rt−1 is
denoted ~F (rt|r1, . . . , rt−1) ∈ RY . The net payoff to the trader upon outcome y ∈ Y will be
denoted F (rt, y|r1, . . . , rt−1).

A popular instantiation of such a mechanism is the cost-function-based market maker,
in which R = Rk and F (rt, y|r1, . . . , rt−1) = (rt − rt−1) · φ(y) − (C(rt) − C(rt−1)), where
C : Rk → R is convex and φ : Y → Rk [2]. This payoff function corresponds to a trader
making a fixed payment C(rt)− C(rt−1) in return for a bundle r = rt − rt−1 ∈ Rk of shares
in the securities φ1, . . . , φk ∈ RY , i.e. ri units of security φi, for an up-front cost paid to the
market maker in terms of C. Among the several nice properties of this market maker, one
can see that a trader who believes Eφ = x (a vector in Rk, the component-wise expectation)
has an incentive to buy or sell securities until ∇C(rt) = x, thereby revealing their belief.

2.3 Scoring rule markets for properties
The goal of the market is to incentivize a good prediction for some property or statistic of
Y , such as the median or mean. Thus, much work considers prediction markets relying on
proper scoring rules, which are contracts designed to elicit a single agent’s belief (i.e. the
case T = 1 of a market) [7, 12]. While originally designed to elicit an entire distribution over
the outcome Y , in many cases, for example when Y is very large or even infinite, one may be
interested in obtaining only summary information about this distribution. It is therefore
natural to consider scoring rules which elicit such statistics, or properties, of distributions.

Here and throughout the paper, P is a set of distributions of interest on the domain Y,
for example, the distributions with full support, with finite expectation, or so on.

I Definition 1. A property is a function Γ : P ⇒ R, which associates a set of correct report
values to each distribution. We require Γ to be non-redundant, meaning Γ−1(r) 6⊆ Γ−1(r′)
for any reports r, r′ ∈ R (i.e. we cannot have r ∈ Γ(p) =⇒ r′ ∈ Γ(p) for all p). A property
is single-valued if each p maps to exactly one report, in which case we write Γ as a function
Γ : P → R.

A scoring rule S(r, y) simply provides a payoff based on a reported value of the property
and the observed outcome y. We say the scoring rule elicits the property if the correct report
is incentivized.

I Definition 2. A scoring rule S : R×Y → R elicits a property Γ : P ⇒ R if for all p ∈ P,
Γ(p) = argmaxr∈R EpS(r, Y ) where Y ∼ p. When Γ is single-valued, this condition becomes
{Γ(p)} = argmax [ · · · ]. A property is elicitable if some scoring rule elicits it.

Some properties are not elicitable, meaning there is no way to score reports of their
value based on an observed outcome in a manner which incentivizes truthfulness. A classic
example is the variance of a distribution, which does not have convex level sets (mixtures of
distributions with the same variance have higher variance in general), a necessary condition
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for elicitability [14]. (For such non-elicitable statistics, one could still discuss their elicitation
complexity, the number of reports needed to compute the desired property post-hoc; we
discuss this concept in § 7.) However, several well-known statistics are elicitable properties,
including expected values, medians, quantiles, expectiles, and ratios of expectations.

Combining the concept of scoring rules for properties with scoring rule markets yields the
following natural prediction market mechanism for an arbitrary property Γ : P ⇒ R elicited
by S [13, 14, 4]. Initialize the market state at some r0 ∈ R. When trader t = 1, . . . , T arrives,
they can choose to update the market state to any rt ∈ R, and once the outcome y ∈ Y is
revealed, the market maker will pay the trader S(rt, y)− S(rt−1, y). We can again express
this mechanism using our F notation above (we will later relate F to Γ).

I Definition 3. A scoring rule market for scoring rule S : R × Y → R and initial state
r0 ∈ R is the mechanism F (rt, y|r1, . . . , rt−1) = S(rt, y)− S(rt−1, y).

For brevity, we will simply write F (r′, y|r) = S(r′, y)−S(r, y), or using contract notation
~F (r′|r) = ~S(r′)− ~S(r), where of course ~S(r)y = S(r, y).

3 Axioms and Preliminaries

To motivate our choice of SRMs, we consider two preliminary axioms in the full version of the
paper that turn out to characterize SRMs; here, we briefly summarize. Incentive-compatibility
(IC) states that agents maximize expected payment by choosing contracts that reveal their
true belief about Γ(p), for the property Γ chosen by the market maker. We note that previous
work [2, 5] did not explicitly consider IC, but it arose as a consequence of cost-function
markets revealing expected values. In this work, however, IC is a primary axiom as we
consider markets designed to elicit particular properties, but also a weak one in that essentially
every scoring rule elicits some (potentially set-valued) property. Path-independence (PI), an
axiom appearing in prior work on prediction markets [2], ensures that a participant cannot
gain more by making multiple trades in a row than by simply making the single optimal
trade immediately. In the full version, we show that any mechanism which satisfies both PI
and IC is an SRM for a property Γ. It is conceptually similar to results for markets eliciting
the mean [2, 5], but more general as it holds for any property.

I Theorem 4. A mechanism satisfies PI and IC for property Γ if and only if it is a scoring
rule based market (SRM) with some scoring rule S that elicits Γ.

Henceforth, unless otherwise noted we assume PI and IC, which is to say we focus on SRMs.

3.1 Arbitrage and Bounded Loss
We now express two time-honored axioms in our notation: no arbitrage, and bounded
worst-case loss. Recall that we write 1 ∈ RY to mean the contract paying out 1(y) = 1
for each y ∈ Y. We also will write inf d = infy∈Y d(y) and sup d = supy∈Y d(y) to denote
the payout bounds of contract d ∈ RY ; note that we use infima and suprema as Y may be
infinite, for example when Y = R.

The following axiom has been a desiderata since the inception of prediction markets: the
market maker should not risk losing an unbounded amount of money.

I Axiom 1 (Worst-Case Loss (WCL)). An SRM F , initialized at r0, satisfies WCL with
bound B ≥ 0 if for all r ∈ R, sup ~F (r|r0) ≤ B.

ITCS 2018



15:6 An Axiomatic Study of Scoring Rule Markets

As of course ~F (r|r0) = ~S(r)− ~S(r0), WCL simply says that the scoring rule S is bounded
relative to the initial score S(r0, ·).

Another classic condition for a market mechanism is that a trader should never have an
opportunity to make a guaranteed (risk-free) profit. In our contract notation, this means
traders should never be able to purchase a contract d for less than its minimum payoff inf d,
or equivalently, the net contract provided to traders should not be unconditionally positive.

I Axiom 2 (No Arbitrage (ARB)). SRM F satisfies ARB if ∀ r, r′ ∈ R, inf ~F (r′|r) ≤ 0.

Equivalently, F satisfies ARB if for every trade, there is an outcome yielding a profit at most
0. The no-arbitrage condition was crucial in deriving cost-function-based markets in terms of
convex conjugate duality [2]. Surprisingly, it turns out that any SRM satisfies no-arbitrage
automatically if it is incentive-compatible.

I Proposition 5. SRM F satisfies ARB if it is IC for some property Γ⇒ R.

Proof. If 0 < inf ~F (r′|r) = inf[~S(r′)− ~S(r)], then for all y ∈ Y , S(r′, y) > S(r, y). Thus, for
any p ∈ P , EpS(r′, Y ) > EpS(r, Y ), so r cannot be an optimal report for any p, contradicting
non-redundancy (as Γ−1(r) = ∅ ⊆ Γ−1(r′)). J

3.2 New Axioms
We now identify several new axioms that capture desirable characteristics of prediction
markets. The first is motivated by traditional markets, wherein a trader can always “neutra-
lize” or “liquidate” their holdings. For example, if a trader buys a bar of gold, apart from
apocalyptic scenarios, she can always sell it at any time for a strictly positive price. As
another example, a trader holding an Arrow-Debreu contract, paying $1 upon event E and
$0 otherwise, should be able to sell it for some nonzero (perhaps very low) price. More
generally, if the contract purchased is d ∈ RY and is non-constant, the trader should receive
strictly more than inf d in cash (in both examples above, inf d = 0). This condition is the
trade neutralization (TN) axiom, which we now give along with two variants, one stronger
and one weaker.

I Axiom 3. An SRM satisfies Trade Neutralization (TN) if for all trades r1 → r′1, and
all reports r2, there is a trade r2 → r′2 such that ~F (r′1|r1) + ~F (r′2|r2) = c1 for some scalar
c > inf ~F (r′1|r1).

I Axiom 4. An SRM satisfies Portfolio Neutralization (PN) if for all sets of trades ri → r′i,
1 ≤ i ≤ m, and all reports r, there is a trade r → r′ such that ~F (r′|r) +

∑
i
~F (r′i|ri) = c1 for

some scalar c > inf
[∑m

i=1
~F (r′i|ri)

]
.

I Axiom 5. An SRM satisfies Weak Neutralization (WN) if for all trades r1 → r′1, and all
reports r2, there is a trade r2 → r′2 such that inf [F (r′1|r1) + F (r′2|r2)] > inf F (r′1|r1).

Portfolio neutralization (PN) is stronger than TN: for any set of purchased contracts, a
trader should be able to sell the entire portfolio for more than its minimum payoff, all in one
go, at any time. Surprisingly, we will see that in fact TN is equivalent to PN (Theorem 16).3
Similarly, weak neutralization (WN) is weaker than TN, as it only requires that a trader

3 Note that this equivalence does not follow from path independence (PI), which only refers to consecutive
sequences of trades. PN is most interesting for nonconsecutive trades, e.g. the same contract r → r′

purchased multiple times.
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be able to improve her worst-case payoff, but not necessarily render her holdings outcome-
independent. More precisely, WN states that traders holding a non-constant contract d
should be able to purchase a contract d′ such that inf[d+d′] > inf d. Note that WN is not far
off from TN in the sense that a WN market maker allowing traders to exchange any contract
for the cash value of its worst-case payout, a favorable option for the market maker, would
satisfy TN: a trader can purchase d′ as above, and then exchange d+ d′ for (inf(d+ d′))1,
thus neutralizing while improving the worst-case payout. In fact, path independence (PI)
ensures that the trader can do both in a single trade.

Note that the inequalities above are all strict. If we replaced them by weak inequalities,
then WN would be trivially satisfied by essentially every conceivable mechanism: by just
keeping your current contract d, you are guaranteed a payoff of at least inf d, by definition.
This makes intuitive sense, as unless the contract d is constant, it strictly dominates (inf d)1,
so no rational trader would ever consent to trading d for (inf d)1. The strict inequality
thus captures a reasonable possibility for traders to “sell back” their previously-purchased
contracts, in the sense that there is some belief a trader could hold where such a trade would
be beneficial. More importantly, the strict inequalities ensure that the market maker does
indeed “make a market”: the defining quality of a market maker is a willingness to buy or sell
securities at some price, but prices equal to the best- or worst-case payoff of the securities are
equivalent to refusing to buy or sell, as no rational trader regardless of belief would accept
such a trade.

Our final axiom says that traders with arbitrarily small budgets who disagree with the
current prediction can always make some profitable trade. In other words, as the overall
market scales larger relative to the maximum allowable loss ε of individual traders, they
still have incentives to participate (although naturally, the “size” of their updates will be
small relative to the entire market). Thus, the following axiom captures scalability of a
market both in terms of large numbers of individually small trader budgets and informational
updates.

I Axiom 6. A market F satisfies bounded trader budget (BTB) if, for all market states r and
beliefs p with Γ(p) 6= r, and for all ε > 0, there exists a contract F (r′|r) with inf F (r′|r) > −ε
and EpF (r′, Y |r) > 0.

4 Central Examples

With our axioms in hand, we now turn to specific properties: the mode, median, quantiles,
and expectations. For each, we wish to understand which axioms the corresponding SRMs
can satisfy. As we will see, each of these properties has a unique signature with respect to
our axioms.

4.1 Mode and Finite Property Markets

Perhaps the simplest example of any SRM is the canonical mode market for a distribution
on k outcomes Y = {1, . . . , k}, with report space R = Y and S(r, y) = 1{y = r} (“$1 iff
you guess correctly”). Here we find that even the weakest version of neutralization, WN,
is violated: a trade moving r from 1 to 2 yields payoff 1{y = 2} − 1{y = 1}, meaning this
contract will lose the owner 1 if Y = 1. But if the current market state is, say, 3, then no
report the agent can make will avoid this loss of 1 when Y = 1. For any report r′, the final
payoff is 1{y = 2} − 1{y = 1} − 1{y = 3}+ 1{y = r′}. See Figure 1.

ITCS 2018
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Figure 1 Visualizing trader “position” in a mode market. Each curve gives the payoff
of a given scoring rule or contract as a function of the outcome y. Here S(r, y) = 1 ⇐⇒ r = y.
Left: A trader who has reported r = 1 stands to gain 1 if Y = 1 and gain 0 otherwise. Center:
Similarly for r = 3. Right: A trader who moves the market from r to r′ gets the function
F (r′, ·|r) = S(r′, ·)− S(r, ·). She stands to gain 1 if Y = r′, lose 1 if Y = r, and gain 0 otherwise.

Intuitively, the lack of WN has negative implications for agents, who must take on risk
that cannot be mitigated later. It also violates BTB: The potential agent loss from any trade
is a constant 1, so an agent with a budget smaller than 1 will not be able to participate.
This causes significant problems in practice for market designers as well, because the only
possible solution, scaling down the scoring rule, is also unpleasant: many agents will be able
to participate without much risk, so the market prediction will flip from outcome to outcome
without necessarily aggregating information.

We emphasize that these characteristics are inherent to the mode, in the sense that they
hold for any other scoring rule eliciting it. In fact, the same conclusions hold for markets
eliciting any finite property Γ : P → {1, . . . , k}, i.e. a property with a finite set of possible
values; see [15] for motivation and examples of such properties.

I Theorem 6. Any market for a finite property satisfies WCL, but not TN or BTB.

4.2 Mean and expectation markets

Consider now the mean of a random variable over the reals, R = Y = R. (In this setting,
we naturally take P to be the set of beliefs with well-defined expectations.) As an illus-
trative example, consider the scoring rule S(r, y) = 2ry − r2, which elicits the mean. The
corresponding SRM takes the form F (r′, y|r) = r2 − (r′)2 + 2y(r′ − r). Perhaps the first
observation one makes is that, because y ∈ R, any nontrivial trade leaves the trader exposed
to unbounded potential loss, as well as unbounded potential gain. This implies that BTB
and WCL cannot hold.

What about trade neutralization? Consider a trader holding the contract ~F (r′1, y|r1) =
α1 + α2y for constants α1 = (r1)2 − (r′1)2 and α2 = 2(r′1 − r1). She would like to neutralize
this position, so she must purchase some other contract of the form α3 − α2y, so that her
net position will be the constant α1 + α2. If the current market state is r2, our hero can
neutralize her previous trade by choosing r′2 = (r1−r′1), so that 2y(r′2−r2) = 2y(r′1−r1) = 0.
Her worst-case liability decreases from −∞ to a constant, showing that both WN and TN
are satisfied. And in fact, even if she holds a set of contracts, her net position is simply the
sum and can still be written in the form α1 + α2y and the same argument goes through; this
shows that PN is also satisfied.

This example raises the questions of whether other markets eliciting the mean (if any)
would have similar properties, and how this might depend on the random variable in question.

Motivated by this example, we now consider a much more general setting. Let φ : Y → Rk
be a given “random variable” and let Γ(p) = Ep[φ(Y )] be its expected value. Such a Γ is
called a linear property. We call SRM S an expectation market if S is IC for such a Γ. For
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S(r′, y) y

$
F (1.5, y|rt)

F (2.5, y|rt)
y

$ F (r′, y|r)

F (r′t, y|rt)

sum

Figure 2 Trader position in a mean market. S(r, y) = −(r − y)2. Left: Moving the market
from r = −1 to r′ = 1 gives a position F (r′, ·|r) that pays off linearly in y. Center: At rt, the trader
chooses from a set of possible contracts, depending on if she reports 1.5, 2.5, etc. Right: choosing
the contract r′

t that neutralizes the previous trade r → r′.

ease of exposition (i.e. to avoid relative interiors) we will assume that the range R = Γ(P) is
full-dimensional in Rk.

Capitalizing on the known characterization of scoring rules for expectations [1, 10]
(Theorem 18), we know that any scoring rule S eliciting Γ takes the form,

S(r, y) = G(r) + dGr · (φ(y)− r) + f(y) , (1)

for G strictly convex with subgradients {dGr}r∈R and f an arbitrary P-integrable function.
Note however that the f term will vanish in the definition of F (r′, y|r), so without loss
of generality we may take f(y) = 0 for all y. We thus refer to expectation markets as
being defined by G if they satisfy Equation 1 for that G (for any f). Letting conv(φ(Y))
be the convex hull of the set of outcomes of the random variable φ, we have the following
characterization of worst-case loss for expectation markets.

I Proposition 7. The linear property Γ(p) = Epφ(Y ) has an expectation market satisfying
WCL if and only if its domain conv(φ(Y)) is bounded, in which case the market defined by
any bounded G satisfies WCL.

I Proposition 8. The linear property Γ(p) = Epφ(Y ) has an expectation market satisfy-
ing BTB if its domain conv(φ(Y)) is bounded, in which case the market defined by any
differentiable G satisfies BTB.

To illustrate, let us revisit the example at the beginning of this subsection, i.e. φ(y) = y

and S(r, x) = 2ry − r2. (This corresponds to the convex function G(r) = r2, up to a shift.)
We saw that this market satisfies neither BTB nor WCL for Y = R, the entire real line.
However, for Y = (0, 1), it satisfies both BTB and WCL, as conv(φ(Y)) = (0, 1) and G is
bounded and differentiable on this domain. Finally, recall that it also (intuitively) satisfied
TN, and furthermore, PN. These qualities can be shown to generalize; in particular, prior
work has shown that linear properties have nice cost function based markets. Such markets
take the form F (r′, y | r) = C(r)− C(r′) + (r − r′) · φ(y), for some convex function C and
R = Rk. It then follows relatively directly that such markets satisfy PN, as any position
(set of contracts held by a trader) can be written in the form d(y) = α1 + α2 · φ(y). This
can be interpreted as a fixed payment of α and α2,i “shares” in a “security” φ(Y )i. To
neutralize, when the current market state is r′, it turns out to suffice to select the r satisfying
r − r′ = −α2.

I Theorem 9. On a finite outcome space, i.e. |Y| <∞, for any linear property there exists
an expectation market satisfying PN, WCL, and BTB.
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Figure 3 Trader position in a median market. Here S(r, y) = −|r − y|. Top left: The
payoffs for S(r, ·) and S(r′, ·), and the contract that moves the market r → r′, namely F (r′, ·|r) =
S(r′, ·)− S(r, ·). Top right: The same example but with S(r, y) = −|g(r)− g(y)| with g the sigmoid
function. Bottom: Two examples where a trader with position “red” F (r′

1, y|r1) considers a potential
contract “green” F (r′

2, y|r2). If purchased, the net position will be the blue curve. It sometimes falls
below the original position, meaning the trader’s worst case has gotten worse.

4.3 Median and Quantile Markets
We previously gave an example of a “mean market” given by S(r, y) = 2ry − r2, the scoring
rule analog of squared loss L(r, y) = (r−y)2. Perhaps the most natural statistic to investigate
next is the median, elicited by the analog of “absolute loss”, S(r, y) = −|r − y|. What we
find is surprising: unlike squared loss, the absolute loss market does not satisfy PN, and in
fact does not even satisfy WN. We show a general version of this result: no market for the
median, or indeed any quantile, can satisfy WN. On the other hand, while the mean market
could not satisfy WCL except on bounded domains, there are median and quantile markets
that can.

Our setting in this subsection is as follows. Letting R = Y = R and α ∈ (0, 1), the
α-quantile of probability distribution p with continuous CDF is the qα satisfying Prp[Y ≤
qα(p)] = α. (The continuity assumption is dropped in the full version of the paper.) Of
course, the median is simply qα for α = 1/2.

We first show that quantile markets do not satisfy WN: there may not be trades which
improve the trader liability at all. Figure 3 gives an example with absolute loss.

I Theorem 10. No SRM for any α-quantile satisfies WN.

Despite this negative result, quantile markets satisfy a surprisingly strong positive property.
Recall that the squared loss market with S(r, y) = 2ry − r2, which elicits the mean of Y ,
could not hope to satisfy bounded worst-case loss if Y = R. And indeed, the absolute loss
market S(r, y) = −|r − y| shares this issue. There is an elegant work-around, however: one
can use the sigmoid function g(r) = er/(1 + er), or another strictly monotone transformation,
to map reports continuously into the interval (0, 1). Then S(r, y) = −|g(r)− g(y)| is clearly
bounded, but still proper, as strictly monotone functions commute with the median: for any
y, all y′ ≤ y are mapped below y and all y′ ≥ y are mapped above y, so the quantiles are
simply mapped as well.

I Theorem 11. For all α ∈ (0, 1), there is an SRM for the α-quantile satisfying WCL.
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Finally, quantiles also behave nicely with respect to bounded-budget traders. To see this
for S(r, y) = −|r − y|, notice that a small trade r → r + ε carries a liability of only ε, in the
case Y < r. (See Figure 3.) But any trade smaller than ε can carry positive expected payoff
for a trader if it moves the market closer to her belief.

I Theorem 12. If distributions in P do not contain point masses, then any α-quantile
market satisfies BTB.

5 Characterizing Trade Neutralization

In this section, we will characterize mechanisms that satisfy trade neutralization (TN) when
the set of outcomes is finite, |Y| = n <∞. Recall that TN captures the quality of traditional
markets, particularly in the sense of a “market maker”: the mechanism is always willing to
buy back a contract it has previously sold, for a reasonable price.

TN may seem intuitively easy to satisfy, or at least might not appear to impose much
structure on the market maker. In fact, we will see that the opposite is the case. To gain
intuition for why TN might impose structure, recall that trades made by a participant must
be interpretable as beliefs about the property the market is predicting. This applies to both
the purchase of a contract and its sale back to the mechanism. Furthermore, this “canceling”
trade must be available regardless of the current state of the market. We will leverage this
intuition to show that the mechanisms satisfying TN are quite special and closely related to
expectation markets.

In our analysis, it will prove useful to separate out “contracts” d ∈ RY from “cash”
1 ∈ RY , even though technically both reside in the same space. In particular, we would like
a canonical way to take a contract d and separate out its “cash” component as d = d0 + c1,
where intuitively $c is always paid regardless of the outcome, but d0 depends on outcome.
To do this, we simply define d0 as the projection of d onto the hyperplane normal to 1.

We define the range of a scoring rule S by S = {~S(r) : r ∈ R} ⊆ RY , and define the
corresponding “cashless” contract space by H .= S/1 = {~S(r) − (~S(r) · 1/|Y|)1 : r ∈ R}.
(Recall that one can define ~S(r) = ~F (r|∅). We indicate throughout where we assume IC.)
Again, H is simply the projection of the range of ~S onto the hyperplane normal to 1. Similarly,
we define D .= H −H = {h2 − h1 : h1, h2 ∈ H} to be the set of possible score differences
modulo 1. Equivalently, D is the projection of the range of ~F onto the same hyperplane.

We now show that if an SRM satisfies TN, its corresponding set D must have considerable
structure: it must form an additive subgroup of RY .

I Lemma 13. If SRM F satisfies TN, then D is an additive subgroup of RY in the sense
that d, d′ ∈ D implies −d, d+ d′ ∈ D. Moreover, the entire set D of contracts is available at
all times: for any h ∈ H, we have D = H− {h} = {h′ − h |h ∈ H}.

Proof. From the definition of TN, we must have the following: ∀r1, r2, r3∃r4 with F (r2|r1) +
F (r4|r3) = c1 for some c ∈ R. In terms of H, as we have taken everything modulo 1,
this implies ∀h1, h2, h3 ∈ H ∃h4 ∈ H such that h2 − h1 + h4 − h3 = 0. In other words,
h1, h2, h3 ∈ H =⇒ h3 + h1 − h2 ∈ H.

To show that D is a group under vector addition, we must show closure under addition
and the existence of additive inverses. The latter is simple, as given any d ∈ D we can write
d = h2 − h1, so of course −d = h1 − h2 ∈ D. We also have 0 = h1 − h1 ∈ D. For closure,
consider d, d′ ∈ D, and write d = h2−h1 and d′ = h′2−h′1. By the above, (h2 +h′2−h′1) ∈ H,
so h2 − (h1 + h′1 − h′2) = d+ d′ ∈ D.
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Figure 4 The “discretized” LMSR. This market for Pr[Y = 1] allows only integer trades
of a single security, using the LMSR cost function C(q) = log(1 + eq) and its conjugate G(p) =
p log(p) + (1 − p) log(1 − p). Traders may move the market from any “dot” to any other. The
possible market states are equally spaced in share space (horizontal axis, left figure), translating to
non-equally spaced prices (horizontal axis, right figure). Theorem 16 implies that all mechanisms
satisfying PI, IC, and TN have this general format, being discretizations of cost-function markets.

Finally, we must show that for any h ∈ h, we have D = H− {h}. Clearly H− {h} ⊆ D;
for the converse, consider d = h1 − h2. By the above, h + h1 − h2 ∈ H, and thus d =
(h+ h1 − h2)− h ∈ H − {h}. J

The implication of Lemma 13 is that under TN, we must have a highly structured set D
of possible contracts (modulo cash) available at all times with only the cash price for each
contract changing depending on history. For example, a construction allowed by Lemma 13
is D = Zk (the integer lattice of dimension k), and this is indeed possible. Looking ahead,
we will see that this would be interpreted as offering to buy or sell an integer number of
“shares” in each of k different “securities” at any time. We give a k = 1 example in Figure 4.

We will need the following generalization of standard cost-function based markets.

I Definition 14. The generalized cost-function based market parameterized by a convex
“cost function” C : Rk → R, “securities” φ : Y → Rk, and “share space” Q ⊆ Rk is the SRM
of the form F (r′, y | r) = C(r)− C(r′) + (r′ − r) · φ(y) with report space at market state r
given by R = {r + q : q ∈ Q}.

Recall that in standard cost-function markets, Q = Rk, so that any trade d = r − r′ ∈ Rk is
allowable. Furthermore, here di is interpreted as the number of shares purchased of security
φi. (For example, in the D = Zk construction mentioned above, we also have Q = Zk, so
traders may only purchase integer numbers of shares in this example.)

IDefinition 15. A cost-function based market defined by C and φ is open if C is differentiable
and4 {∇C(q) : q ∈ Rk} = int(conv(φ(Y))). It is quasi-open if for every pair of “share vectors”
q, v ∈ Q and subgradient x ∈ ∂C(q), we have x · v < maxy∈Y v · φ(y).

To see that quasi-openness is a relaxation of openness, we comment that if we required the
condition to hold for all v ∈ Rk, then it would be equivalent to ∪q∈Q∂C(q) ⊆ int(conv(φ(Y))),
which is a clear relaxation of openness; and quasi-openness requires somewhat less, as it only
must hold for all v ∈ Q.

4 We write int(A) for the interior of the set A and conv(A) for its convex hull.
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I Theorem 16. Let SRM F which is IC for Γ be given. Then F satisfies TN if and only if
it is a generalized cost-function-based market for securities φ : Y → Rk, where:
(i) The share space Q of possible purchases is an additive subgroup of Rk, and
(ii) The market is quasi-open.
Moreover, TN implies PN.

Proof. For the forward direction, that TN implies cost-function-based and PN, we proceed
in five parts: (1) construct a basis for D, which will be the securities φ; (2) rewrite ~F in
terms of that basis; (3) show that the map from reports to “shares” is bijective; (4) extract
the cost function C from the share representation of F ; (5) show that C satisfies our relaxed
version of openness. For the converse, we will appeal to Theorem 22.

1. Basis of D. By Lemma 13, D is an additive subgroup of RY . Let d1, . . . , dk ∈ D be
a basis for the linear span of D. We can now write our securities in terms of this basis: define
φ : Y → Rk by φ(y)i = diy. It will be convenient to work with φ in matrix form Φ ∈ Rn×k,
which naturally we define as Φy,i = φ(y)i. Thus, we now have D = {Φ · q : q ∈ Q} where Q
is an additive subgroup of Rk.

2. Rewrite ~F . By the definition of D as the range of F modulo 1, and the decomposition
above, we know that for every r, r′ ∈ R we can write ~F (r′|r) = Φ · v + c1 for some v ∈ Rk
and c ∈ R. Thus, letting r0 be the initial state of the given SRM, we have functions
g : R → R and v : R → Rk such that for all r ∈ R, ~F (r|r0) = Φ · v(r) + g(r)1. By definition
Φ · v(r) ∈ D and thus we must have v(r) ∈ Q, meaning we can write v : R → Q. Note
that the expected payoff when Y ∼ p can now be written EpF (r, Y |r0) = p> ~F (r|r0) =
p>Φ v(r) + g(r)p>1 = Epφ · v(r) + g(r). In particular, Γ can only depend on p through Epφ,
so letting X = conv(φ(Y)) as before, we have some ψ : X ⇒ R such that Γ(p) = ψ(Epφ).

3. The map v : R → Q is a bijection. Surjectivity of v follows from the fact that
transformation by the change of basis matrix Φ is a bijection, as by definition we are
simply rewriting elements of D via elements of Q. For injectivity, we will use IC. Suppose
v(r) = v(r′). If g(r) = g(r′), Γ is not non-redundant as ~F (r|r0) = ~F (r′|r0), so clearly
Γ(p) = r ⇐⇒ Γ(p) = r′. Thus without loss of generality g(r) > g(r′), which implies
r′ /∈ argmaxx∈R v(x) · Ep′φ(Y ) + g(x) = argmaxx∈R EpF (x, Y |r0) for any p′ ∈ P, so r′

cannot be in the range of Γ at all (i.e. the report r dominates r′), a contradiction. Thus, v is
injective and hence a bijection.

4. Extracting the cost function. Now that we have a bijection from reports to “shares”,
intuitively, we should just be able to take C(q) = −g(v−1(q)). More care is needed, however,
as C must be convex with the correct subgradients. Let us define a convex function G : X → R
by G(x) = supr v(r) · x + g(r), which is the optimal expected score when Epφ = x. By
IC and the definition of ψ above, we have G(x) = v(r) · x + g(r) if and only if r ∈ ψ(x).
Now we can define C : Rk → R as the conjugate of G, namely C(q) = supx∈X q · x−G(x).
Thus, we need only show that C(v(r)) = −g(r), as alluded to above, as this would imply
F (r, y|r0) = v(r) · φ(y)− C(v(r)) as desired.

To make headway, we will appeal to convex analysis. First, we will establish that
G(x) = v(r)·x+g(r) ⇐⇒ v(r) ∈ ∂G(x), meaning if r is the optimal report for expected value
x, then v(r) is a subgradient of G. This follows directly from the subgradient inequality; if r is
optimal for x, then for all x′, G(x′) = supr′v(r′)·x+g(r′) ≥ v(r)·x+g(r) = G(x)+v(r)·(x′−x),
so v(r) ∈ ∂G(x). Conversely, suppose v(r) ∈ ∂G(x) but r is optimal for some x′, so G(x′) =
v(r) ·x′+g(r). The subgradient inequality gives v(r) ·x′+g(r) = G(x′) ≥ G(x)+v(r) ·(x′−x),
which implies v(r) ·x+g(r) ≥ G(x), so r must be optimal for x as well: G(x) = v(r) ·x+g(r).

In summary, we have r ∈ ψ(x) ⇐⇒ G(x) = v(r) · x+ g(r) ⇐⇒ v(r) ∈ ∂G(x). By [18,
Thm E.1.4.1], we immediately have C(q) = q · x − G(x) ⇐⇒ q ∈ ∂G(x). Putting these
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together, we have r ∈ ψ(x) ⇐⇒ v(r) ∈ ∂G(x) ⇐⇒ C(v(r)) = v(r) · x − G(x) = −g(r).
Thus, as every r ∈ R is in the image of ψ, we must have C(v(r)) = −g(r) for all r.

5. C is (almost) open. We have established that F can be written as a cost-function-
based market with securities φ and a potentially nondifferentiable C. To conclude this
direction of the proof, suppose that for some x ∈ ∂C(q) we have x · v ≥ maxy∈Y v · φ(y).
Following the proof of Theorem 22, we start the trader at q selling v (as (−v) ∈ Q) and
place the state back at q. To neutralize, the trader must now purchase v ∈ Q, but by
the same argument as before (using the fact that ∂C(Rk) ⊆ X by construction of C),
C(q + v)− C(q) = x · v ≥ maxy∈Y v · φ(y), which contradicts TN.

Converse. Finally, for the reverse direction, we can simply repeat the proof of The-
orem 22: if the trades vi are elements of the group Q for all vi, then so is v =

∑w
i=1 vi. It

only remains to be shown that the price is less than the worst-case payoff of v, which follows
from integrating the guarantee in (ii) as in Lemma 21. J

Theorem 16 shows that, despite the apparent freedom allowed by the TN axiom, the
only SRMs satisfying TN are cost-function-based, or variations thereof (see Figure 4). By
way of contrast, note that apart from other axiomatic characterizations with axioms such
as “information incorporation”, previous work has only established that cost-function-based
market makers elicit expectations and satisfy TN [2], whereas here we show that in fact they
are the only markets satisfying TN.

Given that a market satisfying TN must elicit expectations (or “discretized” expectations),
the following natural question arises: does WN allow for a broader family of markets, for
properties beyond expectations? If false, this would mean that TN and WN were equivalent
in a formal sense. We now give an example which answers this question in the affirmative: a
market for the ratio of expectations which (by virtue of not eliciting a discretized expected
value) does not satisfy TN, but does satisfy WN. In the full version we give another such
example: expectiles. Together, these examples show that WN is a potentially useful condition
for the design of non-expectation prediction markets, and warrants further exploration.

6 Share-Like Market for Ratios of Expectations

From Theorem 16, we know that any SRM satisfying the TN axiom will effectively be a
cost-function-based market dealing in shares of some set of securities, perhaps restricting
trades to some discretization of the share space. As a corollary, all such TN markets must
elicit an expected value either directly or indirectly, or perhaps a discretization thereof.
Theorem 16 leaves open the possibility, however, of a “share-like” market for a property other
than an expected value which satisfies WN but not TN. We now give one such example: a
ratio of expectations.

Before diving into the formalism, let us expand on the intuition given in § 1. In a
cost-function-based market, traders purchase bundles r ∈ Rk of securities φ : Y → Rk, in
exchange for paying some up-front cost C(rt + r)− C(rt) to the market maker in the form
of cash. In other words, traders are exchanging the bundle r of securities φ for an amount
C(rt + r) − C(rt) of the security 1. The ratio of expectations market can be thought of
similarly, but now traders exchange the bundle r of securities φ for an amount C(rt+r)−C(rt)
of some new security b, which by convention will be nonnegative (and bounded away from 0
for infinite Y). In other words, the new market is exactly the same as the old, but the cost
function is in units of the security b rather than cash (1). Immediately we can glean that,
just as in a cost-function-based market traders with belief p had an incentive to trade until
∇C(rt) = Epφ, i.e. the change in cost is equal to the expected security payoff, now traders
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will trade until ∇C(rt)Epb = Epφ. Thus, the prices of the new market will be the market’s
consensus about the ratio of expectations of φ and b, ∇C(rt) = Epφ/Epb.

What axioms does this new market satisfy? It would seem that its share-like nature
could somehow circumvent Theorem 16 and satisfy TN, but of course this is not the case.
As we will show, however, the ratio of expectations market does satisfy WN. First, we must
formally define our new market.

Let Y be a finite set. For φ : Y → Rk and b : Y → R with inf b > 0, we define the ratio
of expectations Γ(p) = Epφ/Epb. As usual we assume that φ is affinely independent, so
{Epφ : p ∈ P} is full-dimensional, and that inf b > 0, which since Y is finite is equivalent to
the payoffs b(y) being positive for all y ∈ Y . A characterization of scoring rules eliciting Γ was
shown by Frongillo and Kash [10], which extended the real-valued case given by Gneiting [11]:
a scoring rule S elicits Γ if and only if,

S(r, y) = b(y)G(r) + dGr · (φ(y)− rb(y)) + f(y) , (2)

where as in Theorem 18, G : R → R is strictly convex with selection of subgradients dG, and
f is arbitrary (and, as usual, irrelevant for SRMs).

Our main result for this section is that essentially all “open” markets for Γ satisfy WN.
The proof first applies convex conjugate duality to arrive at the cost-function-like market
described above, and then applies facts about the usual cost-function-based framework (e.g.
Lemma 21) to show that the prices for trading in a bundle must be strictly less than its
worst-case payoff.

I Theorem 17. A ratio-of-expectations market for differentiable G and ∇G(R) = Rk satisfies
WN.

Proof. We construct a “cost function” C(q) = supr∈R r · q −G(r) as the convex conjugate
of G. The corresponding scoring rule is SC(q, y) = φ(y) · q − C(q)b(y). By assumption,
∇G : R → Rk is a bijection, and thus markets FG with G and FC with C are equivalent. It
therefore suffices to show that FC satisfies WN.

Consider any trade q1 → q′1 and let v = q′1 − q1. For any q2, we will show that the trade
q′2 = q2 − v satisfies WN. The difference in net payoff between the first and second trade is
(C(q2)− C(q2 − v))b(y)− v · φ(y), so it suffices to show that this is always positive.

By the proof of Lemma 21, we then have for any q, w ∈ Rk

C(q + w)− C(q) < sup
x∈R

x · w = max
y∈Y

(φ(y)/b(y)) · w . (3)

Taking q = q2 and w = −v, we have C(q2)− C(q2 − v) < φ(y) · (−v)/b(y) for all y, which is
equivalent to (C(q2 − v)− C(q2))b(y) > φ(y) · v for all y, thus establishing WN. J

By establishing WN for SRMs eliciting a ratio of expectations, we are essentially saying
that these markets are “reasonable” and could plausibly aggregate trader beliefs effectively.
It would be interesting to see how such markets perform in practice.

7 Discussion and Directions

We have presented market axioms for scoring rule markets (SRMs) and studied a handful of
well-known statistics/properties to see which of these axioms their corresponding markets
can satisfy. Interestingly, we have seen wide variation among the satisfied axioms, most
dramatic of which are the neutralization axioms: TN is satisfied essentially exclusively by
cost-function-based markets, whereas median/quantile and mode markets do not even satisfy
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its weakest version WN. This raised the question of whether any market satisfied WN but not
TN, i.e., whether any non-cost-function-based markets satisfyied WN. We saw that indeed
markets for ratios of expectations are one such example, and in the full version we show that
markets for expectiles are another. As discussed in § 3, WN is nearly equivalent to TN, and
thus these markets could be expected to perform similarly to cost-function-based markets.

We conclude with future directions and discussion.

Open questions. Our work leaves several questions open. There are of course many other
properties to explore and categorize with respect to our axioms, and perhaps the most
compelling question along these lines would be a characterization of SRMs satisfying WN, or
of properties elicited by WN SRMs. We would also like to show that the share space Q in
Theorem 16 is in fact isomorphic to to Rk1 ⊕ Zk2 , meaning that shares could be purchased
with arbitrary precision in some directions but in units of some smallest purchase in others;
this isomorphism would also mean that IC, TN, and BTB would imply cost-function-based
markets without qualification. Finally, a construction of pseudo-barriers for arbitrary convex
sets would allow Proposition 8 to be an “if and only if”, and would be interesting in their
own right.

Other market forms. [19] study prediction markets from a more empirical perspective,
and suggest a number of possible market formulations. One which is not covered here is
to offer contracts dr such that Epdr = 0 ⇐⇒ Γ(p) = r. (This V (r, y) = dr(y) is called an
identification function.) They illustrate this idea with a market eliciting the median of Y ,
where dr pays $1 if Y > r and −$1 otherwise. While the properties of such a contract space
would be interesting to study in a continuous double-auction, one may ask how to translate
it to an automated market maker. Here the market maker would maintain a centralized
median rt and traders could either buy or sell drt , moving rt+1 ← rt ± ε. Unfortunately, for
any ε > 0, such a market has unbounded worst-case loss even on a bounded domain (traders
buy and sell between r = 0 and r = ε and y = ε/2). For infinitesimal ε however, the market
becomes the absolute-loss SRM with S(r, y) = −|r − y|, because dr = d

drS(r, y).

Complexity. Finally, we remark that the recent concept of elicitation complexity brings
interesting implications for our study. Here one asks, given a property Γ of interest, how
many dimensions k does one need for there to exist an elicitable Γ′ : P → Rk from some “nice”
class of properties, where one can compute Γ from Γ′ via a link function f , i.e. Γ = f ◦Γ′. In
our context, one may choose “nice” to mean a property having an SRM satisfying any one of
the axioms we discuss. The most natural may be TN, in which case one is essentially asking
Γ′ to be an expected value, a case studied by [6]. It would be interesting to characterize
properties having markets satisfying WN, and identify properties with low complexity with
respect to these WN properties.
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A Proofs for Mean and Expectation Markets

We note the characterization of scoring rules for the expectation, which has been established
with varying degrees of generality [17, 1, 10]:

I Theorem 18. A scoring rule S elicits Γ : p 7→ Ep[φ(Y )] if and only if S(r, y) = G(r) +
dGr · (φ(y) − r) + f(y) for some G strictly convex with subgradients {dGr}r∈R, and f an
arbitrary P-measurable function.5

I Proposition (7). The linear property Γ(p) = Epφ(Y ) has an expectation market satisfying
WCL if and only if its domain conv(φ(Y)) is bounded, in which case the market defined by
any bounded G satisfies WCL.

Proof. Lemma 19 proves that on a bounded domain, WCL is equivalent to boundedness of
G. (Some bounded convex G always exists for a bounded domain.) Lemma 20 proves that
WCL cannot be satisfied on an unbounded domain. J

I Lemma 19. On a bounded domain conv(φ(Y)), an expectation market defined by G satisfies
WCL if and only if G is bounded.

Proof. Let the initial market state be any r where dG(r) is finite, such as any r in the interior
of the domain.6 We show that for this fixed r, worst-case loss is bounded by a constant if
and only if G is bounded.

Recall from the characterization that S(r, y) = G(r) + dG(r) · φ(y). By bounded domain,
‖φ(y)‖ is bounded, so there exists a constant B with −B ≤ S(r, y) ≤ B for all y.7

The loss of the market maker when the final state is r′ is S(r′, y) − S(r, y), and the
worst-case loss is WCL

.= supr′,y [S(r′, y)− S(r, y]. We have WCL ∈
(
supr′,y S(r′, y)

)
±B,

hence it is bounded if and only if the first term is. For each y, the supremum over r is
achieved at r = φ(y) by properness of the scoring rule (r is the optimal report for the
distribution δy), so the first term is supy S(φ(y), y) = supy G(φ(y)). So worst-case loss is
bounded if and only if G is. J

I Lemma 20. On an unbounded domain, no expectation market satisfies WCL, assuming
the initial market prediction lies in the interior of R.

Proof. Let r be the market’s initial starting point. We assume that r is in the interior of
the convex hull of {φ(y) : y ∈ Y}, and in particular lies in an ε-ball contained in the interior.
The idea is to pick a “direction” and consider a sequence of outcomes that are farther and
farther away. If the final market state is some distance in that direction, then loss will be
unbounded.

To formalize this, let y1, y2, . . . be a sequence with ‖φ(yi)− r‖ positive and increasing
without bound. Such a sequence must exist by unboundedness of the domain. Consider
the associated sequence of size-ε vectors {vi = ε φ(yi)−r

‖φ(yi)−r‖ : i = 1, 2, . . . }. As a sequence in
a compact set (the ε-sphere), it has a convergent subsequence with a limit v. This is the

5 Typically scores are allowed to take on values in R ∪ {∞}, essentially to accommodate the log scoring
rule, but we will typically restrict to the relative interior of the domain anyhow, thus avoiding this issue.

6 This technical condition only rules out boundary such as the log scoring rule with initial prediction
p = 0.

7 If f(y) 6= 0, then we can say S(r, y) + f(y) ∈ [−B, B] + f(y), and we would see f(y) cancel out later in
the proof.
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“direction”. By monotonicity of strictly convex functions, we have γ .= v · (dGr+v − dGr) > 0.
Let K ⊆ N be the indices of this subsequence.

Now consider the following sequence of markets closing states and outcomes, indexed by
i ∈ K. Each market i has initial state r and final state r + v. The outcome is Y = yi. The
initial state is valid because r was fixed at the beginning of the proof, and r + v is a valid
final closing state because it lies on the ε-ball around r, assumed to lie in the report space
because r was in the interior. The worst-case loss is at least the following quantity, which is
then rearranged:

Loss = S(r + v, φ(yi))− S(r, φ(yi))
= G(r + v)−G(r) + dGr+v · (φ(yi)− r − v)− dGr · (φ(yi)− r)
= [G(r + v)−G(r)− dGr · (r + v − r)] + (dGr+v − dGr) · (φ(yi)− r − v)
≥ (dGr+v − dGr) · (φ(yi)− r − v)

using the definition of subgradient to conclude that the bracketed term is at least zero. Now
we divide both sides by ‖φ(yi)− r‖ and recall our definition of vi:

Loss
‖φ(yi)− r‖

≥ ε [(dGr+v − dGr) · vi]−
[
(dGr+v − dGr) ·

v

‖φ(yi)− r‖

]
.

The first term on the right side converges to εγ because vi → v; the second term is equal
to γ/‖φ(yi)− r‖ which converges to zero. The ratio on the left therefore either diverges or
converges to some constant larger than εγ, and in either case, worst-case loss is unbounded. J

I Proposition (8). The linear property Γ(p) = Epφ(Y ) has an expectation market satis-
fying BTB if its domain conv(φ(Y)) is bounded, in which case the market defined by any
differentiable G satisfies BTB.

Proof. Suppose G is differentiable and its domain is bounded, e.g. ‖x‖ ≤ B for all x. Let x0

be the market state and consider belief µ. By monotonicity of strictly convex functions, any
trade x′ = αµ+ (1− α)x0 has strictly positive expected score. Meanwhile, the worst-case
score for any trade from x0 to x′ is

sup
x
G(x0)−G(x′) + dGx′ · (x− x′)− dGx0 · (x− x0)

= sup
x
G(x0)−G(x′) + x · (dGx′ − dGx0)− x′ · dGx′ − x0 · dGx0

≤ B‖dGx′ − dGx0‖+O(‖x0 − x′‖)

where both terms can be made arbitrarily small with α→ 0, x′ → x0: G is continuous, and
it is a convex differentiable function so dG is as well. J

I Theorem (9). On a finite outcome space, i.e. |Y| <∞, for any linear property there exists
an expectation market satisfying PN, WCL, and BTB.

Proof. We utilize Theorem 22, which says that if a cost-function based market is open
(Definition 15), then it satisfies PN.

The primary examples are exponential-family markets [3], where

C(q) = log
∑
y∈Y

exp(q · φ(y)),

ITCS 2018



15:20 An Axiomatic Study of Scoring Rule Markets

the “log-partition” function. We recall the key facts behind the construction and refer the
reader to [3]. One interprets q · φ(y) as a “weight” on y and define the (exponential-family)
distribution p ∈ int(∆Y) with py = exp(q·φ(y))∑

y∈Y
exp(q·φ(y)) . One obtains

∇C(q) =
∑
y

pyφ(y)

so the set of gradients is exactly the interior of conv(φ(Y)), i.e. the market is open.
By Theorem 22, this implies TN. The convex conjugate G(µ) is bounded (equaling the

negative entropy of p); this implies WCL by Lemma 19. Finally, it and C are both strictly
convex and differentiable. This implies BTB by Proposition 8. J

I Lemma 21. Given φ : Y → Rk such that X := conv(φ(Y)) is full-dimensional in Rk,
let C : Rk → R be convex with subgradients ∂C(Rk) ⊆ int(X ). Then For all q, v ∈ Rk,
maxy∈Y v · φ(y) > C(q + v)− C(q).

Proof. As ∂C(q′) ⊆ int(X ) for all q′ ∈ Rk, in particular dC(q′) · v < maxx∈X x · v =
maxy∈Y v · φ(y) [18, Prop A.2.4.6], where dC is a selection of subgradients of C. By [9,
Thm B.4], the function t 7→ dC(q + tv) · v is monotone and therefore integrable, and thus
C(q + v)− C(q) =

∫ 1
t=0 dC(q + tv) · v dt < maxy∈Y v · φ(y). J

I Theorem 22. Cost-function-based markets satisfy TN if and only if they are open.
Moreover, if they satisfy TN, the satisfy PN.

Proof. Suppose a cost-function-based market is open. We will show that it satisfies not only
TN but PN. Consider a non-empty set of bundles purchased vi = q′i − qi for 1 ≤ i ≤ m,
for a total cost of c =

∑
i C(q′i) − C(qi), and let v =

∑m
i=1 vi be their sum. Clearly, to

neutralize this position from the current market state q, the trader must sell v, for a cost of
C(q− v)−C(q). After this trade, the trader’s total contract is c1− (C(q− v)−C(q))1, so to
establish PN, we need only show c−C(q− v) +C(q) > infy∈Y [c+ (−v) ·φ(y)]. Subtracting c
from both sides and then negating, the rest follows from observing sup = max as Y is finite,
and applying Lemma 21.

Now suppose a cost-function-based market satisfies TN; we will show it is open. By
assumption, such a market has a differentiable C with cl

(
{∇C(q) : q ∈ Rk}

)
= conv(φ(Y)) =:

X . Suppose the market is not open; this implies that ∇C(q) lies on the boundary of X for
some q. As X is a convex polytope, ∇C(q) must lie on an exposed face of X , so let v ∈ Rk
be a direction exposing that face, meaning maxx∈X x · v = ∇C(q) · v [18, Sec A.2.4].

Now suppose the trader buys the bundle (−v) at state q, and the market state has
returned to q, which corresponds to q1 = q, q′1 = q−v, q2 = q. To satisfy TN, the trader must
now purchase v, but we must additionally have inf[(C(q)−C(q−v))1+(C(q)−C(q+v))1] >
inf[(C(q)−C(q−v))1+(−v) ·φ], which is equivalent to C(q+v)−C(q) < maxy∈Y v ·φ(y). By
weak monotonicity [16, Thm 24.9], the map t 7→ ∇C(q+tv)·v is monotone increasing in t, and
thus as ∇C(q+tv) ∈ X and ∇C(q)·v = maxx∈X x·v, we have ∇C(q+tv)·v = ∇C(q)·v for all
t ≥ 0. But now we have C(q+v)−C(q) =

∫ 1
t=0∇C(q+tv) ·vdt = ∇C(q) ·v = maxy∈Y φ(y) ·v,

so the trader’s minimum payoff has not increased, violating TN. J
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