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—— Abstract

This work studies the strong duality of non-convex matriz factorization problems: we show that
under certain dual conditions, these problems and its dual have the same optimum. This has
been well understood for convex optimization, but little was known for non-convex problems. We
propose a novel analytical framework and show that under certain dual conditions, the optimal
solution of the matrix factorization program is the same as its bi-dual and thus the global
optimality of the non-convex program can be achieved by solving its bi-dual which is convex.
These dual conditions are satisfied by a wide class of matrix factorization problems, although
matrix factorization problems are hard to solve in full generality. This analytical framework may
be of independent interest to non-convex optimization more broadly.

We apply our framework to two prototypical matrix factorization problems: matrix com-
pletion and robust Principal Component Analysis (PCA). These are examples of efficiently re-
covering a hidden matrix given limited reliable observations of it. Our framework shows that
exact recoverability and strong duality hold with nearly-optimal sample complexity guarantees
for matrix completion and robust PCA.
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1 Introduction

Non-convex matrix factorization problems have been an emerging object of study in theoretical
computer science [37, 30, 53, 45], optimization [58, 50], machine learning [11, 23, 21, 36, 42, 57],
and many other domains. In theoretical computer science and optimization, the study of
such models has led to significant advances in provable algorithms that converge to local
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minima in linear time [37, 30, 53, 2, 3]. In machine learning, matrix factorization serves as
a building block for large-scale prediction and recommendation systems, e.g., the winning
submission for the Netflix prize [41]. Two prototypical examples are matrix completion and
robust Principal Component Analysis (PCA).

This work develops a novel framework to analyze a class of non-convex matrix factorization
problems with strong duality, which leads to exact recoverability for matrix completion and
robust Principal Component Analysis (PCA) via the solution to a convex problem. The
matrix factorization problems can be stated as finding a target matrix X* in the form of
X* = AB, by minimizing the objective function H(AB) + 1||AB||% over factor matrices
A € R™*" and B € R"™"2 with a known value of r <« min{nj,ns}, where H(-) is some
function that characterizes the desired properties of X*.

Our work is motivated by several promising areas where our analytical framework for
non-convex matrix factorizations is applicable. The first area is low-rank matrix completion,
where it has been shown that a low-rank matrix can be exactly recovered by finding a
solution of the form AB that is consistent with the observed entries (assuming that it is
incoherent) [37, 53, 23]. This problem has received a tremendous amount of attention due to
its important role in optimization and its wide applicability in many areas such as quantum
information theory and collaborative filtering [30, 61, 7]. The second area is robust PCA, a
fundamental problem of interest in data processing that aims at recovering both the low-rank
and the sparse components exactly from their superposition [13, 43, 27, 62, 61, 59], where
the low-rank component corresponds to the product of A and B while the sparse component
is captured by a proper choice of function H(-), e.g., the ¢; norm [13, 6]. We believe our
analytical framework can be potentially applied to other non-convex problems more broadly,
e.g., matrix sensing [54], dictionary learning [52], weighted low-rank approximation [45, 42],
and deep linear neural network [39], which may be of independent interest.

Without assumptions on the structure of the objective function, direct formulations of
matrix factorization problems are NP-hard to optimize in general [31, 60]. With standard
assumptions on the structure of the problem and with sufficiently many samples, these
optimization problems can be solved efficiently, e.g., by convex relaxation [14, 18]. Some
other methods run local search algorithms given an initialization close enough to the global
solution in the basin of attraction [37, 30, 53, 21, 38]. However, these methods have sample
complexity significantly larger than the information-theoretic lower bound; see Table 1 for a
comparison. The problem becomes more challenging when the number of samples is small
enough that the sample-based initialization is far from the desired solution, in which case
the algorithm can run into a local minimum or a saddle point.

Another line of work has focused on studying the loss surface of matrix factorization
problems, providing positive results for approximately achieving global optimality. One
nice property in this line of research is that there is no spurious local minima for specific
applications such as matrix completion [23], matrix sensing [11], dictionary learning [52],
phase retrieval [51], linear deep neural networks [39], etc. However, these results are based
on concrete forms of objective functions. Also, even when any local minimum is guaranteed
to be globally optimal, in general it remains NP-hard to escape high-order saddle points [5],
and additional arguments are needed to show the achievement of a local minimum. Most
importantly, all existing results rely on strong assumptions on the sample size.

1.1 Our Results

Our work studies the exact recoverability problem for a variety of non-convex matrix
factorization problems. The goal is to provide a unified framework to analyze a large class
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Strong Duality

Primal Problem (1) {——————— Bi-Dual Problem (2)
By Theorem 3.3
+ Dual Certificate

Common Optimal Solution

Figure 1 Strong duality of matrix factorizations.

of matrix factorization problems, and to achieve efficient algorithms. Our main results
show that although matrix factorization problems are hard to optimize in general, under
certain dual conditions the duality gap is zero, and thus the problem can be converted to an
equivalent convex program. The main theorem of our framework is the following.

Theorem 4. (Strong Duality. Informal.) Under certain dual conditions, strong duality
holds for the non-convexr optimization problem

1
(A,B) = argmin F(A,B) = H(AB)+§||AB||%, H(-) is convex and closed, (1)
ACR"1 X" BER"Xn2
where “the function H(-) is closed” means that for each o € R, the sub-level set {X € RmM*"2 :
H(X) < a} is a closed set. In other words, problem (1) and its bi-dual problem

X = argmin H(X) + || X]| -+, (2)
XeRn1Xn2

have ezactly the same optimal solutions in the sense that AB = X, where | X||,+ is a convex
function defined by || X[, = maxy(M,X) — 2|M|2 and [M|2 = Y7, 0?(M) is the sum
of the first r largest squared singular values.

Theorem 4 connects the non-convex program (1) to its convex counterpart via strong
duality; see Figure 1. We mention that strong duality rarely happens in the non-convex
optimization region: low-rank matrix approximation [44] and quadratic optimization with
two quadratic constraints [10] are among the few paradigms that enjoy such a nice property.
Given strong duality, the computational issues of the original problem can be overcome by
solving the convex bi-dual problem (2).

The positive result of our framework is complemented by a lower bound to formalize the
hardness of the above problem in general. Assuming that the random 4-SAT problem is
hard [45], we give a strong negative result for deterministic algorithms. If also BPP = P
(see Section 6 for a discussion), then the same conclusion holds for randomized algorithms
succeeding with probability at least 2/3.

Theorem 9. (Hardness Statement. Informal.) Assuming that random 4-SAT is hard on
average, there is a problem in the form of (1) such that any deterministic algorithm achieving
(1+¢€)OPT in the objective function value with € < ey requires 22" +72) time, where OPT is
the optimum and €y > 0 is an absolute constant. If BPP = P, then the same conclusion holds
for randomized algorithms succeeding with probability at least 2/3.

Our framework only requires the dual conditions in Theorem 4 to be verified. We will show

that two prototypical problems, matrix completion and robust PCA, obey the conditions.

They belong to the linear inverse problems of form (1) with a proper choice of function
H(-), which aim at exactly recovering a hidden matrix X* with rank(X*) < r given a limited
number of linear observations of it.

For matrix completion, the linear measurements are of the form {X}; : (3,j) € Q},
where § is the support set which is uniformly distributed among all subsets of [n1] x [ng]
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Table 1 Comparison of matrix completion methods. Here x = o1(X"*)/0,(X") is the condition
number of X* € R™*"_ ¢ is the accuracy such that the output X obeys ||X X*|lr < e
n(1y = max{ni,n2} and ny = min{ni,n2}. The first line of ours is an information-theoretic upper
bound and the second line is a polynomial-time approach.

Work ‘ Sample Complexity p-Incoherence
[37] @) (m‘*;fr n(1) logn) log (T“X ”F)) Condition (3)
[30] (@] <m~n(1)(r + log (n“)HX ”F) [y HF) Condition (3)
23] Omax (W K log ) Xl < A I
[53] (9(7“n<1);.§2 max {u log n(2), JRuen] n<2> M2T6K“4} Condition (3)
[65] O(pr?n(yk® max(p, log n())) Condition (3)
[20] @] ((u27’4m2 + prlog (%)) n(1) log (HX:“F )) Condition (3)
[64] @] (Mr3n(1) log n(1y log (l)) Condition (3)
[40] (@) (n(g)r e ; k% max {ulog N2y, 1T /%fi‘l}) Similar to (3) and (12)
[17] O(max{prnyrlogn, p’r’x’nay}) Condition (3)
[25] O(urnylog® ney) Conditions (3) and (12)
[18] O(urnylog® ney) Condition (3)
Ours O(prny logngy) Condition (3)
O(K*urnq) log(ny) logs, (n(1))) Condition (3)
Lower Bound' [15] ‘ Q(prneylognay) Condition (3)

of cardinality m. With strong duality, we can either study the exact recoverability of the
primal problem (1), or investigate the validity of its convex dual (or bi-dual) problem (2).
Here we study the former with tools from geometric functional analysis. Recall that in the
analysis of matrix completion, one typically requires a p-incoherence condition for a given
rank-r matrix X* with skinny SVD UXVT [46, 15]:

[UTeills </E5,  and  [[VTeilla < /25, foralli (3)
ni n2

where e;’s are vectors with i-th entry equal to 1 and other entries equal to 0. The incoherence
condition claims that information spreads throughout the left and right singular vectors and
is quite standard in the matrix completion literature. Under this standard condition, we
have the following results.

Theorems 5, 7, and 6. (Matrix Completion. Informal.) X* € R™*" s the unique
matriz of rank at most v that is consistent with the m measurements with high probability,
provided m = O(u(ny +nz2)rlog(ny+nsz)) and X* satisfies incoherence (3). In addition, there
exists a convex optimization for matriz completion in the form of (2) that exactly recovers
X* with high probability, provided that m = O(k*pu(ny + na)rlog(ny + na)logy, (n1 + n2)),
where K s the condition number of X*.

To the best of our knowledge, our result is the first to connect convex matrix completion
to non-convex matrix completion, two parallel lines of research that have received significant
attention in the past few years. Table 1 compares our result with prior results.

1 This lower bound is information-theoretic.
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For robust PCA, instead of studying exact recoverability of problem (1) as for matrix
completion, we investigate problem (2) directly. The robust PCA problem is to decompose a
given matrix D = X* 4+ S* into the sum of a low-rank component X* and a sparse component
S* [1]. We obtain the following theorem for robust PCA.

Theorem 8. (Robust PCA. Informal.) There exists a convex optimization formulation
for robust PCA in the form of problem (2) that exactly recovers the incoherent matriz

X* € R > gnd S* € R™*"2 with high probability, even if rank(X*) = © (*mz%)

plog? max{ni,no}
and the size of the support of S* is m = O(n1n2), where the support set of S* is uniformly dis-

tributed among all sets of cardinality m, and the incoherence parameter y satisfies constraints
(3) and [|X"|loo < /20, (X7).

ning

The bounds in Theorem 8 match the best known results in the robust PCA literature
when the supports of S* are uniformly sampled [13], while our assumption is arguably more
intuitive; see Section 5. Note that our results hold even when X* is close to full rank and
a constant fraction of the entries have noise. Independently of our work, Ge et al. [22]
developed a framework to analyze the loss surface of low-rank problems, and applied the
framework to matrix completion and robust PCA. Their bounds are: for matrix completion,
the sample complexity is O(x°u*r®(n1 +ns2)log(ng +n2)); for robust PCA, the outlier entries

are deterministic and the number that the method can tolerate is O (Z;Z% . Zhang et al. [63]
also studied the robust PCA problem using non-convex optimization, where the outlier entries
are deterministic and the number of outliers that their algorithm can tolerate is O (%)

The strong duality approach is unique to our work.

1.2  Our Techniques

Reduction to Low-Rank Approximation. Our results are inspired by the low-rank approx-
imation problem:

1

. Y 2
pegn B8y, 512~ ABI (@)

We know that all local solutions of (4) are globally optimal (see Lemma 1) and that strong
duality holds for any given matrix —A € Rmixn2 [26]. To extend this property to our more
general problem (1), our main insight is to reduce problem (1) to the form of (4) using
the f5-regularization term. While some prior work attempted to apply a similar reduction,
their conclusions either depended on unrealistic conditions on local solutions, e.g., all local
solutions are rank-deficient [28, 26], or their conclusions relied on strong assumptions on the
objective functions, e.g., that the objective functions are twice-differentiable [29]. Instead, our
general results formulate strong duality via the existence of a dual certificate A. For concrete
applications, the existence of a dual certificate is then converted to mild assumptions, e.g.,
that the number of measurements is sufficiently large and the positions of measurements are
randomly distributed. We will illustrate the importance of randomness below.

The Blessing of Randomness. The desired dual certificate A may not exist in the de-
terministic world. A hardness result [45] shows that for the problem of weighted low-rank
approximation, which can be cast in the form of (1), without some randomization in the meas-
urements made on the underlying low rank matrix, it is NP-hard to achieve a good objective
value, not to mention to achieve strong duality. A similar phenomenon was observed for
deterministic matrix completion [32]. Thus we should utilize such randomness to analyze the
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QJ.

Descent Cone D¢ (X™*)

Figure 2 Feasibility.

existence of a dual certificate. For matrix completion, the assumption that the measurements
are random is standard, under which, the angle between the space Q (the space of matrices
which are consistent with observations) and the space 7 (the space of matrices which are
low-rank) is small with high probability, namely, X* is almost the unique low-rank matrix
that is consistent with the measurements. Thus, our dual certificate can be represented as
another form of a convergent Neumann series concerning the projection operators on the
spaces 2 and 7. The remainder of the proof is to show that such a construction obeys the
dual conditions.

To prove the dual conditions for matrix completion, we use the fact that the subspace €2
and the complement space 7+ are almost orthogonal when the sample size is sufficiently
large. This implies the projection of our dual certificate on the space 7+ has a very small
norm, which exactly matches the dual conditions.

Non-Convex Geometric Analysis. Strong duality implies that the primal problem (1) and
its bi-dual problem (2) have exactly the same solutions in the sense that AB=X. Thus, to
show exact recoverability of linear inverse problems such as matrix completion and robust
PCA, it suffices to study either the non-convex primal problem (1) or its convex counterpart
(2). Here we do the former analysis for matrix completion. We mention that traditional
techniques [15, 46, 16] for convex optimization break down for our non-convex problem, since
the subgradient of a non-convex objective function may not even exist [12]. Instead, we apply
tools from geometric functional analysis [55] to analyze the geometry of problem (1). Our
non-convex geometric analysis is in stark contrast to prior techniques of convex geometric
analysis [56] where convex combinations of non-convex constraints were used to define the
Minkowski functional (e.g., in the definition of atomic norm) while our method uses the
non-convex constraint itself.

For matrix completion, problem (1) has two hard constraints: a) the rank of the output
matrix should be no larger than r, as implied by the form of AB; b) the output matrix
should be consistent with the sampled measurements, i.e., Po(AB) = Pq(X™*). We study the
feasibility condition of problem (1) from a geometric perspective: AB = X* is the unique
feasible solution to problem (1) if and only if starting from X*, the rank of X* + D increases
for all directions D’s in the constraint set Q+ = {D € R™*"2 : Po(X* + D) = Pq(X*)}
(a.k.a. the feasibility condition). This can be geometrically interpreted as the requirement
that the descent cone Dg(X*) = {t(X — X*) € R™*"2 : rank(X) < r, ¢ > 0} and the
constraint set Q2 must intersect uniquely at 0 (see Figure 2), which means X* is the unique
matrix that satisfies the constraints a) and b). This is shown by the following tangent cone
argument.
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Let S be the set of all matrices with rank at most r around the underlying matrix X*. In
the tangent cone argument, by definition, Ds(X*) is a subset of the tangent cone of S at X*.
The latter cone of interest has a very nice form, namely, it is just the space 7 mentioned
above (the space of matrices which are low-rank). Now leverage results from prior work
which imply 7 N Q* = {0} with a large enough sample size. Namely, among all matrices
of the form X* 4+ D, D = 0 is the only matrix such that rank(X* + D) < r and X* + D is
consistent with the observations.

Using this argument, we can show that the sample size needed for exact recovery in
matrix completion matches the known lower bound up to a constant factor.

Putting Things Together. We summarize our new analytical framework with the following

figure.

Geometric

Analysis

Non-Convex Problem (1)
(NP-hard in general)

Exact Recovery by Non-Convex Problem (1)
with Optimal Sample Complexity

Exact Recovery by Convex
— Problem (2)

Randomn&

Construction of

™ Strong Duality
Dual Certificate gegyction to

Low-Rank
Approximation

Other Techniques. An alternative method is to investigate the exact recoverability of
problem (2) via standard convex analysis. We find that the sub-differential of our induced
function || - ||« is very similar to that of the nuclear norm. With this observation, we prove
the validity of robust PCA in the form of (2) by combining this property of || - ||, with
standard techniques from [13].

2 Preliminaries

We will use calligraphy to represent a set, bold capital letters to represent a matrix, bold
lower-case letters to represent a vector, and lower-case letters to represent scalars. Specifically,
we denote by X* € R™*"2 the underlying matrix. We use X,; € R™*! (X, € R*"2) to
indicate the ¢t-th column (row) of X. The entry in the i-th row, j-th column of X is represented
by X;;. The condition number of X is x = 01(X)/0(X). We let n;) = max{ny,ns} and
n(2)y = min{ny,ny}. For a function H (M) on an input matrix M, its conjugate function H*
is defined by H*(A) = maxym (A, M) — H(M). Furthermore, let H** denote the conjugate
function of H*.

We will frequently use rank(X) < r to constrain the rank of X. This can be equivalently
represented as X = AB, by restricting the number of columns of A and rows of B to be

r. For norms, we denote by [|X[[r = (/> X7, the Frobenius norm of matrix X. Let

01(X) > 02(X) > ... > 0.(X) be the non-zero singular values of X. The nuclear norm
(a.k.a. trace norm) of X is defined by ||X|. = >_/_, 04(X), and the operator norm of X
is | X|| = 01(X). Denote by || X| e = max;;|X;;|. For two matrices A and B of equal
dimensions, we denote by (A,B) = > ,. A;;B;;. We denote by 0H(X) = {A € R™*"2 :

H(Y)> HX)+ (A, Y — X) for any Y} the sub-differential of function H evaluated at X.
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o , {0, if X € C;
We define the indicator function of convex set C by I¢(X) = For any
400, otherwise.
non-empty set C, denote by cone(C) = {tX: X € C, t > 0}.

We denote by € the set of indices of observed entries, and Q-+ its complement. Without
confusion,  also indicates the linear subspace formed by matrices with entries in Q- being
0. We denote by Pq : R"*"2 — R™*"2 the orthogonal projector of subspace 2. We will
consider a single norm for these operators, namely, the operator norm denoted by ||A|l
and defined by [|A|| = sup) x|, =1 [ A(X)[|F. For any orthogonal projection operator Pr to
any subspace T, we know that |Pr| = 1 whenever dim(7) # 0. For distributions, denote
by N(0,1) a standard Gaussian random variable, Uniform(m) the uniform distribution of
cardinality m, and Ber(p) the Bernoulli distribution with success probability p.

3 />-Regularized Matrix Factorizations: A New Analytical Framework

In this section, we develop a novel framework to analyze a general class of ¢o-regularized
matrix factorization problems. Our framework can be applied to different specific problems
and leads to nearly optimal sample complexity guarantees. In particular, we study the
lo-regularized matrix factorization problem

1
(P) min F(A,B) = H(AB) + -||AB||%, H(:) is convex and closed.
AER" X" BERT X2 2

We show that under suitable conditions the duality gap between (P) and its dual (bi-dual)
problem is zero, so problem (P) can be converted to an equivalent convex problem.

3.1 Strong Duality

We first consider an easy case where H(AB) = %H?H% - (?, AB) for a fixed Y, leading to
the objective function %H? — AB||%. For this case, we establish the following lemma.

» Lemma 1. For any given matriz Y, any local minimum of f(A,B) = %H? — ABJ||% is
globally optimal, given by svd,.(Y). The objective function f(A,B) around any saddle point

has a negative second-order directional curvature. Moreover, f(A,B) has no local mazimum.?

The proof of Lemma 1 is basically to calculate the grad1ent of f (A,B) and let it equal to
zero. Given this lemma, we can reduce F(A,B) to the form 3 1Y — ABJ||% for some Y plus
an extra term:

1 1 o
F(A,B) = S|AB} + H(AB) = | AB|}} + ™ (AB)

1
max §||ABH2F + (A, AB) — H*(A)

1 1
=max || - A~ AB|% — §IIA||2F —H*(A) £ max L(A, B, A), (5)

where we define L(A,B,A) £ || — A — AB||%2 — $||A[|% — H*(A) as the Lagrangian of
problem (P),® and the second equality holds because H is closed and convex w.r.t. the

Prior work studying the loss surface of low-rank matrix approximation assumes that the matrix A is
of full rank and does not have the same singular values [8]. In this work, we generalize this result by
removing these two assumptions.

3 One can easily check that L(A, B, A) = miny L'(A, B, M, A), where L'(A, B, M, A) is the Lagrangian
of the constraint optimization problem mina g m %HABH% + H(M), s.t. M = AB. With a little abuse
of notation, we call L(A,B, A) the Lagrangian of the unconstrained problem (P) as well.
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argument AB. For any fixed value of A, by Lemma 1, any local minimum of L(A, B, A) is
globally optimal, because minimizing L(A, B, A) is equivalent to minimizing | — A — AB||%,
for a fixed A.

The remaining part of our analysis is to choose a proper A such that (K,E, 1~X) is a
primal-dual saddle point of L(A,B, A), so that mina g L(A, B, 1~X) and problem (P) have
the same optimal solution (.&, ]§) For this, we introduce the following condition, and later
we will show that the condition holds with high probability.

» Condition 2. For a solution (K, ]§) to problem (P), there exists an Ac Ox H(X)|
such that

~ABB? = AB” and AT(-AB)=ATA. (6)

X=AB

Explanation of Condition 2. We note that VAL(A,B,A) = ABB? + AB? and
VsL(A,B,A) = ATAB + ATA for a fixed A. In particular, if we set A to be the A
n (6), then VAo L(A, B, _/NX)|A:K =0 and VBL(K, B,K)|B:§ = 0. So Condition 2 implies
that (A, B) is either a saddle point or a local minimizer of L(A, B, A) as a function of (A, B)
for the fixed A.

The following lemma states that if it is a local minimizer, then strong duality holds.

» Lemma 3 (Dual Certificate). Let (A, B) be a global minimizer of F(A,B). If there exists a
dual certificate A satisfying Condition 2 and the pair (A, B) is a local minimizer of L(A,B A)
for the fized A then strong duality holds. Moreover, we have the relation AB = svd, (—A).

Proof. By the assumption of the lemma, (A,]NB) is a local minimizer of L(A,B,T\) =
5l —A— ABHF—i—c( ), where ¢(A) is a function that is independent of A and B. So according
to Lemma 1, (A, B) = argming g L(A B, A), namely, (A, B) globally minimizes L(A, B, A)
when A is fixed to A. Furthermore, A € Ox H(X Nx— iB implies that AB € 9y H*(A)| Ai DY
the convexity of function H, meaning that 0 € OaL(A,B ,A). So A = argmax, L(A,B,A)
due to the concavity of L(A,B, A) w.r.t. variable A. Thus (A, B, A) is a primal-dual saddle
point of L(A, B, A).

We now prove the strong duality. By the fact that F'(A, B) = maxa L(A,B, A) and that
A = argmax, L(A, B, A), we have F(A,B) = L(A,B,A) < L(A,B,A), VA,B, where the
inequality holds because (A B A) is a primal-dual saddle point of L. So on the one hand,
mina g maxa L(A,B,A) = F(A,B) < mina g L(A, B, A) < maxy ming g L(A, B, A). On
the other hand, by weak duality, mina g maxa L(A,B,A) > maxa mina g L(A,B,A).
Therefore, we have mina g maxa L(A, B, A) = maxa mina g L(A, B, A), i.e., strong duality
holds. Hence,

AB = argmin L(A,B,A) = argmln f|| —A-AB|% - f||A||F H*(A)
AB

:argmian — A — AB||% = svd, (—A). <
AB 2

This lemma then leads to the following theorem.

» Theorem 4. Denote by (A,]~3) the optimal solution of problem (P). Define a matriz space
T2 {AXT + YB, X € R"X" Y € R" X"}, Then strong duality holds for problem (P),
provided that

() AcOH(AB) 2w,  (2) Pr(-A)=AB,  (3) [Pr.Al < o,(AB). o
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oH(AB) =y

(dual certificate)

Figure 3 Geometry of dual condition (7) for general matrix factorization problems.

Proof. The proof idea is to construct a dual certificate A so that the conditions in Lemma 3
hold. We note that A should satisfy the following;:

(a) A e€dH(AB), (by Condition 2)
(b) (AB+A)B"=0 and AT(AB+A)=0, (by Condition 2)
(c) AB = svd,(—A). (by the local minimizer assumption and Lemma 1) (8)

By the definition of 7 in the theorem statement, it turns out that for any matrix
M € R™*"2 we have P M = (I— AAT)M(I—BBY) and so |[Pr. M| < M|, a fact that
we will frequently use in the subsequent parts of the paper. Denote by U the left singular space
of AB and V the right singular space. Then the linear space T can be equivalently represented
as T = U+V by the definition. Therefore, we have T+ = (U+V)+ = UL NVL. With this, we
note that: (b) (AB+A)BT = 0and AT(AB+A) = 0 imply AB+A € Null(AT) = Col(A)~+
and AB + A € Row(B): (so AB + A € T%), and vice versa, where Null(Y), Col(Y),
Row(Y) represent the null space, the row space, the column space of any given matrix
Y, respectively. And (¢) AB = svd,(—A) implies that for an orthogonal decomposition
—~A = AB+E, where AB € T, and E € T, we have |E| < 0,.(AB). Conversely,
|E|| < 0.(AB) and condition (b) imply AB = svd,(—A). Therefore, the dual conditions
(a), (b), and (c) in (8) are equivalent to (1) A € H(AB) 2 ¥; (2) Pr(—A) = AB; (3)

|PrL Al < 0,(AB), as desired. <

To show the dual condition in Theorem 4, intuitively, we need to show that the angle
0 between subspace T and ¥ is small (see Figure 3) for a specific function H(-). In the
following (see Section B), we will demonstrate applications that, with randomness, obey this
dual condition with high probability.

4 Matrix Completion

In matrix completion, there is a hidden matrix X* € R"*"2 with rank r. We are given
measurements {Xj; : (i,7j) € Q}, where Q ~ Uniform(m), i.e., Q is sampled uniformly at
random from all subsets of [n1] X [na] of cardinality m. The goal is to exactly recover X* with
high probability. Here we apply our unified framework in Section 3 to matrix completion, by
setting H(-) = Iinpg (v)=po (x)} (+)-

A quantity governing the difficulties of matrix completion is the incoherence parameter .
Intuitively, matrix completion is possible only if the information spreads evenly throughout
the low-rank matrix. This intuition is captured by the incoherence conditions. Formally,
denote by UZVT the skinny SVD of a fixed n; X ne matrix X of rank r. Candes et
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al. [13, 14, 46, 61] introduced the p-incoherence condition (3) to the low-rank matrix X. For
conditions (3), it can be shown that 1 < p < @ The condition holds for many random
matrices with incoherence parameter y about /rlogn ) [40].

We have two positive results. The first result is an information-theoretic upper bound:
with the standard incoherence condition (3), X* is the unique matrix of rank at most r that
is consistent with the observations. The proof is deferred to Appendix A.

» Theorem 5 (Information-Theoretic Upper Bound). Let © ~ Uniform(m) be the support set
uniformly distributed among all sets of cardinality m. Suppose that m > cunyrlogmn )
for an absolute constant c. Then X* is the unique ny X ng matriz of rank at most r with

p-incoherence condition (3) such that Po(X) = Pa(X*), with probability at least 1 — n&%o.

Proof Sketch. We consider the feasibility of the matrix completion problem:
Find a matrix X € R™*™2 guch that Pq(X) = Pa(X*), rank(X) <r. 9)

Our proof first identifies a feasibility condition for problem (9), and then shows that X* is
the only matrix which obeys this feasibility condition when the sample size is large enough.
More specifically, we note that X* obeys the conditions in problem (9). Therefore, X* is the
only matrix which obeys condition (9) if and only if X* + D does not follow the condition for
all D, i.e., Ds(X*) N Q+ = {0}, where Ds(X*) is the descent cone of all low-rank matrices.
We note that the descent cone Dg(X*) is contained in the subspace T by the tool of geometry
functional analysis. Thus by a well-known fact that 7 N Q% = {0} when the sample size is
large, the proof is completed. |

We describe a simple finite-time inefficient algorithm given Theorem 5 in Section C.
This positive result matches a lower bound from prior work, which claims that the sample
complexity in Theorem 5 is optimal.

» Theorem 6 (Information-Theoretic Lower Bound. [15], Theorem 1.7). Denote by 2 ~
Uniform(m) the support set uniformly distributed among all sets of cardinality m. Suppose
that m < cun(yrlogn ) for an absolute constant c. Then there exist infinitely many ny X ny
matrices X' of rank at most v obeying p-incoherence (3) such that Po(X') = Pa(X*), with
probability at least 1 — n&%o,

Our second positive result converts the feasibility problem in Theorem 5 to a convex
optimization problem, which can be efficiently solved.

» Theorem 7 (Efficient Matrix Completion). Let © ~ Uniform(m) be the support set uni-
formly distributed among all sets of cardinality m. Suppose X* has condition number
k= 01(X*)/0.(X*). Then there are absolute constants ¢ and co such that with probability at
least 1 — con(_ﬁo, the output of the convex problem

X = argmin | X[, st Po(X) = Po(X¥), (10)
X

is unique and ezact, i.e., X = X*, provided that m > ck? prnyy logy, (n(1y) log(n(yy) and X*
obeys p-incoherence (3).

Proof Sketch. We have shown in Theorem 5 that (A,B) = argming g || AB||%, s.t.
Pa(AB) = Po(X*) exactly recovers X*, i.e., AB = X*, with the optimal sample com-
plexity. So if strong duality holds, this non-convex optimization problem can be equivalently

5:11
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converted to the convex program (10). Then Theorem 7 is straightforward from strong
duality.

It now suffices to apply our unified framework in Section 3 to prove the strong du-
ality. We show that the dual condition in Theorem 4 holds with high probability by
the following arguments. Let (A, ]§) be a global solution to problem (10). For H(X) =

Iivern xna: poM=pyx-}(X), we have
U = 9H(AB)
={G e R™"*™ : (G,AB) > (G,Y), for any Y € R"*" st. PoY = PoX*}
={G e R™"™ : (G, X*) > (G,Y), forany Y € R"*"2 gt. PoY = PoX*} =Q,

where the third equality holds since AB = X*. Then we only need to show

(1) A e Q, (2) Pr(—A) = AB, (3) [Pre Al < %ar(AB). (11)
It is interesting to see that dual condition (11) can be satisfied if the angle 6 between subspace
Q) and subspace T is very small; see Figure 3. When the sample size |2| becomes larger and
larger, the angle 8 becomes smaller and smaller (e.g., when |Q2] = nyno, the angle 6 is zero
as 0 = R™*"2). We show that the sample size m > Q(r>urn()log,, (na))log(na))) is a
sufficient condition for condition (11) to hold. <

5 Robust Principal Component Analysis

In this section, we develop our theory for robust PCA based on our framework. In the
problem of robust PCA, we are given an observed matrix of the form D = X* + S* where
X* is the ground-truth matrix and S* is the corruption matrix which is sparse. The goal is to
recover the hidden matrices X* and S* from the observation D. We set H(X) = A\||D — X]|;.

To make the information spread evenly throughout the matrix, the matrix cannot have
one entry whose absolute value is significantly larger than other entries. In this work, we
make the following incoherence assumption for robust PCA:

* /,LT' *
Xl < 1/ (X7). 12
X e < /0 (X0) (12)

Note that condition (12) has an intuitive explanation, namely, that the entries must scatter
almost uniformly across the low-rank matrix.
We have the following results for robust PCA.

» Theorem 8 (Robust PCA). Suppose X* is an ny Xng matriz of rank r, and obeys incoherence
(3) and (12). Assume that the support set Q of S* is uniformly distributed among all sets
of cardinality m. Then with probability at least 1 — cn(_ﬁo, the output of the optimization
problem

(X,S) = argmin || X[/~ + A||S[l;, st. D=X+S,
X,S

with A = 22X s exact, namely, X = X* and S = S*, if rank(X*) < pp——2— and m <

A /n(l) u10g2 ’I’L(l)
psning, where ¢, pr, and ps are all positive absolute constants, and function || - ||y« is given
by (13).

The bounds on the rank of X* and the sparsity of S* in Theorem 8 match the best known
results for robust PCA in prior work when we assume the support set of S* is sampled
uniformly [13].
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6 Computational Aspects

Computational Efficiency. We discuss our computational efficiency given that we have
strong duality. We note that the dual and bi-dual of primal problem (P) are given by

* 1 .
(Dual, D1) adnax —H*(A) - 5\|A||2, where ||A||? = ;:1: o2(A),
1
(Bi-Dual, D2) min ~ H(M) + |[M||,», where |[M]||,. =max(M,X) — =||X]2.
MER™1 X712 X 2

(13)

Problems (D1) and (D2) can be solved efficiently due to their convexity. In particular,
Grussler et al. [26] provided a computationally efficient algorithm to compute the proximal
operators of functions || - ||2 and || - ||,.. Hence, the Douglas-Rachford algorithm can find
the global minimum up to an € error in function value in time poly(1/€) [33].

Computational Lower Bounds. Unfortunately, strong duality does not always hold for
general non-convex problems (P). Here we present a very strong lower bound based on
the random 4-SAT hypothesis. This is by now a fairly standard conjecture in complexity
theory [19] and gives us constant factor inapproximability of problem (P) for deterministic
algorithms, even those running in exponential time.

If we additionally assume that BPP = P, where BPP is the class of problems which can
be solved in probabilistic polynomial time, and P is the class of problems which can be solved
in deterministic polynomial time, then the same conclusion holds for randomized algorithms.
This is also a standard conjecture in complexity theory, as it is implied by the existence of
certain strong pseudorandom generators or if any problem in deterministic exponential time
has exponential size circuits [34]. Therefore, any subexponential time algorithm achieving a
sufficiently small constant factor approximation to problem (P) in general would imply a
major breakthrough in complexity theory.

The lower bound is proved by a reduction from the Maximum Edge Biclique problem [4].

» Theorem 9 (Computational Lower Bound). Assume Conjecture 20 (the hardness of Random
4-SAT). Then there exists an absolute constant eg > 0 for which any deterministic algorithm
achieving (1 4+ €)OPT in the objective function value for problem (P) with € < €y, requires
202mitn2) time, where OPT is the optimum. If in addition, BPP = P, then the same conclusion

holds for randomized algorithms succeeding with probability at least 2/3.

Proof Sketch. Theorem 9 is proved by using the hypothesis that random 4-SAT is hard, in
order to show hardness of the Maximum Edge Biclique problem for deterministic algorithms.
We then do a reduction from the Maximum Edge Biclique problem to our problem. |

Due to space constraints, we defer the proofs of Lemma 1, Theorem 8, some synthetic
experiments, and other related work to our full version on arXiv. The proofs of other
theorems/lemmas can be found in the appendices.

Acknowledgments. We thank Rong Ge, Zhouchen Lin, and Benjamin Recht for useful
discussions. We would like to thank Rina Foygel for finding a bug in the proof of Theorem 7
in a previous version.
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A Proof of Theorem 5

Theorem 5. (Information-Theoretic Upper Bound. Restated.)  Let Q ~ Uniform(m) be
the support set, which is uniformly distributed among all sets of cardinality m. Suppose that
m > cunyrlogn yy for an absolute constant c. Then X* is the unique n1 X ng matriz of
rank at most r with p-incoherence (3) such that Po(X) = Pq(X*), with probability at least

—10
1— neyy -

Proof. We note that the sampling model Uniform(m) is equivalent to the sampling model

m

Ber(p) with p = © (W)’ which we will frequently use in the sequel. We consider the

n
feasibility of the matrix completion problem:

Find a matrix X € R™*"2 guch that Pq(X) = Pa(X*), rank(X) <r. (14)

Our proof first identifies a feasibility condition for problem (14), and then shows that X* is
the only matrix that obeys this feasibility condition when the sample size is large enough. We
denote by § = {X € R™*™2 : rank(X) < r}, and define Dg(X*) = {t(X — X*) € R"*"2 :
rank(X) <r, t > 0}. We have the following proposition for the feasibility of problem (14).

» Proposition 10 (Feasibility Condition). X* is the unique feasible solution to problem (14)
if Ds(X*) N Q+ = {0}.

Proof. Notice that problem (14) is equivalent to another feasibility problem
Find a matrix D € R"**"2 such that rank(X* +D) <7, D€ Q.

Suppose that Ds(X*) N QL = {0}. Since rank(X* + D) < r implies D € Dg(X*), and note
that D € Q%, we have D = 0, which means X* is the unique feasible solution to problem
(14). <

The remainder of the proof is to show Dg(X*) N Q+ = {0}. To proceed, we note that the
“escaping through a mesh” techniques for matrix sensing do not work for matrix completion
since €2 is not drawn from the Grassmanian according to the Haar measure. To address this
issue, we instead need the following lemmas. The first lemma claims that the tangent cone
of the set S evaluated at X* is slightly larger than the cone cone(S — {X*}).
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» Lemma 11 ([35], Theorem 4.8). Let S be a non-empty subset of a real normed space.
If S is star-shaped w.r.t. some X* € S, i.e., t(S — {X*}) C S — {X*} for allt € [0,1],
then it follows cone(S — {X*}) C T(S,X*), where T(S,X*) is the tangent cone of the set
S at point X* defined by T(S,X*) = {E € Rm*™ : 3X,, C S, (a,) C RT s.t. X,, —
X*, ap(Xn — X*) = B}

The second lemma states that the tangent cone of S evaluated at X* can be represented
in a closed form.

» Lemma 12 ([49], Theorem 3.2). Let X* = UXVT be the skinny SVD of matriz X*. The
tangent cone T'(S,X*) of the set S = {X € R™"*"2 : rank(X) < r} at X* is a linear subspace
given by T(S,X*) = {ULT + MVT : L € R"=*" M € Rm*"} & T,

Now we are ready to prove Theorem 5. By Lemma 11 and 12, we have Dg(X*) =
cone(S — {X*}) C T'(S,X*) = T, where the first equality holds by the definition of Dg(X™*).
So if TN Q+ = {0}, then Dg(X*) N QO+ = {0}, meaning that X* is the unique feasible
solution to the problem (14). Thus the rest of proof is to find a sufficient condition for
T NQL ={0}. We have the following lemma.

» Lemma 13. Assume that Q ~ Ber(p) and the incoherence condition (3) holds. Then

with probability at least 1 — n(_ﬁo, we have ||PorPr|| < /1 —p+ ep, provided that p >
Coe 2 (prlogn(yy)/n(), where Cy is an absolute constant.

Proof. If Q ~ Ber(p), we have, by Theorem 15, that with high probability
P+ — p~*PrPaPr|l < € provided that p > COG*ng;“). Note, however, that since

n(
T = Pq + Pqr, Pr — p 'PrPaPr = p~ (P71 PorPr — (1 — p)P7) and, therefore, by the
triangle inequality ||P7Pq.Pr|| < ep+ (1 — p). Since ||PqrPr||? < ||P7PqrPrl|, the proof
is completed. |

We note that ||Pg.Pr|| < 1 implies Q+ N7 = {0}. The proof is completed. <

B Proof of Theorem 7

We have shown in Theorem 5 that the problem (A, B) = argming p 1||AB||%,s.t.Po(AB) =
Pa(X*), exactly recovers X*, i.e., AB = X*, with the optimal sample complexity. So if
strong duality holds, this non-convex optimization problem can be equivalently converted to
the convex program (10). Then Theorem 7 is straightforward from strong duality.

It now suffices to apply our unified framework in Section 3 to prove the strong duality.
We show that the dual condition in Theorem 4 holds with high probability. Let (A, B) be a
global solution to problem (10). For H(X) = Iinernixna: poM=pox+}(X), we have

U = OH(AB)
={G e R™"*"; (G,Aﬁ) > (G,Y), for any Y € R™*™ s.t. PoY = PoX*}
={G e R"*"™ : (G,X") > (Q,Y), for any Y € R"*"2 gt. PoY = PoX*} =Q,

where the third equality holds since AB = X*. Then we only need to show
~ ~ -~ ~ 2 o~
()Ae® (2)Pr(-A)=AB, @) [ProAl < ;0,(AB). (15)

We have the following lemma.
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» Lemma 14. If we can construct an A such that

@A ) [Pr(-A) = ABlr < [y -ou(AB) (@) [P All < 50:(AB),
(16)

then we can construct an A such that Eqn. (15) holds with probability at least 1 — n&%o.

Proof. To prove the lemma, we first claim the following theorem.

» Theorem 15 ([14], Theorem 4.1). Assume that Q is sampled according to the Bernoulli

m

model with success probability p = ©( ), and incoherence condition (3) holds. Then there

ning
is an absolute constant C'r such that for 8 > 1, we have

. [Brmyriogng
Ip~'PrPaPr — Pr| < Cr %
with probability at least 1 — 3n~" provided that Cry/ W < 1.

Suppose that Conditi~on (16) holds. Let 'Y :~1~3 — A € Q be the perturbation mat-

rix between A and A such thgtNPT(—A) = AB. Such a Y exists by setting Y =

PaPr(PrPoPr) *(Pr(—A) — AB). So [|[PrY|r < /55—0+(AB). We now prove Condi-
&)

tion (3) in Eqn. (15). Observe that

lI>

€,

~ 1 ~~
IPraAll < [ProAll +[[PraY] < Son(AB) + [|PraY]. (17)

So we only need to show |[|[Pr.Y| < %JT(AE).

Before proceeding, we begin by introducing a normalized version Qg : R"1*"2 — R"1%n2
of Pa: Qq = p~1Pq — Z. With this, we have PrPoPr = pPr(Z + Qq)Pr. Note that for
any operator P : T — T, we have P! = >, (Pr — P)* whenever |Pr — P|| < 1. So
according to Theorem 15, the operator p(PT’Pg;PT)_l can be represented as a convergent
Neumann series p(PrPoPr) ™' = 3,5 o(—1)"(PrQaPr)", because ||PrQoPr|l <€ < 1
once m > Cpunyyrlogn() for a sufficiently large absolute constant C. We also note that
p(Pr1QaPr) = PriPaPr, because PPy = 0. Thus

|ProY| = [ProPaPr(PrPaPr)~ (Pr(-A) — AB))|
= |[Pr+ QoPrp(PrPoPr) (Pr(~A) — AB))|
= I3 (~1)*Prs Qa(PrQaPr)* ((Pr(~A) — AB)))|

k>0

< Y I(=1)*Pri Qa(PrQaPr) (Pr(-A) — AB))|r

k>0
< Qall Y IPrQaPr|"|Pr(~A) — AB))|r

k>0

4 ~~ ning r ~~ 1 ~~
< Z||Pr(—=A) — AB)||r < ——0,(AB) < Z0,(AB
< JIPr-A) = AB)lr <6 (%) /55-0:(AB) < 30,(AB)

with high probability. The proof is completed. <
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It thus suffices to construct a dual certificate A such that all conditions in (16) hold. To
this end, partition Q = Q7 U Qs U ... UQ, into b partitions of size ¢. By assumption, we may
choose

128 1
> ?C’anurn(l) logn@) and b 2> 5 log,,. (2427%)/12)

for a sufficiently large constant C. Let §2; ~ Ber(g) denote the set of indices corresponding
t~o~the j-th partitions. Define Wy = AB and set A, = *L%2 25:1 Po,(W;-1), Wi =
AB — Pr(Ag) for k =1,2,....,b. Then by Theorem 15,

ning

[Wllr = Hwk—l - PrPao,(Wi_1)

F

1
= H (7’7 - n1n27’77’ﬂk7’7) (Wi—1)|| < %||Wk71||F~
F

So it follows that |[W ||z < (2k)7°|[Wo||r < (2k)°/Fo1(AB) < /ﬁUT(AB)
(e
The following lemma together implies the strong duality of (10) straightforwardly.

» Lemma 16. Under the assumptions of Theorem 7, the dual certification Wy, obeys the

dual condition (16) with probability at least 1 — n(_ﬁo.

Proof. It is well known that for matrix completion, the Uniform model £ ~ Uniform(m) is
equivalent to the Bernoulli model Q ~ Ber(p), where each element in [n;] x [ns] is included
with probability p = ©(m/(nin3)) independently. By the equivalence, we can suppose
Q ~ Ber(p).

To prove Lemma 16, as a preliminary, we need the following lemmas.

» Lemma 17 ([18], Lemma 2). Suppose Z is a fized matriz. Suppose Q ~ Ber(p). Then with
high probability, ||(Z — p~*Pq)Z|| < C} (k’g;”ﬂzoo + log;(”HZHoo,g) , where Cf > 0 is

an absolute constant and ||Z||,2 = max {maxi VO Z3, max; /> sz} :

» Lemma 18 ([13], Lemma 3.1). Suppose Q ~ Ber(p) and Z is a fized matriz. Then with
high probability, |Z — p~*PrPaZ| s < €|Z||oo, provided that p > Coe2(ur log ny)/ne) for
some absolute constant Cy > 0.

» Lemma 19 ([18], Lemma 3). Suppose that Z is a fized matriz and Q ~ Ber(p). If
p > coprlogn(yy/ne) for some co sufficiently large, then by high probability, ||(p~'PrPq —
Pr)Zloc2 < 51/ 55 1 Zlloo + 311 Z] oo 2-

ur

Observe that by Lemma 18, [[W|loc < (%)J |AB||o, and by Lemma 19, we have
IWillso2 < 51/ 5 IWi-illoo + 5 Wj-iloc,2. So

N e, s 1
Wil < (3) /" IABl + 51W,1 e

( ) \/>”ABIIOO ( ) |AB] 2.

Therefore, we have |[Pr. Ayl < Y0 |52 PrsPo, W,y = 35, [Pro (2P Wy —
W, )| < 2?:1 [(#4%2Pq, — I)(W—1)|. Let p denote © (n m). By Lemma 17,
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n( logn1
1Py A < 528 . >Z||W] oo + G| = >Z||WJ loo,2
Jj=1

log n(1 b1y -~ logny b (N ey~ 1\ ~~
<N Y (3) IABlrcy [0 S <2>,//j7]|AB||oo+<2> IAB
j=1 j=1
logn ~~ logn n
< O AB  + 201 [P0 AR+ Chy [“E B

Setting AB = X*, we note the facts that (we assume WLOG ng > ny)

(1X* | 00,2 = = max le] UV, < max el Ulo1(X*) <, / <, / /wr ),

[X*||oo = max(X*, e;el) = max(UBVT e, e; Ty = max(e] UE,eJTV>
ij ij

J ij

pres .
NooH or(X7).

Substituting p = © (H AE log(n“))logz“(n(”)), we obtain ||PrLAll < $07(X*). The proof

ning

< max lefUsvT|, ||eTV||2 < max 11X oo, 2||eTV||2

is completed. <

C Matrix Completion by Information-Theoretic Upper Bound

Theorem 5 formulates matrix completion as a feasibility problem. However, it is a priori
unclear if there is an algorithm for finding X* with O(un(yrlogn()) sample complexity
and incoherence (3) via solving the feasibility problem. To answer this question, we mention
that matrix completion can be solved in finite time under these minimum assumptions,
namely, we note that the feasibility problem is equivalent to finding a zero of the polynomial
Z(m)eg(e%’jABej —X3;)? = 0 w.r.t. the (n; 4 ng)r unknowns A and B. Since A can be
assumed to be orthogonal, if the entries of X* can be written down with poly(n) bits, then
IBl|F < exp(poly(n)), which means if one rounds each of the entries of B to the nearest
additive grid multiple of 1/ exp(poly(n)), then we will get a rank-k matrix B where each
entry represents the true entry of the optimal B up to additive 1/exp(poly(n)) error (of
course one cannot write down B in some cases if the entries are irrational). Such an A and
B can be found in exp((n; +n2)r) time [47, 48, 9]. This gives an exponential time algorithm
to solve the feasibility problem in Theorem 5 for matrix completion.

D Proof of Theorem 9

Our computational lower bound for problem (P) assumes the hardness of random 4-SAT.

» Conjecture 20 (Random 4-SAT). Let ¢ > In2 be a constant. Consider a random 4-SAT
formula on n variables in which each clause has 4 literals, and in which each of the 16n*
clauses 1is picked independently with probability c/n®. Then any algorithm which always
outputs 1 when the random formula is satisfiable, and outputs 0 with probability at least 1/2
when the random formula is unsatisfiable, must run in 2¢'" time on some input, where ¢’ > 0
is an absolute constant.

Based on Conjecture 20, we have the following computational lower bound for problem
(P). We show that problem (P) is in general hard for deterministic algorithms. If we
additionally assume BPP = P, then the same conclusion holds for randomized algorithms
with high probability.
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Theorem 9. (Computational Lower Bound. Restated.) Assume Conjecture 20. Then
there exists an absolute constant €9 > 0 for which any algorithm that achieves (1 + ¢)OPT
in objective function value for problem (P) with € < €y, and with constant probability,
requires 24"1+72) time, where OPT is the optimum. If in addition, BPP = P, then the same
conclusion holds for randomized algorithms succeeding with probability at least 2/3.

Proof. Theorem 9 is proved by using the hypothesis that random 4-SAT is hard to show
hardness of the Maximum Edge Biclique problem for deterministic algorithms.

» Definition 21 (Maximum Edge Biclique). The problem is
Input: An n-by-n bipartite graph G.
Output: A ki-by-ks complete bipartite subgraph of G, such that ki - ko is maximized.

[24] showed that under the random 4-SAT assumption there exist two constants e; > ez > 0
such that no efficient deterministic algorithm is able to distinguish between bipartite graphs
G(U,V, E) with |U| = |[V| = n which have a clique of size > (n/16)%(1 + ¢;) and those in
which all bipartite cliques are of size < (n/16)%(1 + €3). The reduction uses a bipartite graph
G with at least tn? edges with large probability, for a constant ¢.

Given a given bipartite graph G(U, V, E), define H () as follows. Define the matrix Y and
W: Y, =1ifedge (U;,V;) € E,Y;; =0 if edge (U;,V;) € E; W;; =1 if edge (U;,V;) € E,
and W;; = poly(n) if edge (U;,V;) ¢ E. Choose a large enough constant 5 > 0 and let
H(AB) = 83, W (Yi; — (AB);;)*. Now, if there exists a biclique in G with at least
(n/16)%(1 + €2) edges, then the number of remaining edges is at most tn? — (n/16)%(1 + €;),
and so the solution to min H(AB) + 1||AB||% has cost at most S[tn? — (n/16)%(1+ €1)] + n?.
On the other hand, if there does not exist a biclique that has more than (n/16)%(1 + €2)
edges, then the number of remaining edges is at least (n/16)(1 + €3), and so any solution to
min H(AB) + 1||AB||% has cost at least 8[tn? — (n/16)?(1 + €2)]. Choose 3 large enough so
that B[tn? — (n/16)%(1 + €2)] > B[tn? — (n/16)%(1 + €1)] + n?. This combined with the result
in [24] completes the proof for deterministic algorithms.

To rule out randomized algorithms running in time 2*("1+72) for some function « of
ny,ng for which a = o(1), observe that we can define a new problem which is the same
as problem (P) except the input description of H is padded with a string of 1s of length
2(/2)(m+n2) - This string is irrelevant for solving problem (P) but changes the input size
to N = poly(ny,ns) + 2(@/2)(m+n2) - By the argument in the previous paragraph, any
deterministic algorithm still requires 24" = N“() time to solve this problem, which is
super-polynomial in the new input size N. However, if a randomized algorithm can solve it
in 22(m1+n2) time then it runs in poly(N) time. This contradicts the assumption that BPP
= P. This completes the proof. |
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