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Abstract
Interactive proofs of proximity (IPPs) are interactive proofs in which the verifier runs in time
sub-linear in the input length. Since the verifier cannot even read the entire input, following the
property testing literature, we only require that the verifier reject inputs that are far from the
language (and, as usual, accept inputs that are in the language).

In this work, we initiate the study of zero-knowledge proofs of proximity (ZKPP). A ZKPP
convinces a sub-linear time verifier that the input is close to the language (similarly to an IPP)
while simultaneously guaranteeing a natural zero-knowledge property. Specifically, the verifier
learns nothing beyond (1) the fact that the input is in the language, and (2) what it could
additionally infer by reading a few bits of the input.

Our main focus is the setting of statistical zero-knowledge where we show that the following
hold unconditionally (where N denotes the input length):

Statistical ZKPPs can be sub-exponentially more efficient than property testers (or even non-
interactive IPPs): We show a natural property which has a statistical ZKPP with a polylog(N)
time verifier, but requires Ω(

√
N) queries (and hence also runtime) for every property tester.

Statistical ZKPPs can be sub-exponentially less efficient than IPPs: We show a property which
has an IPP with a polylog(N) time verifier, but cannot have a statistical ZKPP with even an
No(1) time verifier.
Statistical ZKPPs for some graph-based properties such as promise versions of expansion and
bipartiteness, in the bounded degree graph model, with polylog(N) time verifiers exist.

Lastly, we also consider the computational setting where we show that:
Assuming the existence of one-way functions, every language computable either in (logspace
uniform) NC or in SC, has a computational ZKPP with a (roughly)

√
N time verifier.

Assuming the existence of collision-resistant hash functions, every language in NP has a
statistical zero-knowledge argument of proximity with a polylog(N) time verifier.
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1 Introduction

Interactive proofs, introduced by Goldwasser, Micali and Rackoff [30] are protocols that allow
a polynomial-time verifier to check the correctness of a computational statement, typically
formulated as membership of an input x in a language L, using an interactive protocol.
Interactive proofs have had an incredible impact on theoretical computer science in general,
and especially on cryptography and complexity theory.

Given the vast amounts of data that are available nowadays, and the ubiquity of cloud
computing, in some applications polynomial-time or even linear-time verification may be too
slow. A recent line of work, initiated by Rothblum, Vadhan and Wigderson [51] (following the
earlier work of Ergün, Kumar and Rubinfeld [16]), asks whether we can construct interactive
proofs in which the verifier runs in sub-linear time. Since the verifier cannot even read the
entire input, we cannot hope to obtain sub-linear time verification in general (even for some
very simple computations1). Thus, following the property testing literature [52, 21] (see also
[20]), the verifier is given oracle access to the input, and soundness is relaxed. Namely, the
verifier is only required to reject inputs that are far (in Hamming distance) from being in
the language. Since the verifier is only assured that the input x is close to the language
L, these proof-systems are called interactive proofs of proximity, or IPPs for short. Recent
results ([51, 34, 18, 41, 23, 50, 22, 35]) have demonstrated that many languages admit IPPs
with sublinear-time verification.2

One of the main features of classical interactive proofs (over their non-interactive coun-
terparts) is that they allow for proving statements in zero-knowledge [30, 24]: amazingly, it
is possible to prove that x ∈ L without revealing anything other than that. Beyond being
of intrinsic interest, zero-knowledge proofs have a multitude of applications, especially in
cryptography.

In this work, we initiate the study of zero-knowledge proofs of proximity, or ZKPP for
short. Specifically we ask:

Is it possible to prove the correctness of a computation to a verifier that reads only
few bits of the input, without revealing any additional “non-local” information about
the input?

By non-local information, we mean any information that cannot be inferred by making only
few queries to the input. In particular, and in contrast to the classical zero-knowledge setting,
we want our notion of zero-knowledge to capture the fact that the verifier does not even
learn the input string itself.

The Model of Zero-Knowledge Proofs of Proximity. As expected, we capture the desired
zero-knowledge requirement using the simulation paradigm of [30].

I Definition 1 (ZKPP, informally stated (see Section 2)). An IPP with prover P and verifier
V is a ZKPP, if for any (possibly malicious) verifier V̂, that given oracle access to input of
length N runs in time t(N)� N , there exists a simulator S that runs in time roughly t(N)

1 Consider for example verifying whether a given string has parity 0.
2 Throughout this work we use the verification time as our primary complexity measure for IPPs. We

could have alternatively chosen to view the total number of bits observed by the verifier (i.e., those read
from the input and those communicated from the prover) as the main resource (note that the verification
time is an upper bound on the latter). Focusing on verification time makes our upper bounds stronger,
whereas our lower bounds also hold wrt the total number of bits observed by the verifier.
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such that for every x ∈ L it holds that

Sx ≈
(

P(x), V̂x
)
,

where
(

P(x), V̂x
)
denotes V̂’s view when interacting with P.

In particular, if the verifier cannot afford to read the entire input, then the simulator
must successfully simulate the verifier’s view even though it too cannot read the entire input.
See Section 2 for the formal definition of the model and additional discussions.

Knowledge Tightness and Simulation Overhead. The above informal definition of zero-
knowledge requires that for any possible cheating verifier that runs in (sublinear) time t,
there exists a simulator, running in roughly the same time, that simulates the verifier’s view.
We call the running time of the simulator, viewed as a function of t, the simulation overhead
of the protocol.3

In the zero-knowledge literature, the simulation overhead s = s(t) is typically allowed to
be any polynomially-bounded function. This is motivated by the fact that such polynomial-
time simulation implies that every polynomial-time verifier strategy has a polynomial-time
simulation.

In contrast, since in our setting of ZKPP the verifier runs in sub-linear time, we will
sometimes need to be more precise. Suppose for example that we had a ZKPP with a t =

√
N

time verifier (where N is the input length) and with some unspecified polynomial simulation
bound s = s(t). In such a case, if for example s(t) = Ω(t2), then the simulator would be able
to read the entire input whereas the verifier clearly cannot. This leads to an undesirable gap
between the power of the verifier and that of the simulator.

Thus, to obtain more meaningful results we will sometimes need to precisely specify the
simulation overhead that is incurred. Nevertheless, since most (but not all) of our results
deal with verifiers that run in poly-logarithmic time, unless we explicitly state otherwise,
our default is to allow for polynomial simulation overhead. Indeed, in the poly-logarithmic
regime, polynomial simulation implies that every poly-logarithmic time verifier strategy has
a poly-logarithmic time simulation. In the few cases where we need to be more precise, the
simulation overhead will be stated explicitly.

We remark that our quantification of the simulation overhead is closely related to
Goldreich’s [19, Section 4.4.4.2] notion of knowledge tightness of standard zero-knowledge
proofs.

A Cryptographic Motivation from the 90’s. Interestingly, the notion of ZKPP has already
implicitly appeared in the cryptographic literature 20 years ago. Bellare and Yung [5] noticed
that the soundness of the [17] construction of non-interactive zero-knowledge proof-system
(NIZK) from trapdoor permutations breaks, if the cheating prover sends a description of a
function that is not a permutation. [5] observed that to regain soundness in the [17] protocol,
it suffices to verify that the given function is close to being a permutation.

Focusing on the case that the domain of the permutation4 is {0, 1}n, [5] suggested the
following natural non-interactive zero-knowledge proof for certifying that a function is close

3 In our actual definition the simulation overhead may depend also on the input length (and proximity
parameter). However, the more fundamental dependence is on the (possibly cheating) verifier’s running
time. Thus, we omit the dependence on these additional parameters from the current discussion.

4 We remark that the general case (i.e., when the domain is not {0, 1}n) introduces significant difficulties.
See [28] and [13] for details.

ITCS 2018



19:4 Zero-Knowledge Proofs of Proximity

to a permutation: sufficiently many random elements y1, . . . , yk in {0, 1}n are specified as
part of a common random string5 (CRS), and the prover is required to provide inverses
x1, . . . , xk to all of these elements. Soundness follows from the fact that if the function is
far from a permutation then, with high probability, one of these elements will simply not
have an inverse. Zero-knowledge is demonstrated by having the simulator sample the x’s at
random and obtain the y’s by evaluating the permutation.

Since the verifier in the [5] protocol is only assured that the function is close to a
permutation, in our terminology, the [5] protocol is a non-interactive ZKPP. Notice that the
verifier runs in time poly(n), which is poly-logarithmic in the input (i.e., the truth table of f).

1.1 Our Results

In this section we state our main results in an informal manner. See the full version [10] for
the formal theorem statements.

As is the case for standard zero-knowledge, the results that we can obtain depend heavily
on the specific notion of zero-knowledge. These notions depend on what exactly it means for
the output of the simulator to be indistinguishable from a real interaction.

The main notion which we focus on in this work is that of statistical zero-knowledge
proofs of proximity. Here, the requirement is that the distribution of the output of the
simulator is statistically close6 to that of the real interaction.

1.1.1 Statistical ZKPP

The first natural question to ask is whether this notion is meaningful – do there exist
statistical ZKPPs?7 More precisely, since every property tester is by itself a trivial ZKPP (in
which the prover sends nothing), we ask whether statistical ZKPPs can outperform property
testers.

We answer this question affirmatively. Moreover, we show that same natural problem
considered by [5] (i.e., verifying that a function is a permutation) has a very efficient zero-
knowledge proof of proximity. We emphasize that, in contrast to the protocol of [5] mentioned
above, our protocol is zero-knowledge against arbitrary malicious verifiers (rather than only
honest-verifier zero-knowledge as in the [5] protocol).

I Theorem 2 (ZKPP for permutations). Let PERMUTATIONn be the set of all permutations
on n-bit strings. Then:

ZKPP Upper Bound: PERMUTATIONn has a 4-round statistical ZKPP in which the
verifier runs in poly(n) time.
Property Testing Lower Bound: Every tester for PERMUTATIONn must make at
least Ω(2n/2) queries to the input (and in particular must run in time Ω

(
2n/2)).

5 Recall that NIZKs inherently require the use of a CRS.
6 That is, the two distributions have negligible statistical distance. Negligible here refers to an auxiliary
security parameter that is given to all parties, see further discussion in Section 2.2.1.

7 Note that not every IPP is zero-knowledge. Suppose that we want to check whether a given input
consists of two consecutive palindromes (of possibly different lengths) or is far from such. Alon et al. [2]
showed that every tester for this property must make Ω(

√
N) queries. However, Fischer et al. [18]

observed that if the prover provides the index that separates the two palindromes, the property becomes
easy to verify. The IPP of [18] is not zero-knowledge since any o(

√
N) time simulator can be transformed

into an o(
√

N) time tester for the property, contradicting the [2] lower bound.
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(Notice that poly(n) is poly-logarithmic in the input size, whereas 2n/2 is roughly the square
root of the input size.)

Similarly to other results in the literature on constant-round statistical zero-knowledge
(SZK), we can only bound the expected running time of our simulator (rather than giving
a strict bound that holds with all but negligible probability). Using standard techniques,
which introduce a super constant number of rounds, we can obtain a strict bound on the
simulator’s running time. However, in the interest of simplicity and since it is not our main
focus, we avoid doing so. We also remark that Gur and Rothblum [33] give a lower bound on
the complexity of non-interactive IPPs (i.e., IPP in which the entire interaction consists of a
single message from the prover to the verifier, also known as MAPs) for PERMUTATION, and
combining their result with ours yields a sub-exponential separation between the power of
statistical ZKPP vs. MAPs. (Specifically, [33] show an MAP lower bound of roughly Ω(2n/4)
for PERMUTATION.) Lastly, we mention that a variant of the permutation property was
used by Aaronson [1] to give an oracle separation of SZK from QMA. However, the SZK
protocol that he constructs (which is essentially the [5] protocol) is only honest-verifier8
zero-knowledge.

Beyond the property of being a permutation, we also consider two additional graph
problems, and show that they admit efficient honest-verifier ZKPP protocols. Both problems
we consider are in the bounded degree graph model9, which has been widely studied in the
property testing literature [21, 26].

I Theorem 3 (Honest Verifier ZKPP for Expansion and Bipartiteness). There exist honest-
verifier statistical ZKPP in which the verifier’s running time is polylog(N), for input graphs
of size N , for the following two promise problems:
1. Promise Expansion: Distinguish graphs with (vertex) expansion α ∈ (0, 1] from graphs

that are far from even having expansion roughly β = α2/ log(N).
2. Promise Bipartiteness: Distinguish bipartite graphs from graphs that are both rapidly

mixing and far from being bipartite.

A few remarks are in order. We first note that the property testing complexity of both
promise problems is known to be Θ̃(

√
N) [26, 27, 15, 47, 42]. Second, the IPP for promise-

bipartiteness is actually due to [51] and we merely point out that it is an honest-verifier
ZKPP. In contrast, the promise-expansion property above was not previously known to admit
an (efficient) IPP (let alone a zero-knowledge one). We also remark that both of the problems
in Theorem 3 refer to promise problems. In particular, we leave open the possibility of a
ZKPP for bipartiteness that also handles graphs that are not rapidly mixing, and a ZKPP
for expansion that accepts graphs that are α-expanding and rejects graphs that are far from
α-expanding (rather than just rejecting those that are far from being α2/ log(N)-expanding
as in Theorem 3). Lastly, we also leave open the possibility of extending these protocols to
be statistical ZKPP against arbitrary cheating verifiers (rather than just honest verifiers).10

8 In an honest-verifier ZKPP, the simulator needs only to output an interaction that is indistinguishable
from the interaction of the honest (original) verifier and the prover.

9 In the bounded degree graph model we assume that the degree of all vertices is bounded by a parameter
d and the input graph is represented by an adjacency list. In other words, one can request to see the
i-th neighbor (for i ∈ [d]) of some vertex v using a single query.

10 Since honest-verifier SZK protocols can be converted to be zero-knowledge against arbitrary malicious
verifiers ([29], see also [53]), it is reasonable to wonder whether the same holds for statistical ZKPP. We
conjecture that this is the case but leave the question of verifying this conjecture to future work.

ITCS 2018



19:6 Zero-Knowledge Proofs of Proximity

Limitations of Statistical ZKPP. Given these feasibility results, one may wonder whether
it is possible to obtain statistical ZKPP with poly-logarithmic complexity for large complexity
classes (e.g., for any language in P), rather than just specific problems as in Theorems 2
and 3. The answer turns out to be negative since Kalai and Rothblum [41] constructed a
language, computable in NC1, for which every IPP (let alone a zero-knowledge one) requires
Ω(
√
N) verification time.11
Still, the latter observation raises the question of whether statistical ZKPP are as powerful

as IPPs. That is, can every IPP be converted to be statistically zero-knowledge with small
overhead? We show that this is not the case:

I Theorem 4 (IPP * SZKPP). There exists a property Π that has an IPP in which the
verifier runs in polylog(N) time, where N is the input length, but Π does not have a statistical
ZKPP in which the verifier runs even in time No(1).

We emphasize that Theorem 4 is unconditional (i.e., it does not rely on any unproven
assumptions as is typically the case when establishing lower bounds in the classical setting).
Interestingly, if we do allow for a (reasonable) assumption, we can obtain a stronger separation:
namely, of MAP from SZKPP:

I Theorem 5 (MAP * SZKPP). Assuming suitable circuit lower bounds, there exists a
property Π that has an MAP in which the verifier runs in polylog(N) time, where N is the
input length, but Π does not have a statistical ZKPP in which the verifier runs even in time
No(1).

The circuit lower bound that we assume follows from the plausible assumption that the
Arthur-Merlin communication complexity of the set disjointness problem is Ω(nε), where n
is the input length and ε > 0 is some constant.

1.1.2 The Computational Setting
Unsurprisingly, we can obtain much stronger results if we relax some of our requirements to
only be computational (rather than statistical). Specifically we will consider the following
two relaxations:
1. (Computational Zero-Knowledge:) the simulated view is only required to be computa-

tionally indistinguishable from the real interaction.
2. (Computational Soundness aka Argument-System:) Here, we only require soundness

against efficient cheating provers.

The following results show that under either one of these relaxations, and assuming
reasonable cryptographic assumptions, we can transform many of the known results from the
literature of IPPs to be zero-knowledge. Focusing on computational zero-knowledge, we can
derive such protocols for any language computable in bounded-depth or in bounded-space,
where the verifier runs in roughly

√
N time.

I Theorem 6 (Computational ZKPP for Bounded Depth). Assume that there exist one-way
functions. Then, every language in logspace-uniform NC, has a computational ZKPP, where
the verifier (and the simulator) run in time N 1

2 +o(1) and the number of rounds is polylog(N).
The simulation overhead is roughly linear.

11This still leaves open the possibility that statistical ZKPPs with O(
√

N) complexity exist for large
complexity classes. Actually, in the computational setting we show such results, see further discussion
in Section 1.1.2.
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I Theorem 7 (Computational ZKPP for Bounded Space). Assume that there exist one-way
functions. Then, every language computable in poly(N)-time and O(Nσ)-space, for some
sufficiently small constant σ > 0, has a computational ZKPP, where the verifier (and the
simulator) run in time N 1

2 +O(σ). The simulation overhead is roughly linear.

Note that in both results the simulation overhead is (roughly) linear which means that a
verifier running in time t will be simulated in nearly the same time. See additional discussion
on the notion of simulation overhead above.

Interestingly, if we only relax to computational soundness, we can do even better both in
terms of expressive power and the running time of the verifier. The following result gives
statistical zero-knowledge arguments of proximity for every language in NP, and with a
verifier that runs in only poly-logarithmic time.

I Theorem 8 (Statistical Zero-Knowledge Arguments for NP). Assume that there exist collision-
resistant hash functions. Then, every language in NP, has a constant-round statistical
zero-knowledge argument of proximity, where the verifier runs in time polylog(N).

(Here, since the verifier runs in poly-logarithmic time, we can and we do allow for polynomial
simulation overhead.)

1.2 Related Works
In this section we discuss some related notions (and results) that have previously appeared
in the literature, and how they compare with our results.

Zero-Knowledge PCPs. Zero-knowledge PCPs, introduced by Kilian, Petrank and Tardos
[44] (and further studied in [32, 38]), are similar to standard PCPs with an additional zero-
knowledge requirement. Namely, the oracle access that the (potentially malicious) verifier
has to the PCP should not reveal anything beyond the fact that the input is in the language.
Note that the verifier in a zero-knowledge PCP is given full access to the input and oracle
access to the proof. In contrast, in zero-knowledge proofs of proximity (studied in this paper)
the situation is reversed: the verifier is given oracle access to the input but full access to the
communication line with the prover.

A more closely related notion of zero-knowledge PCPs of proximity was considered by Ishai
and Weiss [37]. These are PCP systems in which the verifier gets oracle access to both the
input and to an alleged PCP-style proof. Similarly to our notion of ZKPP, the verifier runs in
sublinear time and is assured (with high probability) that the input is close to the language.
ZKPPs and zero-knowledge PCPPs are incomparable — soundness is harder to achieve in
the interactive case (since the prover’s answers may be adaptive) whereas zero-knowledge is
harder to obtain in the PCP setting. Therefore, the difference between our model and that
of [37] is that we consider interactice proofs, whereas [37] focus on PCP-style proofs: namely
soundness is guaranteed only if the PCP proof string is written in advance.

Zero-Knowledge Communication Complexity. A model of zero-knowledge in communica-
tion complexity was recently proposed by Göös, Pitassi and Watson [31] and further studied
by Applebaum and Raykov [3]. Since there are known connections between property testing
and communication complexity [11] (which holds also in the interactive setting, see [34]), it
is interesting to study whether such a connection can be fruitful also in the zero-knowledge
setting. We leave the study of this possibility to future work.

ITCS 2018



19:8 Zero-Knowledge Proofs of Proximity

Zero-Knowledge Interactive PCPs and Oracle Proofs. Recent works by Ben-Sasson
et al. [7, 8] study zero-knowledge interactive oracle proofs – a model in which the veri-
fier receives oracle access to the communication tape, but full access to the input.12 Our
model of ZKPP is reversed – the verifier has oracle access to the input but full access to the
communication tape. Chiesa et al. [14] consider zero-knowledge in the context of interactive
PCPs, a model introduced by Kalai and Raz [40].

Measures of Knowledge. The notion of “simulation overhead”, similarly to that of “know-
ledge tightness” [19] mentioned above, can be viewed as a (quantitative) security measure
for the zero-knowledge of a protocol. Both notions are worst-case and consider the verifier
and simulator’s running times. Micali and Pass [45] considered a similar measure, but in
an execution-to-execution setting. Finally, Goldreich and Petrank [25] considered other,
incomparable, security measures than the verifier’s and simulator’s running times.

1.3 Technical Overview
We provide overview for our main conceptual results. Overviews for our other results are
given in the appropriate places in the body of the paper.

1.3.1 ZKPP for PERMUTATION (see Theorem 2)
Since it is easier to argue, we begin with showing that any property tester for PERMUTATION
must make at least Ω(

√
N) queries, where N = 2n. To see this, consider the following two

distributions: (1) a random permutation over {0, 1}n; and (2) a random function from {0, 1}n
to {0, 1}n. The first distribution is supported exclusively on YES instances whereas it can
be shown that the second is, with high probability, far from a permutation. However, if a
tester makes q �

√
N queries, then in both cases, with high probability, its view will be the

same: q distinct random elements. The property testing lower bound follows.
We now turn to show a statistical ZKPP in which the verifier runs in poly(n) time.

Consider the following simple IPP for PERMUTATION (based on the [5] protocol). Given
oracle access to a function f : {0, 1}n → {0, 1}n, the verifier chooses a random r ∈ {0, 1}n
and sends r to the prover. The prover computes z = f−1(r) and sends it to the verifier. The
verifier checks that indeed f(z) = r and if so accepts.

Clearly if f is a permutation then the verifier in this protocol accepts with probability 1,
whereas if f is far from a permutation, then with some non-negligible probability the verifier
chooses r which does not have a pre-image under f . In such a case the prover cannot make
the verifier accept and so the protocol is sound.

It is also not hard to see that this protocol is honest-verifier zero-knowledge.13 However,
it is not cheating-verifier zero-knowledge: a cheating verifier could learn the inverse of some
arbitrary r of its choice.

In order to make the protocol zero-knowledge, intuitively, we would like to have a way
for the prover and verifier to jointly sample the element r such that both are assured that
it is uniform. For simplicity let us focus on the task of just sampling a single bit σ. The
specific properties that we need are

12 Interactive proofs in which the verifier is not charged for reading the entire communication tape are
called either probabilistically checkable interactive proofs [50] or interactive oracle proofs [9] in the
literature.

13As a matter of fact, this protocol can be viewed as a non-interactive statistical zero-knowledge protocol
for PERMUTATION (and is used as such in [5]).
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1. If f is a permutation then the prover is assured that σ is random.

2. If f is far from being a permutation then the verifier is assured that σ is random.
In fact, the transformation of general honest-verifier statistical zero-knowledge proofs to
cheating-verifier ones (see [53, Chapter 6]) implements a sub-routine achieving a generalization
of the above task, assuming full access to the input. We give a simple solution for our specific
case. That is, using only oracle access to a function that is either a permutation or far from
any permutation.

We proceed to describe a simple procedure for sampling such a random bit σ. First,
the verifier chooses at random x ∈ {0, 1}n and a pairwise independent hash function
h : {0, 1}n → {0, 1} and sends y = f(x) and h to the prover. The prover now chooses a
random bit r ∈ {0, 1} and sends r to the verifier. The verifier now sends x to the prover who
checks that indeed f(x) = y. The random bit that they agree on is σ = r ⊕ h(x).

From the prover’s perspective, if f is a permutation then y fully determines x and so r
(which is chosen uniformly at random after y is specified) is independent of h(x). Hence,
σ = r ⊕ h(x) is a uniformly random bit. On the other hand, from the verifier’s perspective,
if f is far from being a permutation, then, intuitively, even conditioned on the value y there
still remains some entropy in x (indeed, x is essentially uniform among all the pre-images
of y).14 Now, using a variant of the leftover hash lemma, we can argue that h(x) is close
to random. Actually, since the leftover hash lemma implies that pairwise independent hash
functions are strong extractors, we have that h(x) is close to random even conditioned on h
and therefore also conditioned on r (which is a randomized function of h). Thus, we obtain
that σ = r ⊕ h(x) is close to being uniformly random and so our procedure satisfies the
desired properties.

A Different Perspective: Instance-Dependent Commitments. Instance-dependent com-
mitments [4, 39] are commitment schemes that depend on a specific instance of some
underlying language: if the instance is in the language, the commitment is guaranteed to be
statistically binding; and if the instance is not in the language the commitment is guaranteed
to be statistically hiding. Instance-dependent commitments are a central tool in the study of
SZK (e.g., [49, 48, 46]).

We can use PERMUTATION to construct an instance-dependent commitment as follows.
Given a function f : {0, 1}n → {0, 1}n, a commitment to a bit b is a tuple (f(x), h, h(x)⊕ b),
for a random x ∈ {0, 1}n and a pairwise independent hash function h : {0, 1}n → {0, 1}.
Our arguments can be adapted to show that if f is a permutation, then this commitment
is statistically binding, whereas if f is far from a permutation, then this commitment is
(weakly) statistically hiding (to amplify, we can repeat by choosing many x’s).

One way to view our protocol for sampling the random string r that was described
above, is as an instantiation of Blum’s coin flipping protocol [12] based on the foregoing
instance-dependent commitment.15

14Actually, the amount of entropy can be fairly small (and depends on how far f is from being a
permutation). To obtain a sufficient amount of entropy, in our actual protocol we generate many such
y’s.

15Recall that in Blum’s coin-flipping protocol, one party sends a commitment to a random bit b and the
other party replies with another random bit b′. Now, the first party decommits and the parties agree on
the bit b⊕ b′.
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1.3.2 Separating IPP from SZKPP (see Theorem 4)
The proof of Theorem 4 is done in two steps. The first step is to construct a property Π which
has an interactive proof of proximity with a large number of rounds and polylog(N)-time
verifier, but such that in every 2-message interactive proof of proximity for Π, the verifier’s
running time must be Nδ, for some constant δ > 0. Actually, such a result was recently
established by Gur and Rothblum [35].

The second step in proving Theorem 4 is a general round reduction transformation for
any honest-verifier statistical zero-knowledge proof of proximity. Namely, we would like a
procedure that takes any many-messages honest-verifier zero-knowledge proof of proximity
and turns it into a 2-message honest-verifier zero-knowledge proof of proximity while only
slightly deteriorating the verifier’s and simulator’s running times.

To establish such a procedure we apply the proof that the promise problem Entropy
Difference (ED) is complete for the class SZK (see [53]). That proof takes an instance x of
any promise problem Π = (ΠYES,ΠNO) ∈ SZK and efficiently constructs two distributions X
and Y such that if x ∈ ΠYES then H(X) ≥ H(Y ) + 1, and if x ∈ ΠNO then H(Y ) ≥ H(X) + 1.
That proof goes on to show a zero-knowledge protocol to distinguish between the case that
H(X) ≥ H(Y ) + 1 and the case that H(Y ) ≥ H(X) + 1. Two important points regarding that
proof: (1) sampling from X and Y can be done by running (many times) the simulator for
the original problem Π; (2) the protocol for ED consists of only two messages and requires
only sample access to X and Y .

In our settings, we can view a property Π as a promise problem where functions possessing
the property are in ΠYES and functions that are ε-far from possessing the property are in
ΠNO. Then, we can have the verifier “run” the reduction to ED and apply the sample-access
protocol for ED. The unbounded prover will behave as in the protocol for ED. Recall that
the original simulator (i.e., the one for the property’s IPP) required only oracle access to
the input function. Since sampling from the distributions only requires running the original
simulator, the new verifier can implement this step with only oracle access to the input
function and with only polynomial overhead to the running time of the original simulator.

1.3.3 The Computational Setting (see Theorem 6-8)
The proofs of Theorem 6, Theorem 7 and Theorem 8 rely on the same basic idea: compiling
existing public-coin protocols from the literature (specifically those of [51, 50, 43]) that are
not zero-knowledge to ones that are. This step is based on the idea, which originates in the
work of Ben-Or et al. [6], of having the prover commit to its messages rather than sending
them in the clear. This ability to commit is where we use the assumption that one-way
functions exist.

The compiler, which can only be applied to public-coin protocols is as follow. At every
round, rather than sending its next message in the clear, the prover merely commits to the
message that it would have sent in the protocol. Since the protocol is public-coin, the verifier
can continue the interaction even though it does not see the actual contents of the prover’s
messages. After all commitments have been sent, the verifier only needs to check that there
exist suitable decommitments that would have made the underlying IPP verifier accept. Since
the commitment hides the contents of the messages, it cannot do so by itself and we would like
to use the prover. At this point, one could try to naively argue that the residual statement
is an NP statement, and so we can invoke a general purpose zero-knowledge protocol for NP
(e.g., the classical [24] protocol or the more efficient [36] protocol).

Herein arises the main difficulty with this approach. While the statement that the verifier
needs to check at the end of the interaction does consist of an existential quantifier applied to
a polynomial-time computable predicate, the latter predicate makes oracle access to the input
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x and so we do not know how to express it as an NP statement. To resolve this difficulty, we
restrict our attention to verifiers that make prover-oblivious queries; that is, the queries that
the verifier makes do not depend on messages sent by the prover. Luckily enough, in the
IPPs that we rely on the verifier’s queries are indeed prover-oblivious.

Thus, our verifier can actually make its queries after seeing only the commitments and
we can construct an NP statement that refers to the actual values that it reads from the
input. At this point we can indeed invoke a general purpose zero-knowledge protocol for NP
and conclude the proof.

Lastly, we remark that the specific flavor of soundness and zero-knowledge that we obtain
depends on the commitment scheme we use and the soundness of the protocol to which
we apply the transformation. Loosely speaking, instantiating the above approach with a
computationally hiding and statistically binding commitment scheme yields a computational
zero-knowledge proof of proximity, whereas a statistically hiding and computationally binding
one yields a statistical zero-knowledge argument of proximity.

Organization. In this extended abstract we include only the formal definitions of the ZKPP
model, given in Section 2. See the full version [10] for the formal theorem statements and
proofs.

2 ZKPP – Model and Definitions

A ZKPP is an interactive proof for convincing a sub-linear time verifier that a given input is
close to the language, in zero-knowledge. Loosely speaking, by zero-knowledge we mean that
if the (N -bit) input is in the language, the view of any (potentially malicious) verifier that
runs in time t� N can be simulated by reading not much more than t bits from the input.

The only non-trivial step in formalizing this intuition is in quantifying what we mean
by “not much more”. In the classical setting of zero-knowledge interactive proofs, we merely
require that the simulator run in polynomial-time, and so “not much more” is interpreted as
polynomial overhead. A natural adaptation for the sub-linear setting would therefore be to
require that the running time of the simulator be polynomially related to that of the verifier.
However, in some settings this requirement is problematic – e.g., suppose that the verifier
runs in time t = O(

√
N). Here, a simulator that runs in time t2 (and in particular can read

the entire input) would be far less meaningful than one running in, say, t3/2 time.
Thus, as pointed out in the introduction, it will be important for us to quantify more

precisely what is the overhead incurred by the simulator. We refer to this as the simulation
overhead, which we think of as a function of the verifier’s running time (see precise statement
below). Thus, rather than merely saying that a protocol is a ZKPP, we will say that it is a
ZKPP with simulator overhead s.

We proceed to the formal definitions. A property is an ensemble Π = (Πn,Dn,Rn)n∈N,
where Πn is a set of functions from Dn to Rn, for every n ∈ N. In certain contexts, it will be
more convenient for us to view Πn as a set of strings of length |Dn| over the alphabet Rn (in
the natural way). In such cases we will also sometimes refer to properties as languages. We
denote by N the bit-length of the input, i.e., N = |Dn| · log2 (|Rn|). In the technical sections
we will often measure efficiency in terms of the parameter N but in our actual definition
below we will allow a direct dependence on n, |Dn| and |Rn|. This makes the definitions
slightly more cumbersome but allows us to capture certain auxiliary parameters that arise in
specific models, e.g., the dependence on the degree of the graph in the bounded degree graph
model (for details, see Section 2.2.1).
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Lastly, similarly to [53], we use a security parameter k to control the quality of our
soundness and zero-knowledge guarantees rather than letting these depend on the input
length (although our reasons for doing so are slightly different from those in [53], see
Section 2.2.1) for additional details).

Section Organization. We begin by recalling the definition of IPPs in Section 2.1, then
proceed to define statistical ZKPP in Section 2.2, and finally we discuss computational ZKPP
in Section 2.3.

2.1 Interactive Proofs of Proximity (IPPs)

Our definition of IPP follows [51] with minor adaptations.

I Definition 9 (interactive proofs of proximity (IPP)). An r-message interactive proof of
proximity (IPP), with respect to proximity parameter ε > 0, (in short, ε-IPP) for the property
Π = (Πn,Dn,Rn)n∈N is an interactive protocol (P,V) between a prover P, which gets
free access to an input f : Dn → Rn as well as to ε, n, |Dn|, |Rn| and k, and a verifier V,
which gets oracle access to f as well as free access to ε, n, |Dn|, |Rn| and k. The following
conditions are satisfied at the end of the protocol for every k ∈ N and large enough n ∈ N:

Completeness: If f ∈ Πn, then, when V interacts with P, with probability 1− negl(k)
it accepts.
Soundness: If f is ε-far from Πn, then for every prover strategy P̂, when V interacts
with P̂, with probability 1− negl(k) it rejects.

For t = t(n, |Dn| , |Rn| , k, ε), we denote by IPP[t] the class of properties possessing ε-IPP
in which the verifier’s running time is at most O(t). Finally, for a class of functions C, we
denote by IPP[C(n, |Dn| , |Rn| , k, ε)] the class of properties Π for which there exists t ∈ C
such that Π ∈ IPP[t].

The probabilities that the verifier rejects in the completeness condition, and accepts in the
soundness condition, are called the completeness error and soundness error, respectively. If the
completeness error is zero, then we say that the IPP has perfect completeness. A public-coin
IPP is an IPP in which every message from the verifier to the prover consists only of fresh
random coin tosses and the verifier does toss coins beyond those sent in its messages.

An IPP is said to have query complexity q = q(n, |Dn| , |Rn| , k, ε) ∈ N if for every
n, k ∈ N, ε > 0, f : Dn → Rn, and any prover strategy P̂, the verifier V makes at
most q(n, |Dn| , |Rn| , k, ε) queries to f when interacting with P̂. The IPP is said to have
communication complexity c = c(n, |Dn| , |Rn| , k, ε) ∈ N if for every n, k ∈ N, ε > 0, and
f : Dn → Rn the communication between V and P consists of at most c(n, |Dn| , |Rn| , k, ε)
bits.

Our main (but not exclusive) focus in this work is on properties that have IPPs in which
the verifier’s running time (and thus also the communication and query complexities) is
poly-logarithmic in the input size and polynomial in the security parameter k and in the
reciprocal of the proximity parameter ε. That is, the class IPP[poly(log(N), k, 1/ε)].

An IPP that consists of a single message sent from the prover (Merlin) to the verifier
(Arthur) is called Merlin-Arthur proof of proximity (MAP) [34]. We extend all the above
notations to MAPs in the natural way.
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2.2 Statistical ZKPPs
Before defining general ZKPPs, we first consider zero-knowledge with respect to honest
verifiers. Following [53], we require the simulator to run in strict polynomial-time but allow
it to indicate a failure with probability 1/2 (which can then be reduced by repetition). The
requirement is that conditioned on not failing, the simulated view is statistically close to the
actual execution.

Recall that we say that an algorithm A is useful if Pr [A(x) =⊥] ≤ 1/2 for every input
x, and use Ã(x) to denote the output distribution of A(x), conditioning on A(x) 6=⊥. We
define the view of the verifier V on a common input x (given as standard input or by oracle
access to either of the parties) by viewP,V(x) def= (m1,m2, . . . ,mr; ρ), where m1,m2, . . . ,mr

are the messages sent by the parties in a random execution of the protocol, and ρ contains of
all the random coins V used during this execution.

I Definition 10 (honest-verifier zero-knowledge proof of proximity (HVSZKPP, HVPZKPP)).
Let (P,V) be an IPP for a property Π = (Πn,Dn,Rn)n∈N. The protocol (P,V) is said
to be honest-verifier statistical zero-knowledge with simulation overhead s, for some function
s : N5× (0, 1]→ N if there exists a useful probabilistic algorithm S, which (like V) gets oracle
access to f : Dn → Rn as well as free access to ε, n, |Dn|, |Rn| and k, and whose running
time is at most O(s(tV, n, |Dn| , |Rn| , k, ε)), where tV(n, |Dn| , |Rn| , k, ε) is V’s running time,
such that for every k ∈ N, every large enough n ∈ N and f : Dn → Rn, if f ∈ Πn, it holds
that:

SD
(

S̃f (ε, n, |Dn| , |Rn| , k), viewP,V(ε, n, |Dn| , |Rn| , k, f)
)
≤ negl(k).

If the negl(k) can be replaced with 0 in the above equation, (P,V) is said to be honest-verifier
perfect zero-knowledge with simulation overhead s.

For t = t(n, |Dn| , |Rn| , k, ε), HVSZKPP[t, s] (resp., HVPZKPP[t, s]) denotes the class
of properties possessing honest-verifier statistical (resp., perfect) zero-knowledge proof of
proximity with simulation overhead s in which the verifier’s running time is at most O(t).

We say that the query complexity of a simulator S is q′ = q′(n, |Dn| , |Rn| , k, ε) ∈ N if for
every n, k ∈ N, ε > 0, f : Dn → Rn, Sfn makes at most q′(n, |Dn| , |Rn| , k, ε) queries to f .

A typical setting (that we will focus on) is when the verifier’s running time is
poly(log(N), k, 1/ε), namely poly-logarithmic in the input length N and polynomial in
the security parameter k and in the proximity parameter 1/ε. In this setting we often
allow for polynomial simulation overhead, that is the simulator’s running time is also
poly(log(N), k, 1/ε). Specifically, we denote by HVSZKPP

[
poly(log(N), k, 1/ε)

]
the class of

properties Π ∈ HVSZKPP[t, s] for t = poly(log(N), k, 1/ε) and s = poly(t, log(N), k, 1/ε).
The class HVPZKPP

[
poly(log(N), k, 1/ε)

]
is similarly defined.

Another setting of interest is when the verifier’s running time is Nδ ·poly(k, 1/ε), for some
constant δ ∈ (0, 1). In this setting, unlike the previous one, allowing the simulation overhead
to be polynomial will give the simulator much greater computational power than the verifier
(e.g., if δ = 1/2 and s is quadratic in the verifier’s running time, then the simulator can run
in time O(N) and in particular may read the entire input). In this setting we aim for the
simulation overhead to be linear in the verifier’s running time (but it can be polynomial in k
and 1/ε).16

16This requirement is in the spirit of constant knowledge tightness, see [19, Section 4.4.4.2].
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When the simulation overhead is clear from context we allow ourselves to say that
the protocol is a ZKPP (rather than a ZKPP with specific simulation overhead as per
Definition 10).

Cheating Verifier ZKPP. We will allow cheating verifiers to be non-uniform by giving them
an auxiliary input. For an algorithm A and a string z ∈ {0, 1}∗ (all auxiliary inputs will
be binary strings, regardless of the properties’ alphabet), let A[z] be A when z was given as
auxiliary input. Since we care about algorithms whose running time is insufficient to read the
entire input, we would not want to allow the running time to depend on the auxiliary input
(otherwise, we could artificially inflate z so that A would be able to read the entire input).
Thus, following [53], we adopt the convention that the running time of A is independent of z,
so if z is too long, A will not be able to access it in its entirety.

I Definition 11 (cheating-verifier zero-knowledge proof of proximity (SZKPP, PZKPP)). Let
(P,V) be an interactive proof of proximity for a property Π = (Πn,Dn,Rn)n∈N. (P,V) is said
to be cheating-verifier statistical zero-knowledge with simulation overhead s, for some function
s : N5 × (0, 1]→ N, if for every algorithm V̂ whose running time is O(tV̂(n, |Dn| , |Rn| , k, ε)),
there exists a useful probabilistic algorithm S, which (like V̂) gets oracle access to f : Dn →
Rn as well as free access to ε, n, |Dn|, |Rn| and k, and whose running time is at most
O(s(tV̂, n, |Dn| , |Rn| , k, ε)), such that for every k ∈ N, large enough n ∈ N, z ∈ {0, 1}∗ and
f : Dn → Rn, if f ∈ Πn, then

SD
(

S̃f[z](ε, n, |Dn| , |Rn| , k), viewP,V̂[z]
(ε, n, |Dn| , |Rn| , k, f)

)
≤ negl(k).

If the negl(k) can be replaced with 0 in the above equation, (P,V) is said to be a cheating-
verifier perfect zero-knowledge with simulation overhead s.

For t = t(n, |Dn| , |Rn| , k, ε), SZKPP[t, s] (resp., PZKPP[t, s]) denotes the class of proper-
ties possessing cheating-verifier statistical (resp., perfect) zero-knowledge proof of proximity
with simulation overhead s in which the verifier’s running time is at most O(t).

Expected Simulation Overhead. Definition 11 requires that the running time of the simu-
lator always be bounded. Similarly to many results in the ZK literature, in some cases we
can only bound the simulator’s expected running time. The following definition captures this
(weaker) notion:

I Definition 12 (cheating-verifier ZKPP with expected simulation (ESZKPP, EPZKPP)). Let
(P,V) be an interactive proof of proximity for a property Π = (Πn,Dn,Rn)n∈N. The
protocol (P,V) is said to be cheating-verifier statistical zero-knowledge with expected simulation
overhead s if it satisfies the same requirement as in Definition 11 except that we only bound
the expected running time of the simulator (where the expectation is over the coins of the
simulator).

The classes ESZKPP[t, s] and EPZKPP[t, s] are defined analogous to SZKPP[t, s] and
PZKPP[t, s] from Definition 11.

Unless explicitly saying otherwise, all zero-knowledge protocols we discuss are cheating-
verifier ones.

As in the honest-verifier case, a typical setting is that in which the verifier’s running time
is poly-logarithmic in the input size N and polynomial in the security parameter k and in
1/ε, and the simulator’s (possibly only expected and not strict) running time is polynomial
in the running time of the cheating-verifier that it simulates, poly-logarithmic in N and
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polynomial in k and 1/ε. Specifically, if we allow the cheating-verifier the same computational
powers as the honest-verifier, then both the honest-verifier and every simulator run in
time poly(log(N), k, 1/ε). We let ESZKPP

[
poly(log(N), k, 1/ε)

]
be the class of properties

Π ∈ ESZKPP[t, s] for t = poly(log(N), k, 1/ε) and s = poly(tV̂, log(N), k, 1/ε). The class
EPZKPP

[
poly(log(N), k, 1/ε), poly

]
is similarly defined.

2.2.1 Additional Discussions
We conclude Section 2.2 with a few remarks on statistical ZKPP.

I Remark (Proximity Promise Problems). Some of the protocols that we construct do not
refer to a property but rather to a “proximity promise problem”. Recall that a promise
problem considers a pair of disjoint sets ΠYES and ΠNO and the goal is to distinguish input
that are in ΠYES from those that are in ΠNO (and no requirement is given for inputs outside
of ΠYES ∪ΠNO).

For some of our results we will consider proximity promise problems, which are also
characterized by sets ΠYES and a family of sets

(
Π(ε)

NO

)
ε∈(0,1)

, and we require that for every

ε ∈ (0, 1), it holds that Π(ε)
NO is ε-far from ΠYES (rather than merely being disjoint). We extend

the definitions above to handle proximity promise problems in the natural way (specifically,
completeness and zero-knowledge should only hold for input in ΠYES whereas the soundness
requirement is that if the verifier is given proximity parameter ε > 0 and an input in Π(ε)

NO,
then it should reject with high probability).

I Remark (The Security Parameter). One of the original motivations for the introduction
of a security parameter in the classical definitions of statistical zero-knowledge proofs
was to control the error parameters (completeness, soundness and simulation deviation)
independently from the input’s length. Specifically, one may want to provide a high-quality
proof (i.e., very small errors) for short inputs (see [53, Section 2.4]).

In our setting, the situation is somewhat reversed. We think of very large inputs that the
verifier and simulator cannot even entirely read. Hence, it seems unreasonable to require
errors that are negligible in the input length. Instead, we control the quality of the proof
with the security parameter, independent of the input length.

I Remark (A Definitional Convention). Traditionally [21], a property tester gets an oracle
access to a Boolean function f : {0, 1}n → {0, 1} and needs to determined if the function has
the property or is ε-far from having this property (i.e., ε-far from any function that has the
property). The tester gets n (or alternatively 2n — the input length of the truth table of
f) as a standard input and its complexity (e.g., running time, number of oracle queries) is
measured as a function of n. As models and properties evolved (e.g., the bounded degree
model [26]) Boolean functions no longer sufficed to (conveniently) describe properties. For
example, in the bounded degree model graphs with n vertices and degree d are specified as a
functions G : [n]× [d]→ [n] ∪ {⊥} such that G(u, i) = v if v is the i’th neighbor of a vertex
u and G(u, i) =⊥ if u has less than i neighbors. Consequently, the parameter n alone no
longer suffices to measure the complexity of the tester.

The situation becomes even more delicate when interaction is added. The model of
interactive proofs of proximity (IPP), introduced by [51], considers an interaction between a
prover and a verifier in which the prover is trying to convince the verifier that a function has
a property. In the definition of [51], in addition to the function f , to which the verifier has
only oracle access and is referred to as the implicit input, the verifier also has full access to an
additional (shorter) input w, called the explicit input. For example, in the bounded degree
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model w might be simply d, and in “algebraic” properties w can contain a description of some
underlying field. Roughly speaking, [51] chose to measure the complexity of the proof-system
with respect to the length of the implicit input alone. This creates a slight inconvenience
when trying to describe complexity measures. For example, in the bounded degree model,
we would like the running time of the verifier to explicitly depend on the number of vertices
and the degree d. However, as it is defined in [51], the function that bounds the verifier’s
running time gets only the input length (which has bit length n · d · log(n)).

To avoid this minor issue, in this paper, we take a slightly different approach than that
of [51] when defining IPPs. Our goal is to define a general model in which it is easy to
compare properties from different domains (e.g., properties of bounded degree graphs and
those considering algebra). To do so we no longer split the input to an implicit and explicit
parts. We consider functions f : D → R from an arbitrary domain D to an arbitrary range R.
The verifier receives oracle access to f , and full access to |D| and |R|. The prover receives
full access the function f . Different complexity measures are now functions of the verifier’s
standard inputs — |D| and |R|. Going back to the bounded degree graph example, we can
see in this framework the function describing the verifier’s running time gets |Dn| = n · d
and |Rn| = n as inputs, and can be easily “converted” into a function that simply gets n
and d as inputs. Moreover, we can now define N to be the input length of the property
(i.e., N = |D| · log(|R|)) and define complexity classes with respect to this input length.
For example, we can define IPP[poly(log(N))] to be the class containing all properties with
interactive proof of proximity in which the verifier’s running time (as a function of |D|
and |R|) is bounded by poly(log(N)). Note that the above class does not depend on the
domain and range of the propety, and properties of different “types” can still belong to
IPP[poly(log(N))].

2.3 Computational ZKPP
Since our focus is on the statistical case, we do not provide explicit definitions of computational
zero-knowledge proofs of proximity. Rather, these definitions can be easily extrapolated
from the statistical ones in a standard way (see for example Vadhan’s [53, Section 2]
definition of computational zero-knowledge). Specifically, in the computational definitions
one simply requires that the simulator’s output and the protocol’s view are computationally
indistinguishable (rather than statistically close), with respect to the security parameter.
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