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—— Abstract

We introduce a generalization of the standard framework for studying the difficulty of two-prover
games. Specifically, we study the model where Alice and Bob are allowed to communicate
(with information constraints) — in contrast to the usual two-prover game where they are not
allowed to communicate after receiving their respective input. We study the trade-off between
the information cost of the protocol and the achieved value of the game after the protocol. In
particular, we show the connection of this trade-off and the amortized behavior of the game (i.e.
repeated value of the game). We show that if one can win the game with at least (1—¢)-probability
by communicating at most € bits of information, then one can win n copies with probability at
least 2-9(") | This gives an intuitive explanation why Raz’s counter-example to strong parallel
repetition [16] (the odd cycle game) is a counter-example to strong parallel repetition — one can
win the odd-cycle game on a cycle of length m by communicating O(m~2)-bits where m is the
number of vertices.

Conversely, for projection games, we show that if one can win n copies with probability larger
than (1 — €)™, then one can win one copy with at least (1 — O(e))-probability by communicating
O(€) bits of information. By showing the equivalence between information value and amortized
value, we give an alternative direction for further works in studying amortized behavior of the
two-prover games.

The main technical tool is the “Chi-Squared Lemma” which bounds the information cost
of the protocol in terms of Chi-Squared distance, instead of usual divergence. This avoids the
square loss from using Pinsker’s Inequality.
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1 Introduction

A two-prover one-round game G on a bipartite graph with (U, V, E) with distribution D on
E is defined as a following process. Referee picks (u,v) € E according to D, then sends u
to Alice and v to Bob. Then Alice gives an assignment to u and Bob to v from alphabet
Y. Referee checks if they are “valid” assignment for the edge (u,v). In this setting, we are
interested in what the best response strategy is for Alice and Bob. In particular, we want to
find f: U — ¥ which denotes Alice’s strategy and g : V' — ¥ which denotes Bob’s strategy

* A full version of the paper is available at https://eccc.weizmann.ac.il/report/2017/182/.
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that maximize the fraction of satisfied edges. In particular, we want to compute the strategy
that achieves the value of the game which is defined as

val(G) = max (U,E)IND [Ty (f (), g(v)) = 1],
that is the probability of satisfying a randomly chosen edge according to the best response
strategy where 7(, ) is the verification function by the referee for the edge (u,v).

In the above setup, it is crucial that Alice’s assignment only depends on the input u and
Bob’s assignment only depends on the input v. In other words, Alice and Bob are assumed
to be in separate rooms, leaking zero bits of information about their respective input. Having
introduced the amount of information communicated between Alice and Bob into the picture,
we could then reformulate the value of the game as:

Given a game G, Alice and Bob communicate zero bits of information. Then what is
the best chance of winning the game?

Then it is natural to extend to following question: ‘If Alice and Bob are allowed to
communicate limited information, what is the value of the game?’ In particular, we could
explicitly ask the following question.

If Alice and Bob are allowed to communicate € bits of information, then what is the
value of the game? (in terms of €)

First, note that this is a well-defined quantity in a sense that there is a following explicitly
bounded curve. Observe that if |U| = |V| = n, and they are allowed to communicate
O(logn)-bits, the value of the game becomes 1 (if all the edges indeed have at least one
satisfying assignment, which can be assumed without loss of generality) due to the following
naive strategy. Alice simply sends the hash of her input to Bob, which requires at most
log n-bits to do so and vice-versa. Since Alice and Bob both know (u,v), they can simply
pick a satisfying assignment (using shared randomness) for (u,v) then answer accordingly.
We can further tighten the upper bound (for the amount of information) if we know the
structure of the graph. In particular, if the graph were d-regular, given O(logd)-bits, the
value of the game again becomes 1, since the entropy (of Alice’s input given Bob’s input and
vice-versa) is at most logd. (We will show this explicitly)

We would like to further investigate the trade-off between the information vs. the value
of the game. In particular, we initiate the study of information value of the game, that is
how much information is necessary to win the game with say probability > 1 — § in terms of
0, which we define more explicitly in Section 2.

Note that this notion can classify “how intrinsically hard” a given two-prover one-round
game is. In particular, one could view a game as being “hard” if the value of the game is
“resistant” to added information, easy otherwise, providing a better spectrum for analyzing
the intrinsic hardness of the game — which is indeed related to the amortized value of the
game.

1.1 OQOur Contribution

We connect the information value of the game with the amortized value of the game — i.e.
the value of the repeated game. We note that previous parallel repetition literature can
be “translated” as Alice and Bob sharing a common hint provided by the referee. Then we
can “remove” the referee from the picture and instead let Alice and Bob sample a common
hint. This translation is what we call the “Chi-squared lemma,” which is the main technical
contribution of this paper.
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» Lemma 1 (Chi-squared lemma). Suppose Alice has access to P and Bob has access to Q
which are probability distributions over the universe U. Suppose further that there exists
a common distribution R such that D(R||P) < ¢ and D(R||Q) < €. Then there exists a

protocol I1 that outputs a sample from the distribution P with information cost ye with
D(R||P) < O(g) for some constant v > 0.

where “information cost” refers to the amount of information revealed to each other as in [4].
We also remark that the idea of referring to Chi-Squared distance to bound information
cost was also used in proving sharp round complexity of pointer chasing problem [20], avoiding
square-loss in the parameter due to the application of Pinsker’s inequality.
Via this lemma, we can “translate” previous parallel repetition literature (in particular
[3]) as a blackbox to obtain following main theorem.

» Theorem 2 (informal). If val(G") > (1 — )" = 279" and G is a projection game, that
1s for any valid pair of assignments, Bob’s assignment is a projection of Alice’s assignment,
then one can win G with probability 1 — O(e) by communicating O(g)-bits of information.

To show the converse, we need to show that a low-information protocol can be translated
to a zero-communication protocol with insignificant loss in success probability. We use results
from correlated sampling (in particular we use a lemma from [3]) which yields the converse
to the main theorem.

» Theorem 3 (informal). If one can win G with probability 1 — e by communicating e-bits of
information, then val(G") > 2-0(n),

We also remark that Theorem 3 does not assume that G is a projection game.

1.2 Proof Overview
Proof of Theorem 3

It suffices to show that a low-information cost protocol can be translated to a zero-
communication protocol with success parameter depending on the information cost. In
particular, we want to show that an O(I) information cost protocol can be simulated by
two non-communicating parties with 2-°) success probability. For our purpose I = ne,
since information cost tensorizes with many copies. Note that if Alice and Bob managed to
sample a correct transcript together, the transcript is correct with (1 — 5)0(") probability
since each coordinates are chosen independently. We show that the zero-communication
sampling lemma from [3] indeed gives the range of parameters that we need.

Proof of Theorem 2

In [3], one could view the “common hint” (which actually comes from the multiple copies of
the game) as given by the referee to Alice and Bob via sampling some random coordinates
with their answers then sending them to Alice and Bob. However, this does not fit in our
framework since the referee samples the hint, not Alice and Bob. Using the Chi-squared
lemma, we allow Alice and Bob to jointly sample such a hint with O(e) information cost.
[3] shows that one can win a single copy with probability 1 — O(e) after running the joint
sampling protocol (under some distribution D’ which is O(g)-away in terms of divergence
from the real distribution). We further show that having a strategy for such D’ suffices to
win the original game with probability 1 — O(e) as well.
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Chi-squared lemma

Suppose Alice has access to P; and Bob has access to P, with a guarantee that there exists
some common distribution R such that D(R||P1), D(R||P2) < e. In such a setting, if Alice
samples from P; and tries to transmit the sample to Bob, the naive information cost would
be D(P;||P2). This could be unbounded however due to the case where P; contains an
element in the support that is not in the support of Py. i.e. D(P;||P2) = oco. To rule out such
scenario, we give Bob an ability to reject. Instead of receiving the full description or index of
the sample, Bob receives a stream of hash values and rejects the stream when he “cannot
understand” or in other words expects the divergence from the sample to be high. Via this
rejection, Bob will not be “too surprised” about Alice’s sample. But the main problem with
the above simple rejection protocol is that it allows Alice to learn too much about P, from
Bob’s response. For instance, if Bob rejects a sample, then Alice learns that this sample
occurs “infrequently” in P». In order to “confuse” Alice and prevent her from learning too
much about P,, Bob rejects a valid stream with some constant probability. This suffices to
confuse Alice and learn only O(e)-information about Ps.

2 Preliminaries

2.1 Information Theory

In this section, we provide background on information theory that will be used to prove
main results. We remark that throughout the paper, log is of base 2 and In is of base e. For
further references, we refer the reader to [7].

» Definition 4 (Entropy). The entropy of a random variable A, denoted by H(A) is defined
as

1
E Pr[A =allog ——————
d a]log Pr[A = a]
a€Supp(A)

Intuitively, this quantifies how much uncertainty we have about variable A. With the
definition of entropy, we can further define the relation between various variables. For
conditional entropy we have H(A|B) := H(AB) — H(B). Then we are ready to define the
relation between different random variables.

» Definition 5 (Mutual Information). The mutual information between two random variable
A and B, denoted by I(A; B) is defined as

I(A; B) := H(A) — H(A|B) = H(B) — H(B|A).

The conditional mutual information between A and B given C, denoted by I(A4; B|C), is
defined as

I(A; B|C) == H(A|C) — H(A|BC) = H(B|C) — H(B|AC).

This gives a measure of how much information does B reveal about A and vice-versa. (when
one knows C') Mutual Information is further related to the following distance measure, which
will be used throughout the proof.

» Definition 6 (Kullback-Leiber Divergence). Given two probability distributions py and pg on
the same sample space €2 such that (Vw € Q)(u2(w) = 0= p1(w) = 0), the Kullback-Leibler
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Divergence or KL-Divergence in short between p; and o is defined as (also known as relative
entropy)

Dijalliz) = 3= o) log 212
w€eN

In particular, the following equality holds between KL-divergence and mutual information.

» Fact 7. For random variables A, B and C' we have
I(A; B|C) = Ep.c [D(Apc||Ac)] -

where Ay is the distribution of random variable A conditioned on B = b,C = ¢ and similarly
for A..

With the definitions in place, we provide useful properties that will be used in the proof. For
mutual information, following facts hold.

» Fact 8 (Chain-rule). If I(B; D|C) =0, then I(A; B|C) < I(A; B|C, D).

» Fact 9 (Super-Additivity of Mutual Information). Let Cy,Cy, D, B be random variables such
that for every fizing of D, Cy and Cy are independent. Then

I(Cy; B|D) + I(Cq; B|D) < I(C1Cy; B|D).
For KL-divergence, we use following properties.

» Fact 10. Let P and Q be distributions over a universe U. Suppose V C U is such that
P(V) = 1. Then Q(V) >2-PZlQ),

Note that Fact 10 immediately implies non-negativity of KL-divergence between any two
distributions. For KL-divergence under conditioning, the following property holds.

» Fact 11 (Additivity of KL-Divergence). Consider two distributions P(z,y) and Q(x,y).
Then

D(P(z,y)[|Q(z,y)) = D(P(2)[|Q(x)) + Eon p D(P(yl2)[|Q(y|))

2.2 Previous Work

In this section, we elaborate previous results on parallel repetition and how the state-of-the-
art proof technique for parallel repetition is related to the amount of information necessary
for Alice and Bob to win the game with probability greater than (1 — ).

Recall that r-times parallel repetition of a two-prover game G denoted as G” is defined as:
the referee first samples r-tuple of edges i.e. &= (z1,...2,) € U" and §¥ = (y1,...,y,) € V"
with (z;,y;) € E for all i € [r]; Alice and Bob give assignments to all r-coordinates say
f:U" = X" for Alice and g : V" — X7 for Bob; then the referee checks all r-coordinates i.e.
return A\;e g T, (fi(£), 9i(9))-

The first parallel repetition theorem (with exponential decay in value) was proved by Raz
[15]:

» Theorem 12 ([15]). Let G be a game with val(G) = 1 — ¢ and let s be the size of the
alphabet (|X]) of the game. Then val(G") < (1 — £32/2)n/log(s))

This was improved (and simplified) by Holenstein [10]:
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» Theorem 13 ([10]). Let G be a game with val(G) =1 — e and let log(s) be the answer size
of the game. Then val(G™) < (1 — 53/2)9(n/ log(s)) .

For projection games, log(s) no longer appears in the exponent. In particular, [14] showed
improved bound for projection games.

» Theorem 14 ([14]). Let G be a projection game with val(G) = 1 —e. Then val(G") <
(1 —e2/2)%m),

There is an initiation of work from [1], [18] where they study (though not explicitly
stated) a quantity val; (G) for unique game G which is an analytic relaxation of val(G) that
tensorizes exactly, that is val, (G ® Go) = val(G;) - val, (Gy) and captures the amortized
value of the game. The analysis of val; then resulted in analytic proof of parallel repetition
for projection games. [8], [19]. In particular, [8] extended [14] to low-value regime using
val,.

» Theorem 15 ([8]). Let G be a projection game with val(G) = 3. Then val(G") < (43)™/*.

There has been more work on parallel repetition for various special settings: [2] [17] [19]
In particular, there also has been a series of works around parallel repetition of games with
entanglement [6, 12, 9, 11, 5]. A recent breakthrough in [21] settled a longstanding open
problem on whether the value of “any” games with entanglement actually decays to zero as
the number of repetition goes to infinity (at a polynomial rate). It would be interesting to
see how our framework relates to games with entanglement.

Throughout this paper, we will use the machinery in the latest parallel repetition proof
by [3] where they handled the low-value regime. It should be noted that the same proof
works in the high-value regime as well, giving an alternate proof for [10], [14] and [8].

» Theorem 16 ([3]). Let G be a game with val(G) = 8. Then val(G") < §2(n1oe(1/6)/log(s))
Further if G is a projection game with val(G) = 1 — ¢, then val(G") < (1 — £2)%(),

The main proof technique used to prove parallel repetition in [3] follows the following
general roadmap. First one assumes that the value of the repeated game is higher than
the desired bound, and focuses on the event where Alice and Bob win the whole copy.
Conditioned on winning, one sets up R, the common hint between Alice and Bob, as a subset
of question and answer pairs from other coordinates which can be individually sampled by
Alice and Bob (approximately), which is the main technical innovation of [3]. Conditioned on
successfully sampling R, Alice and Bob’s strategy becomes a “too good to be true” strategy
for some coordinate, contradicting the original assumption on the value of the game. For the
purpose of having a “hint” between Alice and Bob, we mainly focus on sampling R, avoiding
technical issues of constructing R correctly via using [3] as a blackbox. One could view the
framework in [3] as following explicit model in Protocol 1.

Protocol 1 Non-Protocol Hint.

1. Referee picks a random edge (z,y) € E as a challenge. Referee then samples r from R,
then transmits r to Alice and Bob

2. Alice, depending on r and z provides an assignment a. Bob analogously answers b

depending on r and y.
3. Referee accepts if a and b forms a satisfying assignment for (z,y).

Protocol 1 is indeed not a protocol between Alice and Bob, since the referee samples the
hint. Converting this to a protocol between Alice and Bob is our main technical contribution.
For the sake of completeness, we describe how the common hint R is constructed below.
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Precise construction of R in [3]

They explicitly construct a “combinatorial” hint Rg ¢, i, in a following manner which we
restate for completeness. Let n be the number of repetitions, that is the number of coordinates
for the game. Then let S, G, H be random subsets of [n] distributed as follows: Let s;, and
sy be random numbers from {3n/4+1,...,n}. Let o : [n] — [n] be a uniformly random
permutation. Set H = o([sp]), G = o({n — s, +1,...,n}). Let I be a uniformly random
element of G N H. Let [ be a random number from [T], where T' < n/2 is a parameter. Let
S be a uniformly random subset of G N H\{I} of size I. Then define Rg g, u,; to denote
the random variable X\ (1} Y#\ {13 AsBs where s, g, h,i denote instantiations of the random
variables S, G, H, I respectively with Ag denoted Alice’s assignment on S-coordinates and
respectively for Bg. Then Alice can be thought of getting X|,) and Rs ¢ m,1, while Bob gets
Y[n) and Rs g, u,r where the input (z,y) is set to (X7, Y7).

2.3 Definitions

Recall that the Information Cost of a protocol is defined as I(II; X|Y) + I(II; Y| X) where
IT is the transcript of the protocol, X and Y are inputs for Alice and Bob respectively.
Information Complexity of computing f is then defined as infimum over IT that computes
f. Inspired by the definitions from information complexity literature, we define information
value of the game as following.

» Definition 17. The information value of the game G = (XY, F) with distribution D
over E is

IV5(G) = inf [[(IL X|Y) + I(IL; Y|X)]

where the infimum is taken over the set of transcripts II between Alice and Bob which wins
G with probability at least (1 —¢) with e < 1/2. X and Y represents Alice and Bob’s input
respectively.

We remark that if D is not specified, we assume the distribution to be the uniform
distribution over the challenges/edges.

As a straightforward exercise, note that I(IT; X|Y) < H(X|Y) < H(X) < logn where n
is the number of vertices in the graph, similarly for I(II;Y|X). Thus for any game G and
e >0, IV5(G) < O(logn). Thereby, this quantity is strictly bounded. Better bound holds
for d-regular graphs since H(X|Y) < logd for regular graphs, similarly for H(Y|X). Any
better bounds however, requires lower bound on H(X|II,Y).

3 Main Result

First we state the main technical lemma (Chi-Squared lemma) used in proving the main
theorem.

» Lemma 18 (Chi-Squared lemma). Suppose Alice has access to a distribution P and Bob has
access to a distribution QQ over U. Suppose further that there exists a common distribution R
such that D(R||P) < € and D(R||Q) < . Ife < 1/50, then there exists a protocol I that
outputs a sample from P with information cost ve with D(R||P) < O(e) for some constant
v > 0.

We append the full proof in the full version of the paper. To see why this lemma is interesting,
note that the naive information cost is D(P||Q) which could be infinite in some cases.
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Technically speaking, the triangle inequality does not hold for divergence. Applying Pinsker’s
Inequality to have triangle inequality (in total variation distance) leads to a square loss,
resulting in information cost O(y/¢), instead of O(c). We suspect that there are more
applications to this technical lemma. The lemma leads to the following theorem.

» Theorem 19. Let e < 1/2. Ifval(G") > (1 —¢)" = 2% and G is a projection game,
then there exists constants oy, ag > 0 such that IV¢(G) < ase.

The main intuition of the proof of Theorem 19 is to use the common hint used for dependency
breaking step of the parallel repetition, which are answers and questions in the other
coordinates, as hints between Alice and Bob. However, the hints are not exactly adequate
for our application, since they are sampled by the referee. We use Lemma 18 to convert it to
a low information cost protocol.

We also show that the converse of Theorem 19.

» Theorem 20. IfIV®(G) < ¢ and £ < 1/2, then val(G") > 279 = (1 — &) with
n>1/e.

The main intuition to Theorem 20 is converting a low information cost protocol (for our
application O(ne)) to a zero-communication protocol as seen in [13]. However, the main
theorem from [13] does not suffice for our application. Instead, we use a lemma from [3].

As a corollary, we get a complete description of projection games that obey strong parallel
repetition in terms of information value of the game.

» Corollary 21. If IVS(G) > ¢, then val(G") < (1 — €)™ and vice versa where G is a
projection game.

Applying previous parallel repetition result, we indeed get a non-trivial lower bound on the
information value of any projection game via [8] and [14].

» Corollary 22. For any projection game G with val(G) <1 — ¢, IVO(EQ)(Q) > Q(e?).

3.1 Proof of Theorem 19

In this section, we prove Theorem 19 via Chi-squared Lemma (Lemma 18). Recall that
R g1, defined in Section 2.2 is a set of challenges and answers on a random set of coordinates.
Set T' = n/4 as the parameter for R ;5 ;. Then we get the following key lemma from [3].

» Lemma 23 (Lemma 5.6 of [3]). Suppose 2720 > Pr[W] > (1 —&)". Then there exists a
fixing of s, g, h,1 such that:
1. EqyonD (PRs,g,h,i‘Xi:m7Yi:y7W||PRs,g,h,'i|Xi:<7:vW) <O(e).
2. EgynpD (PRs,g,h,i\Xi:-”ﬂ7Yi:y7W||PRs,g,h,i|Yi:y7W) < O(e).
3. D (ullPx,v,) < O(e).
4. EI,?JNMET’NRS,Q,}M|X1‘,:967Y7::ZJVW

D (PAi,Bi|X7‘,:I7)/i:vas,g,h,,i:T-,W|‘PAi|Xi:13-,Rs,g,h,,i:"’1W ® PBiD/i:y»Rs,g,h,,i:T) < O(e).
where p denotes the distribution Px, y,jw and Px stands for the probability distribution of
random variable X .

We omit the proof

» Remark. The last property does not suffice for our application, since we do not get
T~ Rg g1l Xi=2,Y;, =y, W but a distribution that is O(e)-away from it in divergence at
the end of the protocol given by the Chi-squared lemma which we denote as R g p ;| X; =
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x,Y; =y, W. However, we remark that the same proof in [3] indeed gives the property that
we want. That is

EmvyNPXi,Yi\WETNR&g,h’i|Xi:I7Yi:y,W

D (PAi1Bi‘Xi:Ta}/i:nys‘g,h,i:TJ}V||PAi|Xi:x7Rs,g,h,i:r7W ® PBil}/i:vas‘g,h,i:T) < O(E) (1)

In particular, note that the distribution of s, g, h,7 and the permutation remain the same
since Alice and Bob can agree (via public randomness prior to running the protocol) on them
prior to sampling the actual question and answer sets (by Alice) This suffices for the proof
in [3], specifically Lemma 5.2 and Lemma 5.5.

We also need the following lemma to translate a strategy on X;, Y;|W to a strategy on actual
distribution X;,Y;. Due to space constraints, we attach the proof in Section A.

» Lemma 24. Suppose G with u as the distribution over the edges achieves val(G) =1 —e.
Then consider i such that D(u||ji) < e. Then G with fi as distribution over the edges has
value > 1 — O(e).

Now we have all the necessary lemmas to prove Theorem 19.

Proof of Theorem 19. First we construct a low information protocol that wins G with
probability 1 — O(e) under p.

We write Pg,  , ,|X,=z,v;=y,w in the above as R, , and Pr_  , .\x,=z,w> PR, , \.|Yi=y,W
respectively as P, Q. Consider S C E that satisfies all

D (RuylIP,) < 1.

D (Rayll@y) < 1
where v is the constant from the Chi-Squared Lemma. Then note that u(S) > 1 — O(ye) =
1 — O(e) by Markov’s inequality. Focus pairs in S. Now applying the protocol given by
the Chi-Squared Lemma to pairs in S, we obtain a protocol that samples r ~ Rs7g7h,i|Xi =
x,Y; =y, W with information cost at most

Eoynsx, vy [D (Bay|[Pe) + D (Ray||@Qy)] < O(e)

where Sx, y;jw is the distribution over the edges further conditioned on S.
Since S contributes 1 — O(g)-fraction, (1) implies

m’yNSXiin‘W PRs,gw}Lin-;:m,Yi:y\W

D (P, B,|X,=2,Yi=y,Ru.g p.i=rW || PA,| Xi =2, Ro g pi=rW © PB,1Yi=y.Ro g pi=r) < O(€)  (2)

At the end of the protocol, Alice and Bob obtain same r ~ Rs,g?h7i|X,- =z,Y, =y, W. We
now construct an explicit answering strategy for Alice and Bob dependent on r when they get
edges distributed according to Sx, y,jw. Ideally Alice and Bob would like to answer according
to PAi,BiIXi=x,1’¢=y,R5,g,;L,i=r,W' This would indeed succeed with probability 1. In other words,
if we define G,y = {(a,b)|V(2,y,a,0) = 1}, Py, px,=2.vi=y,Ro g ns=r,w (Gay) = 1 for all
(z,y) € S. However, this is not a valid strategy. There is correlation between A; and B;,
while for any valid strategy they should be independent given respective input.

Instead, they answer according to PAiIXi:wyRs,g,h,i:"‘;W ®PBi|Yi:y7R - Now, we ana-

s,9,h,i=

lyze PAilXi:w,Rs,g,h,i:T,W ® PBi‘Yi:yﬁmh’i:r(gw) i.e. the value of such strategy. Applying
Fact 10,

PAi|Xi:1/’,Rs,g,h,7::hW ® PBi‘Yvi:y»és,g,h,i:'r(ggmy)

12:9
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> 2_D(PAi,B,L|Xi=w,Yi=y,R5’gyh,i='r,W||PA,L~\Xi=w,Rsyg’hyi='r',W®PBi\Yi=y,Rsyg’hyi=r)

By the convexity of 277 along with (2), we get the desired bound

-0
Em’ywsxivyﬂw |:PAi‘Xi:1;Rs,g,h,i:7';W ® PBZ\Yi:y,Rs,g,h,i:r(gm,y)} > 2 € =1- O(e)

Since S contributes 1 — O(e)-fraction on p, this strategy wins with 1 — O(e) probability when
the edges are distributed according to u = Px, y;jw as well. Finally, applying Lemma 24 to
this strategy with D (Px,y,jw||Px,y;) < O(¢), we get the desired claim. <

3.2 Proof of Theorem 20

In this section, we give a formal proof of Theorem 20. This involves converting a protocol
(between Alice and Bob) with O(ne)-information cost to a zero-communication protocol with

ne)

success probability 2-9("€) | We start by stating the following lemma.

» Lemma 25. Suppose Alice has access to distribution P and Bob has access to distribution

Q over the universe U. They wish to jointly sample from R where D(R||P) < § and

D(R||Q) < 6. If 6 > 1, then there exists a zero-communication protocol such that

1. There exists an event E such that Pr[E] > 27 and Prr, = my|E] = 1, where ©, and
mp, refers to the final output of Alice and Bob respectively. Furthermore, E only depends
on the public randomness.

2. Given E, consider the set of outputs of m, denoted as S. Then S C Supp(R)

» Claim 26. Let W be a subset of universe U. Let A and B be a distribution and Aw be a
distribution of A conditioned on picking an element from W. Then if A(W) > Q(D(A||B)),
then

D(Aw|1B) < log(1/Aw)) + 2EIB) | ¢ (1A<W>>

A(W) A(W)
where A(W) corresponds to the probability of picking an element from W under A.

Proof of Lemma 25 and Claim 26 are appended in Section A. Now, we are ready to prove
the main lemma of this section which implies Theorem 20.

» Lemma 27. IfIV®(G) < ¢, then there exists a zero-communication protocol that achieves
val(G") > 279 ywhere n > 1/e.

Proof. Note that under this model, Alice’s strategy and Bob’s strategy are dependent on the
transcript 7, , as well, instead of just their input in zero-communication model. We denote
II, , as the distribution over the transcript that Alice and Bob will have when they are given
input x and y respectively. Now Alice and Bob will try to imitate each other by simulating
the other party in zero-communication setting. Let II,II, denote the simulated transcript
with input = and y respectively. More precisely, Il := E, ., .1l;, and 1L, := E, ), .
Further, we introduce the notation H‘ly =11, ,|W, the distribution of II, , conditioned on
referee accepting what Alice and Bob returns as their answer at the end of the protocol.

Note that from our assumption on the information cost of the protocol, we get the
following

Prnzm [7‘(]
]E(xiyyi)"’u [D(qu,yq,|‘nm7¢)] = E(m,yi)Nu Eﬂziyi log m <e. (3)

[3
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The same inequality holds for Bob’s side (D(Ilg,y,||I1y,)) as well. First we define “good”
edges. We say 7 is a good transcript if the referee accepts what Alice and Bob return after
following the transcript m. ' Then edge (z;,¥;) is good if it satisfies both
Azlyl(W) = Prron
good);
We argue that most of the edges are good. Due to our assumption on the value of the game
that is,

7 is a good transcript] > 1/2 (i.e. most sampled transcripts are

Val(g) = E(zhyi)"‘l" [AILyL (W)] > 1- g,

at most 2e-fraction of (x;,y;)’s does not satisfy the first condition. Also due to our divergence
condition that is,

E(Ihyi)’\’ﬂ [D(Hn?hHHL” <e

at most 2e-fraction of the edges violate the second condition. Thus all but at most 4e-fraction
of the edges are good. Then we can write

Eqpyimn [D(L

where [i corresponds to u conditioned on picking an edge that is good. Also note that without
loss of generality, in such regime, one can assume that 1 — A, (W) > Q(D(I1,,,,||I1,,))
for all the edges. For edges that do not satisfy such condition, i.e. 1 — A, (W) <
O(D(Iy,y, ||1,,)), the referee can randomly reject with probability O(D(Il,y,||,,;)) to
satisfy 1 — Ag,,, (W) > Q(D(I,,, |1z, )). Indeed it will add up the rejection probability, but
by at most D(II,,,,|/IL;,) which indeed is good enough for application in our regime, since it
is in expectation at most O(e). If (z;,y;) is indeed a good edge, applying Claim 26,

D(Hgylnnzl) <log(1/Az,y,(W)) + Diim;yl(wl;[)“) +0 (1 ;;4:&?{}[(/?/)>
< 10g(1/Apy, (W) + 2D(IL,,,, ||TL,,) + O (W)

where the second inequality holds since Ag,,, (W) > 1/2, D(I,,,,||1L;;) < 1, and our
assumption that 1 — A, (W) > Q(D(Il,,,,||]IL;,)) for all edges. Then

1— Ag,y, (W
Ba[ DAYy, |TL)] < Eallog(l/Av,y, (W))] + 282 [ DI y, 1L, )] + B [O (A(Vé))ﬂ
TiYq
< O(e) +0(e) + O(e) < O(e)
where the second inequality holds by Jensen’s inequality on log and since € is small enough.

Now consider taking n-copies of the game. In particular, we focus on (Z,%) ~ a®", that
is all edges are “good” edges. Then observe that

Bz geper | DIQ MY, I @ M) | =Egapen | ¥ DALY, |ITL,) | < O(ne)
i€[n] i€[n]

i€[n]

L 7 does not necessarily depend just on the input. It can depend on private randomness as well. But this
is not crucial to the proof as we argue on sampling the transcript conditioned on the edges.

12:11
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For a randomly picked (7, %) ~ i®", the divergence in consideration is indeed low with
high probability by Markov. That is

(91335) > py, |[M,,) > ans| < O(1/a) (5)
’ Li€[n]

Similarly, we get

Pr Z by,

@) Li€[n]

II,,) > ane| <O(1/a) (6)

Now, we consider the particular set of vectors (&, %) that satisfy

Vi € [n], (x;,y;) is a “good” edge.

DY ||TLs) = 3,y DY, [IIL,,) < Kne and DY) = ¥

Kne
which we denote as “good” vectors.

If (%, ) ~ U®™, since (x;,y;) is good with probability at least (1 — 2¢), all the coordinates
are good with at least (1 — 2¢)™ probability. If all the coordinates are good, by (5) and (6)
and picking appropriately large K, (1)-fraction of such edges satisfy the second condition
as well. In total, 2=2(")_fraction of edges satisfies both conditions, since we assume n > 1/e.

Now we apply Lemma 25 to “good” vectors to complete the proof. In particular, Lemma
25 gives a zero-communication sampling protocol for transcript where Alice and Bob gets a
matching transcript from Supp(Hg/g) with probability at least 2=9(") Thus for 279
fraction of the edges, we get a zero-communication strategy that wins with probability at
least 279" thus val(G") > 279", <

i€[n] i€[n] D(HZZ%HH%) <
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A  Omitted Proof from Section 3

Proof of Lemma 24. Consider the set of edges S that are satisfied under . Denote p
conditioned on being inside § as v. We show that D(v||i) < O(g), which indeed implies
f(S) <1 —0(e) by Fact 10. But indeed Claim 26 implies D(v||i) < O(g). <

Proof of Lemma 25. The proof follows from Lemma 4.5 of [3]. To argue that the second
condition is indeed met, recall that the protocol in [3] is the following:

Protocol 2 Protocol for sampling a transcript (m, q)

Using shared randomness, get uniformly random samples from II x [0, 1], which we denote
by {(7i,¢i)}20-

Alice outputs the first 7, that satisfies ¢, <
Bob outputs the first 7, that satisfies ¢ < %.

P(mq)
5 -
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Let A= {(m,q)lg < P(r)/0}, B:={(m,q)lg < Q(7)/d} and C := {(,q)|g < R(m)}. We
define event E as first dart in A U B being inside AN B NC. Note that Lemma 4.5. of [3]
exactly gives that Pr[E] > 27%0) therefore the first condition must hold. Furthermore, S is
indeed included in Supp(R) since for such event it must be the case that R(w) > 0. Therefore,
E satisfies the second condition as well. |

Proof of Claim 26. For brevity denote W as the set of « with W (z) = 1, D(A||B) = dp and
A(W) = 6;. First, we show that B(W) < O(D(A||B)) = O(dy). Note that D(A||B) can be

written as

DAIB) = Y Al Eg + 3 Afx)log ;‘g; = 3o (7)
zeW zgW
Applying log-sum, we get
A(W)log ;12‘;//)) + A(W)log 2E$§ < do

Assume for contradiction that B(W) > KA(W), where K is some parameter that we will
setup later for contradiction. And put B(W) = aA(W) for a > K. Since A(W) =1-§; by
our assumption, substituting the terms we get

1-— 1
(1 —101)log o + 01 loga =(1-147)log

1
log —
1— «ad; +0 Oga

(a—1)0
1 - alflsl -

Suppose for now that o < ﬁ + 1. Then note that log(1/(1 — z)) = Q(z). Applying this
fact to the first term, we get

1-9 1
0o > (1 —01)log T agl + 01 log o> Q((a — 1 —log)dy) > Q(adp)-

where the last inequality holds due to our assumption that §; > 50 Picking an appropriately
large constant a = O(1), we get a contradiction. Instead if o > 5 6 + 1, then

1-9 1
(1—d1)log T——c +d1log — > (1= 81)log 2(1 — 61) + b1 log 26, = H(81) +1> 6o
— a0y
which indeed is a contradiction since dy < 1 and H(81) > 0. Thus B(W) < O(d1) = K.

To bound D(Aw||B), we first bound } ;s A(7) log BE g Note that via our bound on
B(W) implies

A(z) — AW) 1
E A(z)l > A(W)1 — > §y log —
Og B LL') ( ) O B(W) 1 log KO
z¢W
Applying this to (7), we have
A(x) A(z) 1
E Az B(r) —50— E A(z)log $)<(50—5110g?0

zeW

Now we use the above fact to bound D(Aw ||B).

DUt |B) = (o os S50 = 3 awtorton S LS



M. Braverman and Y. K. Ko

= D(Aw||A) + Z aw () log Zég < log(1/A(W)) + Z Z((;% log ZEB
zeW oW

<log(1/A(W)) + DQ?V”VJ)B) . A(‘;(/V)V) log Ko

cvra) - S08 o (534)

which is indeed the statement of the claim.
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