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Abstract
We study the problem of estimating finite sample confidence intervals of the mean of a nor-
mal population under the constraint of differential privacy. We consider both the known and
unknown variance cases and construct differentially private algorithms to estimate confidence in-
tervals. Crucially, our algorithms guarantee a finite sample coverage, as opposed to an asymptotic
coverage. Unlike most previous differentially private algorithms, we do not require the domain of
the samples to be bounded. We also prove lower bounds on the expected size of any differentially
private confidence set showing that our the parameters are optimal up to polylogarithmic factors.

1998 ACM Subject Classification G.3 Probability and Statistics

Keywords and phrases Differential Privacy, Confidence Intervals, Lower bounds, Finite Sample

Digital Object Identifier 10.4230/LIPIcs.ITCS.2018.44

1 Overview

Differential privacy [7] is a strong and by now widely accepted definition of privacy for
statistical analysis of datasets with sensitive information about individuals. While there is
now a rich and flourishing body of research on differential privacy, extending well beyond
theoretical computer science, the following three basic goals for research in the area have not
been studied in combination with each other:

Differentially private statistical inference: The vast majority of work in differential privacy
has studied how well one can approximate statistical properties of the dataset itself, i.e.
empirical quantities, rather than inferring statistics of an underlying population from which
a dataset is drawn. Since the latter is the ultimate goal of most data analysis, it should also
be a more prominent object of study in the differential privacy literature.

Conservative statistical inference: An important purpose of statistical inference is to limit
the chance that data analysts draw incorrect conclusions because their dataset may not
accurately reflect the underlying population, for example due to the sample size being
too small. For this reason, classical statistical inference also offers measures of statistical
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44:2 Finite Sample Differentially Private Confidence Intervals

significance such as p-values and confidence intervals. Constructing such measures for
differentially private algorithms is more complex, as one must also take into account the
additional noise that is introduced for the purpose of privacy protection. For this reason,
we advocate that differentially private inference procedures should be conservative, and err
on the side of underestimating statistical significance, even at small sample sizes and for all
settings of other parameters.

Rigorous analysis of the inherent price of privacy: As has been done extensively in
the differential privacy literature for empirical statistics, we should also investigate the
fundamental “privacy–utility tradeoffs” for (conservative) differentially private statistical
inference. This involves both designing and analyzing differentially private statistical inference
procedures, as well as proving negative results about the performance that can be achieved,
using the best non-private procedures as a benchmark.

In this paper, we pursue all of these goals, using as a case study the problem of constructing
a confidence interval for the mean of normal data. The latter is one of the most basic problems
in statistical inference, yet already turns out to be nontrivial to fully understand under
the constraints of differential privacy. We expect that most of our modeling and methods
will find analogues for other inferential problems (e.g. hypothesis testing, Bayesian credible
intervals, non-normal data, and estimating statistics other than the mean).

2 Confidence Intervals for a Normal Mean

We begin by recalling the problem of constructing a (1 − α)-level confidence interval for
a normal mean without privacy. Let X1, . . . , Xn be an independent and identically dis-
tributed (iid) random sample from a normal distribution with an unknown mean µ and
variance σ2. The goal is to design an estimator I that given X1, . . . , Xn, outputs an interval
I(X1, . . . , Xn) ⊆ R such that

P (I(X1, . . . , Xn) 3 µ) ≥ 1− α,

for all µ and σ. Here 1 − α is called the coverage probability. Given a desired coverage
probability, the goal is minimize the expected length of the interval, namely E[|I(X1, . . . , Xn)|].

Known Variance. In the case that variance σ2 is known (so only µ is unknown), the classic
confidence interval for a normal mean is:

I(X1, . . . , Xn) = X̄ ± σ√
n
· z1−α/2,

where X̄ is the sample mean and za represents the ath quantile of a standard normal
distribution.1 It is known that this interval has the smallest expected size among all 1− α
level confidence sets for a normal mean, see for example, [20]. In this case, the length of the
confidence interval is fixed and equal to

|I(X1, . . . , Xn)| = (2σz1−α/2)/
√
n = Θ

(
σ
√

log(1/α)/n
)
.

1 The proof that this is in fact a (1 − α)-confidence interval follows by observing that
√
n · (X̄ − µ)

has a standard normal distribution, and [−z1−α/2, z1−α/2] covers a 1− α fraction of the mass of this
distribution.
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Unknown Variance. In the case that the variance σ2 is unknown, the variance must be
estimated from the data itself, and the classic confidence interval is:

I(X1, . . . , Xn) = X̄ ± s√
n
· tn−1,1−α/2,

where s2 is the sample variance defined by

s2 = 1
n− 1

n∑
i=1

(Xi − X̄)2,

and tn−1,a is the ath quantile of a t-distribution with n−1 degrees of freedom (see the appendix
for definitions).2 Now the length of the interval is a random variable with expectation

E[|I(X1, . . . , Xn)|] = 2σ√
n
· kn · tn−1,1−α/2 = Θ

(
σ
√

log(1/α)/n
)
,

for an appropriate constant kn = 1−O(1/n). (See [20].)

Relation to Hypothesis Tests. In general, including both cases above, a confidence interval
for a population parameter also gives rise to hypothesis tests, which is often how the confidence
intervals are used in applied statistics. For example, if our null hypothesis is that the mean µ
is nonnegative, then we could reject the null hypothesis if the interval I(X1, . . . , Xn) does not
intersect the positive real line. The significance level of this hypothesis test is thus at least
1− α. Minimizing the length of the confidence interval corresponds to being able to reject
the alternate hypotheses that are closer to the null hypothesis; that is, when the confidence
interval is of length at most β and µ is distance greater than β from the null hypothesis,
then the test will reject with probability at least 1− α.

3 Statistical Inference with Differential Privacy

The Laplace mechanism [7], one of the most basic differentially private algorithm, is used
for estimating a function f(x) of the dataset x, rather than the population from which x
is drawn, and much of the differential privacy literature is about estimating such empirical
statistics. There are several important exceptions, the earliest being the work on differentially
private PAC learning ([2, 18]), but still many basic statistical inference questions have not
been addressed.

However, a natural approach for inference was already suggested in early works on
differential privacy. In many cases, we know that population statistics are well-approximated
by empirical statistics, and thus we can try to estimate these empirical statistics with
differential privacy. For example, the population mean µ for a normal population is well-
approximated by the sample mean X, which we can estimate using the Laplace mechanism:

M(X1, . . . , Xn) = X + Z,where Z ∼ Lap(2B/εn).

On the positive side, observe that the noise being introduced for privacy vanishes linearly
in 1/n, whereas X converges to the population mean at a rate of 1/

√
n, so asymptotically

we obtain privacy “for free” compared to the (optimal) non-private estimator X.

2 Again the proof follows by observing that s · (X̄ − µ) follows a t distribution, with no dependence on
the unknown parameters.
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However, this rough analysis hides some important issues. First, it is misleading to
look only at the dependence on n. The other parameters, such as σ, ε, and B can be
quite significant and should not be treated as constants. Indeed σ/

√
n� B/εn only when

n� (B/εσ)2, which means that the asymptotics only kick in at a very large value of n. Thus
it is important to determine whether the dependence on these parameters is necessary or can
be improved. Second, the parameter B is supposed to be a (worst-case) bound on the range
of the data, which is incompatible with a modeling the population as following a normal
distribution (which is supported on the entire real line). Thus, there have been several works
seeking the best asymptotic approximations we can obtain for population statistics under
differential privacy, such as [6, 22, 27, 26, 12, 4, 5, 1].

4 Conservative Statistical Inference with DP

The works discussed in the previous section focus on providing point estimates for population
quantities, but as mentioned earlier, it is also important to be able to provide measures of
statistical significance, to prevent analysts from drawing incorrect conclusions from the results.
These measures of statistical significance need to take into account the uncertainty coming
both from the sampling of the data and from the noise introduced for privacy. Ignoring the
noise introduced for privacy can result in wildly incorrect results at finite sample sizes, as
demonstrated empirically many times (e.g. [8, 14, 15]) and this can have severe consequences.
For example, [9] found that naive use of differential privacy in calculating warfarin dosage
would lead to unsafe levels of medication, but of course one should never use any sort of
statistics for life-or-death decisions without some analysis of statistical significance.

Since calculating the exact statistical significance of differentially private computations
seems difficult in general, we advocate conservative estimates of significance. That is, we
require P(I(X1, . . . , Xn) 3 µ) ≥ 1−α, for all values of n, values of the population parameters,
and values of the privacy parameter.

For sample sizes that are too small or privacy parameters that are too aggressive, we may
achieve this property by allowing the algorithm to sometimes produce an extremely large
confidence interval, but that is preferable to producing a small interval that does not actually
contain the true parameter which may violate the desired coverage property. Note that what
constitutes a sample size that is “too small” can depend on the unknown parameters of the
population (e.g. the unknown variance σ2) and their interplay with other parameters (such
as the privacy parameter ε).

Returning to our example of estimating a normal mean with known variance under
differential privacy, if we use the Laplace Mechanism to approximate the empirical mean
(as discussed above), we can obtain a conservative confidence interval for the population
mean by increasing the length of classical, non-private confidence interval to account for the
likely magnitude of the Laplace noise. More precisely, starting with the differentially private
mechanism

M(X1, . . . , Xn) = X + Z,where Z ∼ Lap(2B/εn),

the following is a (1−O(α))-level confidence interval for the population mean µ:

I(X1, . . . , Xn) = M(X1, . . . , Xn)±
(
σ√
n
· z1−α/2 + B

εn
· log(1/α)

)
.

The point is that with probability 1 − O(α), the Laplace noise Z has magnitude at most
(B/εn) · log(1/α), so increasing the interval by this amount will preserve coverage (up to an
O(α) change in the probability). Again, the privacy guarantees of the Laplace mechanism
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relies on the data points being guaranteed to lie in [−B,B]; otherwise, points need to be
clamped to lie in the range, which can bias the empirical mean and compromise the coverage
guarantee. Thus, to be safe, a user may choose a very large value of B, but then this makes
for a much larger (and less useful) interval, as the length of the interval grows linearly with
B. Thus, a natural research question (which we investigate) is whether such a choice and
corresponding cost is necessary.

Conservative hypothesis testing with differential privacy, where we require that the
significance level is at least 1 − α, was advocated by [11]. Methods aimed at calculating
the combined uncertainty due to sampling and privacy (for various differentially private
algorithms) were given in [24, 28, 14, 13, 16, 15, 11, 23, 25, 19], but generally the utility of
these methods (e.g. the expected length of a confidence interval or power of a hypothesis test)
is only evaluated empirically or the conservativeness only holds in a particular asymptotic
regime. Rigorous, finite-sample analyses of conservative inference were given in [21] for
confidence intervals on the coefficients from ordinary least-squares regression (which can
be seen as a generalization of the problem we study to multivariate Gaussians) and in [3]
for hypothesis testing of discrete distributions. However, neither paper provides matching
lower bounds, and in particular, the algorithms of [21] only apply for bounded data (similar
to the basic Laplace mechanism). In our work, we provide a comprehensive theoretical
analysis of conservative differentially private confidence intervals for a normal mean, with
both algorithms and lower bounds, without any bounded data assumption.

5 Our Results

As discussed above, in this paper we develop conservative differentially private estimators
of confidence intervals for the mean µ of a normal distribution with known and unknown
variance σ2. Our algorithms are designed to be differentially private for all input datasets
and they provide (1 − α)-level coverage whenever the data is generated from a normal
distribution. Unlike the Laplace mechanism described above and many other differentially
private algorithms, we do not make any assumptions on the boundedness of the data. Our
pure DP (i.e. (ε, 0)-DP) algorithms assume that the mean µ and variance σ2 lie in a bounded
(but possibly very large) interval, and we show (using lower bounds) that such an assumption
is necessary. Our approximate (i.e. (ε, δ)) differentially private algorithms do not make any
such assumptions, i.e. both the data and the parameters (µ, σ2) can remain unbounded. We
also show that the differentially private estimators that we construct have nearly optimal
expected length, up to logarithmic factors. This is done by proving lower bounds on the
length of differentially private confidence intervals. A key aspect of the confidence intervals
that we construct is their conservativeness — the coverage guarantee holds in finite samples,
as opposed to only holding asymptotically. We also show that as n→∞, the length of our
differentially private confidence intervals is at most 1 + o(1) factor larger than length of their
non-private counterparts.

Let X1, . . . , Xn be an independent and identically distributed (iid) random sample
from a normal distribution with an unknown mean µ and variance σ2, where µ ∈ (−R,R)
and σ ∈ (σmin, σmax). Our goal is to construct (ε, δ)-differentially private (1 − α)-level
confidence sets for µ in both the known and the unknown variance case, i.e. we seek a set
I = I(X1, . . . , Xn) such that
1. I(X1, . . . , Xn) is a (1− α)-level confidence interval, and
2. I(x1, . . . , xn) is (ε, δ)-differentially private.
3. E

X1,...,Xn,I
[I(X1, . . . , Xn)] is as small as possible.

ITCS 2018
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Known Variance: For the known variance case, we construct differentially private algorithms
that output a fixed width (1−α)-level confidence interval for any n. Moreover, when n is large
enough, the algorithm outputs a confidence interval of length β which is non-trivial in the sense
that β � R. Specifically, β is a maximum of two terms: The first term is O

(
σ
√

log(1/α)/n
)

which is the same as the length of the non-private confidence interval discussed in Section 2
up to constant factors. The second term is O (σ/(εn)) up to polylogarithmic factors − it
goes to 0 at the rate of Õ (1/n) which is faster than the rate at which the first term goes to
0. Thus for large n the increase in the length of the confidence interval due to privacy is
mild. Note that, unlike the basic approach based on the Laplace mechanism discussed in
Section 4, the length of the confidence interval has no dependence on the range of the data,
or even the range (−R,R) of the mean µ.

The sample complexity required for obtaining a non-trivial confidence interval is the
minimum of two terms: O ((1/ε) log(R/ασ)) and O ((1/ε) log(1/αδ)). The dependence of
sample complexity on R/σ is only logarithmic. Thus one can choose a very large value of R.
Moreover, when δ > 0, we can set R =∞ and hence there is no dependence of the sample
complexity on R.

Unknown Variance: As in the known variance case, we construct (ε, δ) differentially private
algorithms that output an (1− α) confidence interval of µ for all n. If n is large enough, the
length of the confidence interval is a maximum of two terms, where the first term is same as
the length of the non-private confidence interval and the second term goes to 0 at a faster
rate.

As before, the dependence of sample complexity on R/σmin and σmax/σmin is logarithmic,
as opposed to linear. Hence we can set these parameters to a large number. Moreover, when
δ > 0, we can set R and σmax to be ∞ and σmin to be 0. Thus when δ > 0, there are no
assumptions on the boundedness of the parameters.

Lower Bounds: We also prove lower bounds on the length of any (1 − α)-level (ε, δ)-
differentially private confidence set of expected size β. Our lower bounds show that one must
pay Ω (σ/(εn) · log(1/α)) in the length of the confidence interval when R is very large. Our
algorithms come quite close to this lower bound with an extra factor of polylog(n/α). We
also show that the sample complexity required by our algorithms is necessary to obtain a
confidence interval that saves more than a factor of 2 over the trivial interval (−R,R).

6 Directions for Future Work

The most immediate direction for future work is to close the (small) gaps between our upper
and lower bounds. We came to the problem of constructing confidence intervals for a normal
mean as part of an effort to bring differential privacy to practice in the sharing of social science
research data through the design of the software tool PSI [10], as confidence intervals are a
workhorse of data analysis in the social sciences. However, our algorithms are not optimized
for practical performance, but rather for asymptotic analysis of the confidence interval length.
Initial experiments indicate that alternative approaches (not just tuning of parameters) may
be needed to reasonably sized confidence intervals (e.g. length at most twice that of the
non-private length) handle modest sample sizes (e.g. in the 1000’s). Thus designing practical
differentially private algorithms for confidence intervals remains an important open problem,
whose solution could have wide applicability.
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As mentioned earlier, we expect that much of the modelling and techniques we develop
should also be applicable more widely. In particular, it would be natural to study the
estimation of other population statistics, and families of distributions, such as other continuous
random variables, Bernoulli random variables, and multivariate families. In particular, a
natural generalization of the problem we consider is to construct confidence intervals for the
parameters of a (possibly degenerate) multivariate Gaussian, which is closely related to the
problem of ordinary least-squares regression (cf. [21]).

Finally, while we have advocated for conservative inference at finite sample size, to
avoid spurious conclusions coming from the introduction of privacy, many practical, non-
private inference methods rely on asymptotics also for measuring statistical significance. In
particular, the standard confidence interval for a normal mean with unknown variance and
its corresponding hypothesis test (see Section 2) is often applied on non-normal data, and
heuristically justified using the Central Limit Theorem. (This is heuristic since the rate
of convergence depends on the data distribution, which is unknown.) Is there a criterion
to indicate what asymptotics are “safe”? In particular, can we formalize the idea of only
using the “same” asymptotics that are used without privacy? [19] analyze their hypothesis
tests using asymptotics that constrain the setting of the privacy parameter in terms of the
sample size n (e.g. ε ≥ Ω(1/

√
n)), but it’s not clear that this relationship is safe to assume

in general.

Acknowledgments. We are grateful to the Harvard Privacy Tools differential privacy
research group for illuminating and motivating discussions, particularly James Honaker,
Gary King, Kobbi Nissim and Uri Stemmer. We thank members of the Center for Disclosure
Avoidance Research at the US Census Bureau, in particular Philip Leclerc, for carefully
reading our paper and giving helpful feedback.

References
1 Rina Foygel Barber and John C Duchi. Privacy and statistical risk: Formalisms and

minimax bounds. arXiv preprint arXiv:1412.4451, 2014.
2 Avrim Blum, Cynthia Dwork, Frank McSherry, and Kobbi Nissim. Practical privacy: the

sulq framework. In Proceedings of the twenty-fourth ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems, pages 128–138. ACM, 2005.

3 Bryan Cai, Constantinos Daskalakis, and Gautam Kamath. Priv’it: Private and sample
efficient identity testing. arXiv preprint arXiv:1703.10127, 2017.

4 John Duchi, Martin J Wainwright, and Michael I Jordan. Local privacy and minimax
bounds: Sharp rates for probability estimation. In Advances in Neural Information Pro-
cessing Systems, pages 1529–1537, 2013.

5 John C Duchi, Michael I Jordan, and Martin J Wainwright. Local privacy and statistical
minimax rates. In Foundations of Computer Science (FOCS), 2013 IEEE 54th Annual
Symposium on, pages 429–438. IEEE, 2013.

6 Cynthia Dwork and Jing Lei. Differential privacy and robust statistics. In Proceedings
of the forty-first annual ACM symposium on Theory of computing, pages 371–380. ACM,
2009.

7 Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to
sensitivity in private data analysis. In TCC, pages 265–284. Springer, 2006.

8 Stephen E. Fienberg, Alessandro Rinaldo, and Xiaolin Yang. Differential privacy and the
risk-utility tradeoff for multi-dimensional contingency tables. In Proceedings of the 2010
international conference on Privacy in statistical databases, PSD’10, pages 187–199, Berlin,

ITCS 2018



44:8 Finite Sample Differentially Private Confidence Intervals

Heidelberg, 2010. Springer-Verlag. URL: http://dl.acm.org/citation.cfm?id=1888848.
1888869.

9 Matthew Fredrikson, Eric Lantz, Somesh Jha, Simon Lin, David Page, and Thomas Risten-
part. Privacy in pharmacogenetics: An end-to-end case study of personalized warfarin
dosing. In USENIX Security Symposium, pages 17–32, 2014.

10 Marco Gaboardi, James Honaker, Gary King, Kobbi Nissim, Jonathan Ullman, and Salil
Vadhan. Psi ({\Psi}): a private data sharing interface. arXiv preprint arXiv:1609.04340,
2016.

11 Marco Gaboardi, Hyun-Woo Lim, Ryan M. Rogers, and Salil P. Vadhan. Differentially
private chi-squared hypothesis testing: Goodness of fit and independence testing. In Maria-
Florina Balcan and Kilian Q. Weinberger, editors, Proceedings of the 33nd International
Conference on Machine Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016,
volume 48 of JMLR Workshop and Conference Proceedings, pages 2111–2120. JMLR.org,
2016. URL: http://jmlr.org/proceedings/papers/v48/rogers16.html.

12 Rob Hall, Alessandro Rinaldo, and Larry Wasserman. Differential privacy for functions
and functional data. Journal of Machine Learning Research, 14(Feb):703–727, 2013.

13 Vishesh Karwa, Dan Kifer, and Aleksandra B Slavković. Private posterior distributions
from variational approximations. arXiv preprint arXiv:1511.07896, 2015.

14 Vishesh Karwa and Aleksandra Slavković. Differentially private graphical degree sequences
and synthetic graphs. In Privacy in Statistical Databases, pages 273–285. Springer, 2012.

15 Vishesh Karwa and Aleksandra Slavković. Inference using noisy degrees: Differentially
private β-model and synthetic graphs. The Annals of Statistics, 44(1):87–112, 2016.

16 Vishesh Karwa, Aleksandra B Slavković, and Pavel Krivitsky. Differentially private expo-
nential random graphs. In International Conference on Privacy in Statistical Databases,
pages 143–155. Springer, 2014.

17 Vishesh Karwa and Salil Vadhan. Finite sample differentially private confidence intervals.
arXiv preprint arXiv:1711.03908, 2017.

18 Shiva Prasad Kasiviswanathan, Homin K Lee, Kobbi Nissim, Sofya Raskhodnikova, and
Adam Smith. What can we learn privately? SIAM Journal on Computing, 40(3):793–826,
2011.

19 Daniel Kifer and Ryan Rogers. A new class of private chi-square tests. arXiv preprint
arXiv:1610.07662, 2016.

20 Erich L Lehmann and Joseph P Romano. Testing statistical hypotheses. Springer Science
& Business Media, 2006.

21 Or Sheffet. Differentially private ordinary least squares. In International Conference on
Machine Learning, pages 3105–3114, 2017.

22 Adam Smith. Privacy-preserving statistical estimation with optimal convergence rates. In
Proceedings of the forty-third annual ACM symposium on Theory of computing, pages 813–
822. ACM, 2011.

23 Eftychia Solea. Differentially private hypothesis testing for normal random variables. Mas-
ter’s thesis, Pennsylvania State University, 2014. URL: https://etda.libraries.psu.
edu/catalog/21486.

24 Duy Vu and Aleksandra Slavkovic. Differential privacy for clinical trial data: Preliminary
evaluations. In Data Mining Workshops, 2009. ICDMW’09. IEEE International Conference
on, pages 138–143. IEEE, 2009.

25 Yue Wang, Jaewoo Lee, and Daniel Kifer. Differentially private hypothesis testing, revisited.
arXiv preprint arXiv:1511.03376, 2015.

26 Larry Wasserman. Minimaxity, statistical thinking and differential privacy. Journal of
Privacy and Confidentiality, 4(1):3, 2012.

http://dl.acm.org/citation.cfm?id=1888848.1888869
http://dl.acm.org/citation.cfm?id=1888848.1888869
http://jmlr.org/proceedings/papers/v48/rogers16.html
https://etda.libraries.psu.edu/catalog/21486
https://etda.libraries.psu.edu/catalog/21486


V. Karwa and S. Vadhan 44:9

27 Larry Wasserman and Shuheng Zhou. A statistical framework for differential privacy. J.
Amer. Statist. Assoc., 105(489):375–389, 2010. doi:10.1198/jasa.2009.tm08651.

28 Oliver Williams and Frank McSherry. Probabilistic inference and differential privacy. In
Advances in Neural Information Processing Systems, pages 2451–2459, 2010.

ITCS 2018

http://dx.doi.org/10.1198/jasa.2009.tm08651

	Overview
	Confidence Intervals for a Normal Mean
	Statistical Inference with Differential Privacy
	Conservative Statistical Inference with DP
	Our Results
	Directions for Future Work

