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Abstract
In computational complexity, a complexity class is given by a set of problems or functions, and a
basic challenge is to show separations of complexity classes A 6= B especially when A is known to
be a subset of B. In this paper we introduce a homological theory of functions that can be used to
establish complexity separations, while also providing other interesting consequences. We propose
to associate a topological space SA to each class of functions A, such that, to separate complexity
classes A ⊆ B′, it suffices to observe a change in “the number of holes”, i.e. homology, in SA as
a subclass B ⊆ B′ is added to A. In other words, if the homologies of SA and SA∪B are different,
then A 6= B′. We develop the underlying theory of functions based on homological commutative
algebra and Stanley-Reisner theory, and prove a “maximal principle” for polynomial threshold
functions that is used to recover Aspnes, Beigel, Furst, and Rudich’s characterization of the
polynomial threshold degree of symmetric functions. A surprising coincidence is demonstrated,
where, roughly speaking, the maximal dimension of “holes” in SA upper bounds the VC dimension
of A, with equality for common computational cases such as the class of polynomial threshold
functions or the class of linear functionals over F2, or common algebraic cases such as when the
Stanley-Reisner ring of SA is Cohen-Macaulay. As another interesting application of our theory,
we prove a result that a priori has nothing to do with complexity separation: it characterizes when
a vector subspace intersects the positive cone, in terms of homological conditions. By analogy to
Farkas’ result doing the same with linear conditions, we call our theorem the Homological Farkas
Lemma.

1998 ACM Subject Classification F.1.3 Complexity Measures and Classes, I.2.6 Learning, G.2.1
Combinatorics, G.2.m Miscellaneous

Keywords and phrases Homology, Stanley-Reisner, Cellular resolution, VC dimension, Homolo-
gical Farkas

Digital Object Identifier 10.4230/LIPIcs.ITCS.2018.56

1 Introduction

Computational complexity is one of the most important areas of theoretical computer science,
within which complexity lower bounds is the aspect that is least understood. Basic questions
such as P vs NP, P vs BPP, L vs P, and so on still remain open. In this work, we propose
the following method for proving nonuniform Boolean lower bounds. For every class C of
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Figure 1 Suppose A = SC and B = S{f}. We can hope to certify f 6∈ C ⇐⇒ A ∪ B 6= A by
noting that the numbers of 1-dimensional holes are different between A ∪ B and A. There can be
many scenarios: (a) A and B are both contractible (do not have holes), but their union A ∪ B has a
hole. Or (b) A has a hole in its center, but B covers it, so that A ∪ B is now contractible. Or (c)
A ∪ B and A are both contractible, but if we look at a section L of A ∪ B, we see that L ∩ A has 2
connected components, but L ∩ (A ∪ B) has only 1. This shows why we need to look at homologies
of subspaces or subcomplexes.

functions, we associate a simplicial complex SC to C in a way to be described in a moment;
to show that a function f is not in C, it suffices to show that SC is different from SC∪{f}

1.
In this paper, we attempt to do so by showing that the (co)homologies 2 of SC and those of
SC∪{f} (or those of corresponding subcomplexes) are different. Figure 1 illustrates this idea.

I Definition 1.1. Write [n] = {0, 1, . . . , n− 1}. For a class C ⊆ [2][n] consisting of Boolean
functions on a common domain [n], SC is constructed as follows: There are |[n]× [2]| = 2n

vertices, each labeled by an input/output pair u 7→ b with u ∈ [n] and b ∈ [2]. For each
function f ∈ C, one adds to SC a maximal simplex on the n vertices with labels of the form
u 7→ f(u). Vertices that don’t belong to any such simplices are deleted.

In theoretical computer science, we will be mostly interested in the case when [n] = [2d] ∼= [2]d
is the set of length d boolean strings. See Section 5 for examples. We use this idea to achieve
several results in this paper.

1 For readers unfamiliar with simplicial complexes, Appendix A provides a quick introduction.
2 or in particular the Betti numbers, i.e. ranks of (co)homologies. For readers unfamiliar with homology,

this is roughly speaking the “number of holes” of different dimensions in the simplicial complex.
Intuitively speaking, the “dimension” of a hole is 1 if the hole “looks like” a circle, 2 if it “looks like” a
sphere, and so on.
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1.1 Aspnes-Beigel-Furst-Rudich Bound via Homology
Let polythrk

d denote the class of polynomial threshold functions of degree k on input
space {−1, 1}d. The polynomial threshold degree of a Boolean function f is the smallest k

such that f ∈ polythrk
d. We give a new proof of Aspnes et al.’s result [2] that gives the

polynomial threshold degrees of symmetric functions. The primary conduit is a general
“maximal principle for polynomial thresholds,” which is derived by looking at how adding
a function to a degree bounded polynomial threshold class changes low dimensional Betti
numbers. It says

I Theorem 1.2 (Maximal Principle for Polynomial Threshold). Let C := polythrk
d, and let

f : {−1, 1}d → {−1, 1} be a function. We want to know whether f ∈ C.
Suppose there exists a function g ∈ C (a “local maximum” for approximating f) such that:

for each h ∈ C that differs from g on exactly one input u, we have g(u) = f(u) = ¬h(u). If
g 6= f , then f 6∈ C. (i.e., if f ∈ C, then the “local maximum” g must be a “global maximum”).

We furthermore prove in the full paper that adding parity to polythrk
d, k < d, “covers

up” the only hole in Spolythrk
d
. In general, Spolythrk

d
∪{f} “has no holes” iff f has no weak

representation by degree k polynomials [19]. 3

1.2 VC Dimension Bound via Homology
We exhibit a surprising connection of our framework to classical learning theory. VC
dimension of a class C is defined as the size of the largest subset U of the input space
such that C � U contains all Boolean functions on U . It is roughly the number of samples
needed to learn an unknown function f from a known class C, up to multiplicative constants
[10]. The homological dimension of a class C, written dimh C, is defined precisely in the
full paper [19], but intuitively, for most cases, it is one plus the highest dimension of any
nontrivial homology group in SC

4. Then we prove that

I Theorem 1.3.

dimVC C ≤ dimh C.

The equality cases include when C is the class of parity functions (i.e. linear functionals over
F2), the class of degree ≤ k polynomial threshold functions (for any fixed k), and the class of
monotone conjunctions. This inequality cannot be improved to an equality, because for the
class of conjunctions the gap between the two sides is 1, and for the class of delta functions
on {0, 1}d the homological dimension is 2d but the VC dimension is 1.

We also introduce an algebraic property of function classes called Cohen-Macaulayness,
which is related to the corresponding notion in commutative algebra. We show that all
Cohen-Macaulay classes satisfy this inequality with equality. It is nevertheless a major open
problem to characterize the equality cases and the cases where the gap between the two sides
is small (say, polynomial in d).

This beautiful result suggest that our homological theory captures something essential
about computation, that it’s not a coincidence that we can use “holes” to prove complexity
separation.

3 A polynomial p weakly represents a Boolean function f is for every input x such that p(x) 6= 0, we have
sgn(p(x)) = f(x).

4 i.e. the “highest dimension of any hole in SC.” Intuitively speaking, the “dimension” of a hole is 1 if the
hole “looks like” a circle, 2 if it “looks like” a sphere, and so on.

ITCS 2018
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1.3 Homological Farkas Lemma
Farkas lemma [22] characterizes when a linear subspace intersects the positive cone using
linear algebraic conditions. From our study of threshold function classes via the lens of
homology, we obtain easily a Homological Farkas lemma which characterizes such situations
using homological conditions. It roughly says that

I Theorem 1.4 (Homological Farkas Lemma (Informal)). Either a linear subspace intersects
the positive cone, or its intersection with a part of the boundary of a neighboring cone has
“holes,” but not both.

Section 6 provides a brief exposition on the precise statement and the intuition why it should
be true.

In addition to the main results described above, we also provide a probabilistic interpret-
ation of algebraic data, called Hilbert functions, derived from our theory and elucidate a
connection to (co)sheaf theory, in the full paper [19]. We believe that these results are just
the tip of a large, hidden (so far) iceberg that forms a multi-directional connection between
computer science, algebra, and topology.

2 Related Works

2.1 Distributed Computability via Topology
Herlihy and Shavit [9] famously used topological techniques to characterize decision problems
solvable in the basic shared memory model by asynchronous, wait-free protocols. While their
work associates simplicial complexes to individual functions, we associate simplicial complexes
to classes of functions. In addition, in contrast to their clever applications of elementary
techniques of combinatorial topology, we leverage the more modern Stanley-Reisner theory
and cellular resolutions heavily. They also focus on continuous maps much more than we do
here, which is something our future work could possibly benefit from.

2.2 Algebraic Decision Tree Lower Bounds via Betti Numbers
A long line of work yielded lower bounds on algebraic decision trees via topological techniques
[5, 6, 21, 20]. Typically these techniques first show that a set A ⊆ Rd of interest has high
complexity in terms of some topological aspect, and then show that shallow algebraic decision
trees cannot compute sets of too high complexity. Even disregarding the difference in domains
(Rd vs a discrete set), these methods operate on a different level than what we propose in this
paper. Here we compute the Betti numbers of function classes, not of functions themselves,
and we prove lower bounds by observing that adding the function in question to the class of
low complexity functions changes the Betti numbers of the class. In addition, we are not
concerned with only Betti numbers graded by dimension, but also Betti numbers graded
by partial functions (which correspond to Betti numbers of filtered subcomplexes SC�g; see
Section 5 for definitions).

2.3 Geometric Complexity Theory
There is a superficial similarity of our work to Mulmuley’s Geometric Complexity program
[14] in that both associate mathematical objects to complexity classes and focus on finding
obstructions to equality of complexity classes. In the case of geometric complexity, each class
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is associated to a variety, and the obstructions sought are of representation-theoretic nature.
In our case, each class is associated to a labeled simplicial complex, and the obstructions
sought are of homological nature. But beyond this similarity, the inner workings of the
two techniques are quite distinct. Whereas geometric complexity focuses on using algebraic
geometry and representation theory to shed light on algebraic complexity classes (such as
the permanent vs determinant question), our approach uses combinatorial algebraic topology
and has a framework general enough to reason about any class of functions, not just algebraic
functions. This generality allowed, for example, the unexpected connection to VC dimension.
Thus there is no obvious relationship between GCT and our homological theory. However,
there is a spiritual link. Indeed, Mulmuley and Sohoni proposed looking at higher dimension
cohomology of the associated varieties in [14]. One possible direction for our future work is
also to note that many classes have action by a symmetry group (see, e.g., [8]) and study
how the Betti numbers break up into irreducible representations.

2.4 Homotopy Type Theory

A recent breakthrough in understanding the connection between algebraic topology and
computer science is Homotopy Type Theory (HoTT) [17]. This theory concerns itself with
rebuilding the foundation of mathematics via a homotopic interpretation of type theoretic
semantics. Some of the key observations were that dependent sum types in type theory
correspond to fibrations in homotopy theory, and equality types correspond to homotopies.

While HoTT only concerns itself with the B side (logic and semantics) of TCS, in this
paper we primarily apply algebraic topology to the A side (complexity and learning theory).
As such there really is no common ground between us in the technical details. However, early
phases of our homological theory were inspired by the “fibration” philosophy of HoTT. In
fact, the simplicial complex SC was first constructed as a sort of “fibration” (which turned
out to be a cosheaf, and not a fibration) as explained in the full paper [19]. It remains to be
seen if other aspects of HoTT could be illuminating in future research.

2.5 Computable Analysis and Topology

Computable analysis and topology study how topological spaces and functions on topological
spaces can be represented in digital computers [18]. The theory builds a beautiful corres-
pondence between computability via type II Turing machines on one hand and continuity
of functions on the other hand that corroborates discoveries made in descriptive set theory
[11, 13]. The initial spark for this paper was when the author realized that polylogarithmic
time computation of a point in a topological space in the framework of computable analysis
corresponds to polynomial time approximation schemes and also, roughly speaking, PAC
learning: given more time, an algorithm should be able to pinpoint the desired point in a
space more and more accurately, similar to how learning algorithms should be able to achieve
better and better generalization errors with more samples and more computation time. But
this correspondence to PAC learning ignores the probability of failure, which depends on the
underlying data distribution. This initialized a search for a topological space encoding both
the data distribution and the concept classes. The canonical suboplexes described in this
paper turned out to be the right objects; see the cosheaf construction in the full paper for
more details [19].

ITCS 2018
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3 Does Our Proposal Run into Known Barriers?

Some of the most remarkable results in theoretical computer science in the last few decades
are explicit “no-go” theorems that show that a common technique used in the past for proving
complexity lower bounds cannot be extended to prove P 6= NP. These include relativization
[3], algebrization [1], and natural proofs [15].

A priori, our framework is not blocked by the relativization or algebrization barriers
because there is no reason to expect homology computations to relativize.

3.1 Razborov-Rudich Natural Proofs
Based on the methods presented in this paper, one might try to show NP 6⊆ P/poly by
showing that the Betti numbers of SSIZE(dc) differ from those of SSIZE(dc)∪{3SATd}, for any c

and large enough d. Would this be a natural proof in the sense of Razborov and Rudich [15]?
A predicate P on functions with d-bit inputs is called natural if it satisfies
(Constructiveness) It is polynomial time in its input size: there is an 2O(d)-time algorithm
that on input the graph of a function f , outputs P(f).
(Largeness) A random function f satisfies P(f) = 1 with probability at least 1

d .

I Theorem 3.1 (Razborov-Rudich [15]). Suppose there is no subexponentially strong one-way
functions. Then there exists a constant c such that no natural predicate P maps SIZE(dc) to
0.

In our case, since SIZE(dc) has 2poly(d) functions, naively computing the dimension-(2d−k)
homology of SSIZE(dc)∪{3SATd} for any constant k requires computing the ranks of two 2poly(d)-
sized matrix, which is already superpolynomial time in 2d, violating the “constructiveness”
of natural proofs. It is unknown whether the “largeness” condition is also violated, but, for
any fixed dimension r, we conjecture that the probability a random total function f changes
the dimension r homology of SSIZE(dc) is exponentially small. Thus a priori this homological
technique is not natural (barring the possibility that in the future, advances in the structure
of SSIZE(dc) yield efficient algorithms for its homology). 5

4 Discussion

We anticipate several questions about our approach and provide corresponding retorts.

4.1 The Aspnes-Beigel-Furst-Rudich bound is an easy result; is your
technique really new?

We agree that we are proving old results which are not particularly difficult, but we contend
that the proofs really are different and serve as proof of concepts for future endeavors.

There is a local-global philosophy of our homological approach to complexity, inherited from
algebraic topology. If we are interested in showing f 6∈ C, we first examine the intersections
of f with certain fragments of functions in C, determined by the Betti numbers of C (this is
the local step), and then piece together these fragments with nontrivial intersections with

5 In general, given the contents of the full paper, one may also want to show that the ideal I?
SIZE(dc)�{3SATd}

is principal by showing that its Betti numbers are all zero except at dimension 0. Computing the Betti
numbers of an arbitrary ideal is NP-hard in the number of generators [4], which is Ω(2d) in this case.
Thus a priori it seems unlikely this algebraic method is constructive.
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f to draw conclusions about “holes” f creates or destroys (this is the global step). This is
markedly different from conventional wisdom in computer science, which seeks to show that
a function, such as f = 3sat, has some property that no function in a class, say C = P, has.
In that method, there is no global step that argues that some nontrivial global property of C
changes after adding f into it.

This philosophy is evident in our maximal principle, where the “local maximum” condition
is saying that when one looks at the intersections with f of g and its “neighbors” (local), these
intersections together form a hole that f creates when added to C (global). 6 It certainly
does not look like the maximal principle can be reduced to a “separation by property”, as it
seems to depend fundamentally on the function f and the class C at the same time.

The original proof of the Aspnes-Beigel-Furst-Rudich bound primarily operates through
a theory of “strong” and “weak” degrees of functions built via linear programming duality,
and contains no notion of “locally maximal approximating polynomial thresholds” that is
central to the maximal principle. It is not clear if it is possible to reduce our proof to theirs.

4.2 Your Betti number results seem to follow from previous work on
algebraic decision trees.

As explained in Section 2, the Betti number bounds on algebraic decision trees are for the
Betti numbers of semialgebraic sets represented by individual functions, while we compute
graded Betti numbers of the simplicial complex induced by a class of functions. All of
our Betti number results for nontrivial classes such as polynomial thresholds and linear
functionals are new.

4.3 Do we always have a “homological certificate” for complexity lower
bounds?

We won’t necessarily be able to spot a difference in homology between SC and SC∪{f} (though
this is the case for, for example, C = polythrk

d and f = parityd). But, assuming the
definitions in Section 5.2, we will always be able to spot a difference between pairs of
subcomplexes SC�g ⊆ SC and SC∪{f}�g ⊆ SC∪{f} for some partial function g. For example,
trivially take g = f ; in general there is always some non-total partial function g that works
(see full paper [19] for precise statement and proof).

4.4 It seems hard to scale your method to larger classes because it
becomes too combinatorial too quickly.

This exponentiality in fact already occurs with the classes studied in this paper, but by using
the structures of each class we were still able to obtain Betti numbers. Note that homology
is polynomial time in the number of bits encoding the simplicial complex (think of it as the
size of the corresponding hypergraph). So if the complexes were just polynomially large,
then such an approach would probably run into the natural proof barrier.

6 The homological intuition, in more precise terms, is that a local maximum g 6= f ∈ C implies that
the filtered class C � (f ∩ g) consists of a single point with label g, so that when f is added to C, a
zero-dimensional hole is created.

ITCS 2018
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4.5 Would your method apply to less algebraic complexity classes?
It is important to note that there are two distinct levels of algebra involved in this paper: the
algebra in the algebraic topology used on the class level (ex: Stanley-Reisner theory), and
the algebraic structure used on the function level (ex: vector space structure in the class of
linear functional). They are independent usages of algebra, and one can apply regardless of
the other. For example, we have computed Betti numbers for classes that are not so algebraic
such as conjunctions (and by symmetry disjunctions); it seems plausible to build upon these
results to obtain results on the Betti numbers of circuit classes. Even for the more algebraic
classes, the techniques in computing Betti numbers in the paper don’t quite use all of the
algebraic structures; for example the polynomial threshold computation really only depends
on its linear structure, but not its multiplicative structure. So the lack of algebraic structure
does not seem like the most pressing obstacle, but the lack of any structure whatsoever is
probably more worrying. For most complexity classes the key seems to be to pick up an
approximating class that 1) is representative of the difficulties of the class and 2) has enough
structure to give rise to simplicial complexes amenable to analysis. In any case, the intuition
for the homological angle of complexity is quite undeveloped at this stage; a priori, there is no
reason to even think that we can compute the Betti numbers of polynomial thresholds, linear
functionals, conjunctions, etc, but it is done nevertheless. So there is cause for optimism.

5 Warmups

To illustrate the main ideas of this paper without being mired in the algebraic details, we walk
through some examples that require only comfort with combinatorics, basic knowledge of
topology and simplicial complexes, and a geometric intuition for “holes.” A short introduction
to simplicial complexes is included as Appendix A. A brief note about notation: [n] denotes
the set {0, . . . , n− 1}, and [n→ m] denotes the set of functions from domain [n] to codomain
[m]. The notation f :⊆ A→ B specifies a partial function from domain A to codomain B. †
represents the partial function with empty domain.

5.1 The Complete Class
If C = [n→ 2], then one can see that SC is isomorphic to the 1-norm unit sphere Sn−1

1 :=
{‖x‖1 = 1 : x ∈ Rn} (also known as an orthoplex, shown in Figure 2a). Indeed, each
function f ∈ C adds a facet to SC corresponding to the standard simplex in an orthant of
Rn, and together they generate the 1-norm unit sphere. For general C, SC can be realized as
a subcomplex of Sn−1

1 . For this reason, SC is called the canonical suboplex of C, where
“suboplex” is short for “sub-orthoplex.”

5.2 Delta Function is Not Linear
Let linfund

∼= (Fd
2)∗ be the class of linear functionals of a d-dimensional vector space V

over F2. If d ≥ 2, then linfund does not compute the indicator function I1 of the singleton
set {1 := 11 · · · 1}. This is obviously true, but let’s try to reason in a “homological way.”

Define the partial function Υ : 0 7→ 0, 1 7→ 1. Observe that for every partial linear
functional h ⊃ Υ strictly extending Υ, I1 intersects h nontrivially. (Because I1 is zero
outside of Υ, and every such h must send at least one element to zero outside of Υ).
I claim this completes the proof. Combinatorially, this is because if I1 were a linear
functional, then for any 2-dimensional subspace W of V containing {0, 1}, the partial
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Figure 2 (a) The canonical suboplex of [3 → 2]. (b) The open star St P of vertex P . (c) Slinfun′
2

with vertices and facets labeled. (d) Slinfun′
2
stretched flat. (e) Slinfund is just a cone over Slinfun′

d
.

function h :⊆ V → F2, dom h = W ,

h(u) =
{

Υ(u) if u ∈ dom Υ
1− I1(u) if u ∈ dom h \ dom Υ

is a linear functional, and by construction, does not intersect I1 on W \{0, 1}. Homologically,
we are really showing the following

A section of Slinfund
by an affine subspace corresponding to Υ “has a hole”

that is “filled up” when I1 is added to linfund.
(*)

The meaning of this statement will seem cryptic right now, so let us elaborate.
Figure 2c exhibits the complex Slinfun′

2
, where linfun′d ⊆ [Fd

2 \ {0} → F2] is essentially
the same class as linfund, except we delete 0 from the domain of every function. Notice that
the structure of “holes” is not trivial at all: Slinfun′

2
has 3 holes in dimension 1 but no holes

in any other dimension. An easy way to visualize this is to pick one of the triangular holes;
if you put your hands around the edge, pull the hole wide, and flatten the entire complex
onto a flat plane, then you get Figure 2d.

It is easy to construct the canonical suboplex of linfund from that of linfun′d: Slinfund

is just a cone over Slinfun′
d
, where the cone vertex has the label [0 0]T 7→ 0 (Figure 2e). This

is because every function in linfund shares this input/output pair. Note that a cone over
any base has no hole in any dimension, because any hole can be contracted to a point in the
vertex of the cone. This is a fact we will use again very soon.

Let C ⊆ [n→ 2], and let f :⊆ [n]→ [2] be a partial function. Define the filtered class
C � f to be

{g \ f : g ∈ C, g ⊇ f} ⊆ [[n] \ dom f → [2]]

Unwinding the definition: C � f is obtained by taking all functions of C that extend f and
ignoring the inputs falling in the domain of f. The canonical suboplex SC�f can be seen

ITCS 2018
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to be isomorphic to an affine section of SC, when the latter is embedded as part of the L1
unit sphere Sn−1

1 . Figure 3a shows an example when f has a singleton domain. Indeed,
recall linfun′d is defined as linfund � {0 7→ 0}, and we may recover Slinfun′

d
as an affine cut

through the “torso” of Slinfund
(Figure 3b). This explains the “affine section” part of (*).

To continue our elaboration, we need a “duality principle” in algebraic topology called
the

I Lemma 5.1 (Nerve Lemma (Informal)). Let U = {Ui}i be a “nice” (to be explained below)
cover 7 of a topological space X. The nerve NU of U is defined as the simplicial complex
with vertices {Vi : Ui ∈ U}, and with simplices {Vi}i∈S for each index set S such that⋂
{Ui : i ∈ S} is nonempty.
Then, for each dimension d, the set of d-dimensional holes in X is bijective with the set

of d-dimensional holes in NU .

What kind of covers are “nice?” Open covers in general spaces, or subcomplex covers in
simplicial (or CW) complexes, are considered “nice”, if in addition they satisfy the following
requirements (acyclicity).

Each set of the cover must have no holes.
Each nontrivial intersection of a collection of sets must have no holes.

An example is the star cover: For vertex V in a complex, the open star St V of V is defined
as the union of all open simplices whose closure meets V (see Figure 2b for an example). If
the cover U consists of the open stars of every vertex in a simplicial complex X, then NU
and X are isomorphic as complexes.

It turns out that Slinfun′
d

= Slinfund�(07→0) (a complex of dimension 2d − 2) has holes in
dimension d− 1 — in fact, these are the only holes in Slinfun′

d
and the homological dimension

of linfun′d equals d− 1 + 1 = d, coinciding with its VC dimension. The proof is nontrivial
and deferred to the full paper [19]. This can be clearly seen in our example when d = 2
(Figure 2d), which has 3 holes in dimension d− 1 = 1. Furthermore, for every partial linear
functional h (a linear functional defined on a linear subspace), Slinfund�h also has holes, in
dimension d−1−dim(dom h). Figure 3c show an example for d = 2 and h = [1 1]T 7→ 1. This
is in particular true for h = Υ. But when we add I1 to linfund to obtain D := linfund∪{I1},
SD�Υ now does not have any hole! Figure 3d clearly demonstrates the case d = 2. For general
d, note that Slinfund�Υ has a “nice” cover by the open stars

C := {St V : V has label u 7→ r for some u ∈ Fd
2 \ {0, 1} and r ∈ F2},

where the stars are with respect to Slinfund�Υ. When we added I1 to form D, the collection
C′ := C ∪ (4I1\Υ) is a “nice” cover of SD�Υ, where 4I1\Υ is the face of I1’s simplex generated
by vertices with labels of the form u 7→ I1(u), u 6= 0, 1. Thus the nerve NC′ has the same
holes as SD�Υ, by the Nerve Lemma. But observe that NC′ is a cone! . . . which is what our
“combinatorial proof” of I1 6∈ linfund really showed.

More precisely,
1. a collection of stars S := {St V : V ∈ V} has nontrivial intersection iff there is a partial

linear functional extending the labels of each V ∈ V.
2. We showed I1 \Υ intersects every partial linear functional strictly extending Υ.
3. Therefore, a collection of stars S in C′ intersects nontrivially iff S∪{4I1\Υ} also intersects

nontrivially.

7 A cover of a space X is just a collection of sets whose union is X.
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a 7→ b

SC

SC�(a7→b)

(a) (b)[
1
1

]
7→ 1

(c)

[
1
1

]
7→ 1

I1

(d)

I1

(e)

Figure 3 (a) SC�(a7→b) is an affine section of SC. (b) We may recover Slinfun′
d
as a linear cut through

the “torso” of Slinfund . (c) Slinfun2�{[0 0]T 7→0,[1 1]T 7→1} is isomorphic to the affine section as shown; it
has “a single dimension zero hole.” (d) When we add I1 to linfund to obtain D := linfund ∪ {I1},
SD�Υ now does not have any hole! (e) The nerve NC′ overlayed on D = linfun2 ∪ {I1}. Note that
NC′ is a cone over its base of 2 points.

In other words, in the nerve of C′, 4I1\Υ forms the vertex of a cone over all other St V ∈ C.
In our example of linfun2, this is demonstrated in Figure 3e.

Thus, to summarize,
NC′ , being a cone, has no holes.
By the Nerve Lemma, SD�Υ has no holes either.
Since Slinfund�Υ has holes, we know D � Υ 6= linfund � Υ =⇒ D 6= linfund, i.e.
I1 6∈ linfund, as desired.

While this introduction took some length to explain the logic of our approach, much of
this is automated in the theory we develop in this paper, which leverages existing works
on Stanley-Reisner theory and cellular resolutions. The Nerve Lemma will in fact never be
explicitly applied but rather is implicit in these machineries.

6 Homological Farkas Primer

We give a brief exposition on what the Homological Farkas Lemma says. Farkas Lemma is
a simple result from linear algebra, but it is an integral tool for proving weak and strong
dualities in linear programming [7], matroid theory [22], and game theory [12, chapter 7],
among many other things.

I Lemma 6.1 (Farkas Lemma). Let L ⊆ Rn be a linear subspace not contained in any
coordinate hyperplanes, and let P = {x ∈ Rn : x > 0} be the positive cone. Then either

L intersects P , or
L is contained in the kernel of a nonzero linear functional whose coefficients are all
nonnegative.

but not both.
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4¬1 4g
41

Λ(g)

(a)

4¬1

4g
41

Λ(g)

(b)

g f

Λ(f)Λ(g)

1©

3© 2©

(c)

Figure 4 (a) An example of a Λ(g). Intuitively, Λ(g) is the part of ∂4g that can be seen from
an observer in 41. (b) An illustration of Homological Farkas Lemma. The horizontal dash-dotted
plane intersects the interior of 41, but its intersection with any of the Λ(f), f 6= 1, ¬1 has no holes.
The vertical dash-dotted plane misses the interior of 41, and we see that its intersection with
Λ(g) as shown has two disconnected components. (c) Example application of the affine version of
homological Farkas lemma.. Let the hyperplanes (thin lines) be oriented such that the square S

at the center is on the positive side of each hyperplane. The bold segments indicate the Λ of each
region. Line 1 intersects S, and we can check that its intersection with any bold component has
no holes. Line 2 does not intersect the closure S, and we see that its intersection with Λ(f) is two
points, so has a “zeroth dimension” hole. Line 3 does not intersect S either, and its intersection
with Λ(g) consists of a point in the finite plane and another point on the circle at infinity.

Farkas Lemma is a characterization of when a linear subspace intersects the positive cone
in terms of linear conditions. An alternate view important in computer science is that Farkas
Lemma provides a linear certificate for when this intersection does not occur. Analogously,
our Homological Farkas Lemma will characterize such an intersection in terms of homological
conditions, and simultaneously provide a homological certificate for when this intersection
does not occur.

Before stating the Homological Farkas Lemma, we first introduce some terminology.
For g : [n]→ {1,−1}, let Pg ⊆ Rn denote the open cone whose points have signs given

by g. Consider the intersection 4g of Pg with the unit sphere Sn−1 and its interior 4̊g. 4̊g

is homeomorphic to an open simplex. For g 6= ¬1, define Λ(g) to be the union of the facets
F of 4g such that 4̊g and 4̊1 sit on opposite sides of the affine hull of F . Intuitively, Λ(g)
is the part of ∂4g that can be seen from an observer in 4̊1 (illustrated by Figure 4a).

The following homological version of Farkas Lemma naturally follows from our homological
technique of analyzing the complexity of threshold functions.

I Theorem 6.2 (Homological Farkas Lemma). Let L ⊆ Rn be a linear subspace. Then either
L intersects the positive cone P = P1, or
L ∩ Λ(g) for some g 6= 1,¬1 is nonempty and has holes.

but not both.

Figure 4b illustrates an example application of this result.
One direction of the Homological Farkas Lemma has the following intuition. As mentioned

before, Λ(g) is essentially the part of ∂4g visible to an observer Tom in 4̊1. Since the
simplex is convex, the image Tom sees is also convex. Suppose Tom sits right on L (or
imagine L to be a subspace of Tom’s visual field). If L indeed intersects 4̊1, then for L∩Λ(g)
he sees some affine space intersecting a convex body, and hence a convex body in itself. Since
Tom sees everything (i.e. his vision is homeomorphic with the actual points), L ∩ Λ(g) has
no holes, just as Tom observes. In other words, if Tom is inside 4̊1, then he cannot tell Λ(g)
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is nonconvex by his vision alone, for any g. Conversely, the Homological Farkas Lemma says
that if Tom is outside of 4̊1 and if he looks away from 4̊1, he will always see a nonconvex
shape in some Λ(g).

As a corollary to Theorem 6.2, we can also characterize when a linear subspace intersects
a region in a linear hyperplane arrangement, and when an affine subspace intersects a region
in an affine hyperplane arrangement, both in terms of homological conditions (see the full
version of this paper [19] for details). A particular simple consequence, when the affine
subspace either intersects the interior or does not intersect the closure at all, is illustrated in
Figure 4c.

7 Overview of techniques and proofs

In this section we assume that the reader has the necessary algebraic and topological
background. The complex SC is analyzed using Stanley-Reisner theory, which involves
studying its face ideal IC (i.e. the ideal consisting of monomials representing sets of vertices
not in the complex SC) and its Alexander dual I?

C , primarily through the lens of free resolutions.
It turns out that the Alexander dual is much easier to work with than the face ideal itself.
The rank of each multigraded syzygy in its minimal resolution gives the Betti number of
an appropriate dimension in the corresponding subcomplex of SC (more precisely, a certain
link). This set of syzygy rank/Betti numbers is the principal topological invariant we use to
separate classes in this work. Most resolutions here are computed as (co)cellular resolutions,
i.e. we find labeled CW complexes whose (co)chain complexes resolve the ideals in question.

For the proof of Aspnes et al.’s theorem, we first obtain the cocellular resolutions of
degree-bounded polynomial threshold classes polythrk

d, which are supported on a natural
CW decomposition of spheres. We yield the maximal principle (Theorem 1.2) by analyzing
how dimension 1 Betti numbers change when a new function is added to polythrk

d. We
finish by constructing locally maximal approximating polynomial thresholds for symmetric
functions. These local maxima are in general symmetric polynomial thresholds that encode
the sign changes of the function in question as a polynomial of the sum of input bits.

Homological dimension is actually defined as the projective dimension of I?
C , and as such

it is the length of its minimal resolution. For the VC dimension bound, we give two proofs.
The first observes that any minimal resolution of I?

C via relabeling supports a resolution of
I?

C�U , for any subset U of the input space. When U is a largest shattering set, this shows
that the homological dimension of C is at least the homological dimension of C � U , which we
know is equal to |U | and also equal to the VC dimension of C. The second proof observes
SD on an input space of size n has nontrivial homology in dimension n− 1 iff SD contains
every function. By applying this observation to SC � U for a largest shattering set U , we get
a lower bound of the regularity of IC by the VC dimension plus one. Since regularity of IC

equals the projective dimension of I?
C plus one, we arrive at the desired result.

The much harder part of Theorem 1.3 is actually showing that equality holds in the
various cases and that inequality is strict in other cases. This is done by deriving the
(co)cellular resolutions of many function classes common in learning theory, such as conjunc-
tions (supported on a pyramid over a pile of cubes) and monotone conjunctions (supported
on a cube), degree bounded polynomial thresholds (supported on a CW decomposition of
the sphere), linear functionals over finite fields, and so on. The topological dimension of such
(co)cellular resolutions yield the homological dimension of the class itself, and we obtain the
different equality and inequality cases listed in Theorem 1.3.

ITCS 2018
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Finally, the Homological Farkas Lemma is obtained by drawing a parallel between, on
the one hand, the intersection of a linear subspace with the positive cone, and on the other,
the containment of a function in a generalized notion of a threshold class, which is possible
due to the spherical structure of the cocellular resolution of such a class.
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A A Crash Course on Simplicial Complexes

Our presentation will follow [16].

I Definition 1.1. A d-dimensional simplex is just the convex hull of some affine independent
subset {v0, . . . , vd} of a Euclidean space. We denote such a simplex by [v0, . . . , vd]. The
vertex set of a simplex 4 is denoted Vrt(4).

I Definition 1.2. If 4 is a simplex, then a face of 4 is a simplex 4′ with Vrt(4′) ⊆ Vrt(4).
4′ is a proper face if the inclusion is strict.

Here is the main definition.

I Definition 1.3. A simplicial complex K is a finite collection of simplices in some
Euclidean space such that

(Hereditary) if 4 ∈ K, then every face of 4 is also in K.
(Regular intersection) if 4,4′ ∈ K, then 4∩4′ is either empty or a common face of 4
and of 4′.

The maximal faces of K, i.e. 4 ∈ K not properly contained in another 4′ ∈ K, are called
facets of K.

I Definition 1.4. If K is a simplicial complex, its underlying space |K| is the subspace
of the ambient Euclidean space given by the union of its simplexes:

|K| :=
⋃
4∈K

4.
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(a) (b)

Figure 5 (a) Valid simplicial complex. (b) Invalid simplicial complex, because the intersection of
the two simplices is not a face of the top simplex.

Most often we represent simplicial complexes pictorially as its underlying space. Figure 5
gives an example of a valid and of an invalid simplicial complex.

I Definition 1.5. The boundary ∂4 of a simplex 4 is the collection of its proper faces.

I Definition 1.6. Suppose 4 is a d-dimensional simplex. If d = 0, define 4̊ = 4. Otherwise,
define 4̊ = 4 \ |∂4|. 4̊ is called an open simplex. For contrast, a plain simplex 4 is also
called a closed simplex. The closure of an open simplex is just the corresponding closed
simplex.

The above viewpoint of simplicial complexes is geometric and concrete. There is an
equivalent combinatorial view that is sometimes more convenient to work with.

I Definition 1.7. Let V be a finite set. An abstract simplicial complex K is a family
of nonempty subsets of V , called simplices, such that

(Atomic) if v ∈ V , then {v} ∈ K;
(Hereditary) if 4 ∈ K and 4′ ⊆ 4, then 4′ ∈ K.

V is called the vertex set of K and a simplex 4 ∈ K with d + 1 elements is called a
d-dimensional simplex.

It is not hard to see that every simplicial complex has an associated abstract simplicial
complex, simply by taking the vertex set of each simplex; call this abstraction. It is also
true that every abstract simplicial complex has a topological space, called its geometric
realization, that is a simplicial complex and is unique up to homeomorphism. These
two operations are inverse in the sense that the geometric realization of an abstraction
is homeomorphic to the original simplicial complex, and the abstraction of a geometric
realization is isomorphic (in a suitable sense) to the original abstract simplicial complex. For
details, see [16].

In this paper, we assume the equivalence of the geometric and combinatorial views, and
use them interchangeably, as appropriate in different situations.

I Definition 1.8. Given a set of subsets ∇ ⊆ 2V of the vertex set, the (abstract) simplicial
complex K generated by ∇ is the hereditary closure of ∇, i.e.

K = {4 ⊆ V : ∃4′ ∈ ∇,4 ⊆ 4′}.

One can easily check that this is an (abstract) simplicial complex.

In this language, Theorem 1.1 says that SC is the simplicial complex on the vertex set
V = [2d]× [2] generated by {graph f : f ∈ C}, minus unused vertices.
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