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Abstract
Nonlinear Markov chains are probabilistic models commonly used in physics, biology, and the
social sciences. In Markov influence systems (MIS), the transition probabilities of the chains
change as a function of the current state distribution. This work introduces a renormalization
framework for analyzing the dynamics of MIS. It comes in two independent parts: first, we
generalize the standard classification of Markov chain states to the dynamic case by showing how
to “parse" graph sequences. We then use this framework to carry out the bifurcation analysis
of a few important MIS families. In particular, we show that irreducible MIS are almost always
asymptotically periodic. We also give an example of “hyper-torpid" mixing, where a stationary
distribution is reached in super-exponential time, a timescale that cannot be achieved by any
Markov chain.
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1 Introduction

Nonlinear Markov chains are popular probabilistic models in the natural and social sciences.
They are commonly used in interacting particle systems, epidemic models, replicator dynamics,
mean-field games, etc. [8, 12, 13, 15, 18]. They differ from the linear kind by allowing transition
probabilities to vary as a function of the current state distribution.1 For example, a traffic
network might update its topology and edge transition rates adaptively to alleviate congestion.
The traditional formulation of these models comes from physics and relies on the classic tools
of the trade: stochastic differential calculus, McKean interpretations, Feynman-Kac models,
Fokker-Planck PDEs, etc. [3, 5, 13, 18]. These techniques assume all sorts of symmetries
that are typically absent from the “mesoscopic" scales of natural algorithms. They also tend
to operate at the thermodynamic limit, which rules out genuine agent-based modeling. Our
goal is to initiate a theory of discrete-time Markov chains whose topologies vary as a function
of the current probability distribution. Of course, the entire theory of finite Markov chains
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1 The systems are Markovian in that the future depends only on the present: in this case the current
state distribution rather than the single state presently visited.
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should be recoverable as a special case. Our contribution comes in two parts (of independent
interest), which we discuss informally in this introduction.

Renormalization

The term refers to a wide-reaching approach to complex systems that originated in quantum
mechanics and later expanded to statistical mechanics and dynamics. Whether in its exact or
coarse-grained form, the basic idea is intuitively appealing: break down a complex system into
a hierarchy of simpler parts. The concept seems so simple—isn’t it what divide-and-conquer
is all about?—one can easily be deceived and miss the point. When we slap a dynamics
on top of the system (think of interacting particles moving about) then the hierarchy itself
creates its own dynamics between the layers. This new “renormalized" dynamics can be
entirely different from the original one. Crucially, it can be both easier to analyze and more
readily expressive of global properties. For example, second-order phase transitions in the
Ising model correspond to fixed points of the renormalized dynamics.2

What is the relation to Markov chains? You may have noticed how texts on the subject
often dispatch absorbing chains quickly before announcing that from then on all chains
will be assumed to be irreducible (and then, usually a few pages later, ergodic). This is
renormalization at work! Indeed, although rarely so stated, the standard classification of the
states of a Markov chain is a prime example of exact renormalization. Recall that the main
idea is to express the chain as an acyclic directed graph, its condensation, whose vertices
correspond to the strongly connected components. This creates a two-level hierarchy: a tree
with a root (the condensation) and its children (the strongly connected components). Now
get the chain going and watch what happens at the root: the probability mass flows entirely
into the sinks of the condensation. Check the leaves of the tree for a detailed understanding of
the motion. The renormalized dynamics (visible only in the condensation) has an attracting
manifold that tells much of the story. If the story lacks excitement it is partly because the
hierarchy is flattish: only two levels. Time-varying Markov chains, as we shall soon see, do
not suffer from that problem.

Consider an infinite sequence (gk)k>0 of digraphs over the same set of vertices. A temporal
random walk is defined in the obvious way by picking a starting vertex in g1, moving to
a random neighbor, and then repeating this step in g2, g3, etc [6, 7, 14, 19]. The walk is
called temporal because it traverses one edge from gt at time t = 1, 2, . . . . How might one go
about classifying the states of this “dynamic" Markov chain? Repeating the condensation
decomposition at each step makes no sense, as it carries zero information about the temporal
walks. The key insight is to monitor when and where temporal walks are extended. The
cumulant graph collects all extensions and, when this process stalls, reboots the process while
triggering a deepening of the hierarchy. To streamline this process, we define a grammar with
which we can parse the sequence (gk)k>0. The (exact) renormalization framework introduced
in this work operates along two tracks: time and network. The first track summarizes the
past to anticipate the future while the second one clusters the graphs hierarchically. The
method is very general and we expect it to be used elsewhere.

2 The idea is very powerful: Ken Wilson won the 1982 Nobel prize in physics and Artur Avila the 2014
Fields medal for their (very different) breakthroughs in the use of renormalization: finding new critical
exponents; proving the weak mixing of interval exchange transformations, etc.
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Markov influence systems

All finite Markov chains oscillate periodically or mix to a stationary distribution. The key
fact about their dynamics is that the timescales never exceed a single exponential in the
number of states. Allowing the transition probabilities to fluctuate over time at random
does not change that basic fact [1, 9, 10]. Markov influence systems are an entirely different
beast. Postponing formal definitions, let us think of an MIS for now as a dynamical system
defined by iterating the map f : x> 7→ x>S(x), where x is a probability distribution and
S(x) is a stochastic matrix that is piecewise-constant as a function of x. We assume that
the discontinuities are linear (ie, hyperplanes). The assumption is not restrictive in any
meaningful sense: we explain why with a simple example.

Consider a random variable ξ over the distribution x and fix two stochastic matrices A
and B. Define S(x) = A (resp. B) if varx ξ > 1 (resp. else); in other words, the Markov
chain picks one of two stochastic matrices at each step depending on the variance of ξ with
respect to the current state distribution x. This clearly violates our assumption because the
discontinuity is quadratic in x; hence nonlinear. This is not an issue because we can linearize
the variance: here, we begin with the identity varx ξ =

∑
i,j (ξi − ξj)2xixj and the fact that

y := (xixj)i,j is a probability distribution. We form the Kronecker square T (x) = S(x)⊗S(x)
and lift the system into the (n2−1)-dimensional unit simplex to get a brand-new MIS defined
by the map y 7→ T (y). We now have linear discontinuities. This same type of tensor lift
can be used to linearize any algebraic constraints.3 Using ideas from [4], one can go much
further than that and base the step-by-step Markov chain selection on the outcome of any
first-order logical formula we may fancy (with the xi’s as free variables).4 What all of this
shows is that the assumption of linear discontinuities is not restrictive.

We prove that irreducible MIS are almost always asymptotically periodic. (This assumes
that S(x) forms an irreducible chain for each x.) We extend this result to larger families
of Markov influence systems. We also give an example of “hyper-torpid" mixing: an MIS
that converges to a stationary distribution in time equal to a tower-of-twos in the size of
the chain. The emergence of timescales far beyond the reach of standard Markov chains is a
distinctive feature of Markov influence systems. We note that the long-time horizon analysis
of general systems is still open.

Some intuition

Is there a quick, intuitive explanation why the analysis of MIS should require all of that
renormalization machinery? Of course, perhaps it does not and future work will show how to
bypass it. But the specific challenges raised by the model are easy to state. The first hurdle
is that Markov influence systems are not globally contractive. Worse, the eigenspaces over
which they are not may be constantly changing over time. It is this spectral incoherence
that renormalization attempts to “tame." To see why this has a strong graph-theoretic flavor,
consider the fact that the stationary distributions may change at each time step and so
can their number. The key insight is that these changes can be read off the topology of
the graph: for example, the number of sinks in the condensation is precisely equal to the
dimension of the principal eigenspace. Renormalization can thus be seen as an attempt to

3 This requires making the polynomials over xi homogeneous, which we can do by using the identity∑
i
xi = 1.

4 The key fact behind this result is that the first-order theory of the reals is decidable by quantifier
elimination. This allows us to pick the next stochastic matrix at each time step on the basis of the
truth value of a Boolean logic formula with arbitrarily many quantifiers. See [4] for details.

ITCS 2018
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restore coherence to an ever-changing spectral landscape via a dynamic hierarchy of graphs,
subgraphs, and homomorphs.

The bifurcation analysis at the heart of our analysis of Markov influence systems follows
an approach commonly used in dynamics [2, 16, 21]: the idea is develop a notion of “general
position" in order to bound the growth rate of the induced symbolic dynamics. The root of
the problem is a clash between order and randomness. (This is the same conflict that arises
between entropy and energy in statistical mechanics.) All Markov chains are attracted to a
limit cycle (ie, order). Changing the chain at each step introduces pseudorandomness into
the process (ie, disorder) and the question is to know which one of the two “forces" of order
or disorder will prevail. The conflict is mediated by introducing a perturbation parameter
and locating its critical values. We show that, in this case, the critical region forms a Cantor
set of Hausdorff dimension strictly less than 1.

Previous work

There is a growing body of literature on dynamic graphs [3, 14, 17, 19] and their random
walks [1, 6, 7, 8, 12, 9, 10, 15]. By contrast, as mentioned earlier, most of the research on
nonlinear Markov chains has been done within the framework of stochastic differential calculus.
The closest analog to the MIS model are the diffusive influence systems we introduced in [4].
The relation is interesting. Random walks and diffusion are dual processes that coincide only
when the underlying operator is self-adjoint (which is not the case here). As a rule of thumb,
diffusion is easier to analyze because even in a changing medium the constant function is
always a principal eigenfunction. As a result, a diffusion model can converge to a fixed point
while its dual Markov process does not. The reason the dynamics is so different is that, as
has long been known [20], multiplying stochastic matrices from the right is harder than from
the left.5 Our renormalization scheme is new, but the idea of parsing graph sequences is
not. We introduced it in [4] as a way of tracking the flow of information across changing
graphs. The parsing method we discuss here is entirely different, however: being topological
rather than informational, it is vastly more general and, we believe, likely to be useful in
other applications of dynamic networks.

2 How to Parse a Graph Sequence

Throughout this work, a digraph refers to a directed graph with vertices in [n] and a self-loop
at each vertex.6 We denote digraphs by lower-case letters (g, h, etc) and use boldface symbols
for sequences. A digraph sequence g = (gk)k>0 is an ordered, finite or infinite, list of digraphs
over the vertex set [n]. The digraph gi × gj consists of all the edges (x, y) such that there
exist at least an edge (x, z) in gi and another one (z, y) in gj . The operation × is associative.7
We define the cumulant

∏
≤k g = g1 × · · · × gk and write

∏
g = g1 × g2 × · · · for finite g.

The cumulant indicates all the pairs of vertices that can be joined by a temporal walk of a
given length. We need additional terminology:

5 For example, consider the product AB of two stochastic matrices, where rank(B) = 1. We have
AB = B whereas BA can be any old stochastic matrix of rank 1.

6 The graphs and digraphs (words we use interchangeably) have no multiple edges and [n] := {1, . . . , n}.
7 The sign is meant to highlight the connection with the multiplication of incidence matrices.
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Figure 1 The decomposition of h into its stem h′ and its petals h1, h2.

Transitive front of g: An edge (x, y) of a digraph g is leading if there is u such that (u, x)
is an edge of g but (u, y) is not.8 The non-leading edges form a subgraph tf (g), called
the transitive front of g. We omit the (easy) proof that the transitive front is indeed
transitive, ie, if (x, y) and (y, z) are edges of tf(g) then so is (x, z). Given two graphs
g, h over the same vertex set, we write g � h if all the edges of g are in h (with strict
inclusion denoted by the symbol ≺). Because of the self-loops, g, h � g × h. We easily
check that the transitive front of g is the (unique) densest graph h such that g × h = g.
Subgraphs and contractions: Given two digraphs g, h with vertex sets Vg ⊇ Vh, we denote
by g|h the subgraph of g induced by Vh. Pick U ⊆ Vh and contract all these vertices into
a single one. By abuse of notation, we still designate by g|h the graph derived from g

by first taking the subgraph induced by Vh and then contracting the vertices of U ; note
that the notation g| (Vh,U) would be more accurate but it will not be needed. Given a
sequence g = (gk)k>0, we use the shorthand g |h for (gk |h)k>0. Finally, � denotes the set
of all complete digraphs (of any size) with self-loops, while �⊗1 consists of the complete
digraphs with an extra vertex pointing to all the others unidirectionally.9
Stem decomposition of h: The strongly connected components of a graph h form, by
contraction, an acyclic digraph called its condensation. Let V1, . . . , V` be the vertex sets
from [n] corresponding to the ` sinks of the condensation.10 The remaining vertices of h
induce a subgraph h′ called the stem of h. For each i ∈ [`], the petal hi is the subgraph
induced by Vi if no vertex outside Vi links to it; else hi is the subgraph induced by Vi
and h′, with all the vertices of h′ subsequently contracted into a single vertex and the
multiple edges removed (fig.1).

The parser

The parse tree of a (finite or infinite) graph sequence g is a rooted tree whose leaves are
associated with g1, g2, . . . from left to right; each internal node assigns a syntactical label
to the subsequence gi, . . . , gj formed by the leaves of its subtree. The purpose of the parse
tree is to monitor the formation of new temporal walks as time progresses. How to do that
begins with the observation that the cumulant

∏
≤k g is monotonically nondecreasing.11 If

the increase was strict at each step then the parse tree would be trivial: each graph of g
would appear as a separate leaf with the root as its parent. Of course, the increase cannot

8 For example, tf (x → y → z) is the graph over x, y, z with the single edge x → y (and the three
self-loops.) If g is transitive, then tf (g) = g. The transitive front of a directed cycle has no edges besides
the self-loops.

9 For example, ignoring self-loops, {(x, y), (y, x)} ∈ � and {(x, y), (y, x), (z, x), (z, y)} ∈ �⊗1.
10These are the vertices with no outgoing edges: there is at least one of them; hence ` > 0.
11All references to graph ordering are relative to �.
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go on forever. How to deal with time intervals within which the cumulant is “stuck" is the
whole point of parsing: Short answer: proceed recursively. The grammar consists of only two
pairs of productions, (1a,1b) and (2a,2b).

1. Time renormalization Let m be the smallest index k at which
∏
≤k g achieves

its maximal value; write gl = (gk)k<m, gr = (gk)k>m, and h = tf (
∏
≤m g). The two

productions below cluster time into the relevant intervals.
a. Transitivization. Using a parenthesis system to express the parse tree, the first

production supplies the root with at most three children:

g −→
(

gl
)
gm
(

gr 4 h
)
, (1a)

where h is transitive, and gl or gr (or both) may be the empty sequence ∅. If gl 6= ∅,
then

∏
gl ≺

∏
≤m g =

∏
g. The right sibling of (gl) is the terminal symbol gm (a leaf

of the parse tree) followed by gr 4 h. The annotation 4h indicates that
∏

gr � h

and that h will “guide" the parsing of gr.12 Observe that h is available when needed
but not earlier. This ensures that the parsing is of the LR type, meaning that it can
be carried out bottom-up in a single left-to-right scan.13

b. Cumulant completion. We parse g4 h in the special case where h is in � or �⊗1.
Recall that the notation 4 implies that

∏
g � h. Partition the sequence g into

minimal subsequences gk gmk such that
∏

gk ≺ h =
(∏

gk
)
× gmk :

g4 h −→
(

g1
)
gm1

(
g2
)
gm2 · · · (1b)

The list on the right-hand side could be finite or infinite; if finite, it could be missing
the final gmk . This production is the one doing the heavy lifting in that it establishes
a bridge between renormalization and Lyapunov exponents.

2. Network renormalization Two productions parse the rightmost term in (1a) by
recursively breaking down the graph into clusters. This is done either by carving out
subgraphs or taking homomorphs. In both cases, it is assumed that

∏
g � h and that h

is transitive but not in � or �⊗1.
a. Decoupling. If the number of connected components h1, . . . , hk of h exceeds one, then14

g4 h −→
(

g |h1 4 h1
)
· · ·

(
g |hk 4 hk

)
. (2a)

In terms of the parse tree, the node has k children that model processes operating in
parallel. Intuitively, the production decouples the system into the subsystems formed
by the components. As we show below, this does not always imply the independence
of the respective dynamics, however.

b. One-way coupling. If the undirected version of h has a single connected component,
we use its stem decomposition h′, h1, . . . , h` to cluster the digraphs of g:

g4 h −→
(

g |h′ 4 h′
) { (

g |h1 4 h1
)
· · ·

(
g |h` 4 h`

) }
. (2b)

12By definition of gm, no temporal walk from gr can extend one from (gk)k≤m. This shows that(∏
≤m g

)∏
gr =

∏
≤m g; hence

∏
gr � h.

13This is usually a requirement for the bifurcation analysis. If not for that, we could use the simpler
production g→ g4 h, instead.

14This refers to the subgraphs of h induced by each one of the vertex subsets of the connected components
of the undirected version of h.
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Since h is neither in � nor in �⊗1, its stem and petals both exist (with ` > 0). The
assumed transitivity of h implies that each hi ∈ �⊗1. We iterate the production if
h′ is neither in � nor in �⊗1. System-wise, the symbol indicates the direction of
the information flow. None flows into g |h′4 h′, so its dynamics is decoupled from the
rest. Such decoupling does not hold for the petals, so it is one-way. This allows us to
renormalize the stem into a single vertex for the purposes of the petals: the common 1
in all the instances of �⊗1. In terms of the parse tree, the nodes has `+ 1 children
that operate in parallel, with the last ` of them collecting information from the first
one.

Network renormalization exploits the fact that the information flowing across the system
might get stuck in portions of the graph for some period of time: we cluster the graph when
and where this happens. Sometimes only time renormalization is possible. Consider the
infinite sequence (gk)k>0, where gk = h k (modn) and, for k = 1, . . . , n, hk consists of the
graph at the vertices and edges from k to all n− 1 other vertices: the cumulant never ceases
to grow until it reaches �, at which point the process repeats itself; the parsing involves
n applications of (1a) with gr = ∅, followed by infinitely many calls to (1b). There is no
network renormalization. Quite the opposite, the case of an infinite single-graph sequence
features abundant network renormalization (fig.2).

The depth of the parse tree

It is easily verified that cumulants
∏

g lose at least one edge from parent to child, which puts
an obvious bound of n2 on the maximal height of the parse tree.15 This quadratic bound is
tight. Indeed, consider the sequence (gk), where gk+1 = h k (modn−1) for 0 ≤ k ≤ (n−2)(n−1),
and (besides self-loops) hk consists of the single edge (k + 2, k + 1) for k = 0, . . . , n− 2. The
j-th copy of hk adds to the cumulant the new edge (k + j + 1, k + 1), which creates, in total,
a quadratic number of increments. The bounded depth implies that the parse tree for an
infinite sequence includes exactly one node with an infinite number of children. That node is
expressed by a production of type (1b).

Undirected graphs

Note that the cumulant of a sequence of undirected graphs might itself be directed.16 Suppose
that an undirected edge e of the digraph g does not extend any edge of g into a new temporal
2-edge walk.17 Obviously, e must already be in the digraph; furthermore, any vertex linking
to one of its endpoints must link to the other one as well. This implies that the undirected
transitive front of a directed graph (say, a cumulant) consists of disjoint cliques of undirected
edges. This simplifies the parsing since the condensation is trivial and the parsing tree has
no nodes of type (2b). The complexity of the parse tree can still be as high as quadratic,
however. To see why, consider the following recursive construction: given a clique Ck over
k vertices at time t, attach to it, at time t + 1, a two-edge path (x, y), (y, z), say, at x.
The cumulant gains the edge (y, z) as well as all k edges joining y to the clique. At time
t+ 2, . . . , t+ k + 1, visit each one of these k edges by using single-edge graphs gi. Each such
step will see the addition of a new edge to the cumulant, until it becomes a clique Ck+2.

15This differs from the linear-depth trees derived from the flow tracker [4].
16The product (x↔ y ↔ z)× (x y ↔ z) has a directed edge from x to z but not from z to x.
17An edge is undirected if both of its directed versions are present in the graph.

ITCS 2018
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Figure 2 The parse tree of an infinite sequence consisting of the same graph g.

(Note that visiting (y, z) would ruin the whole construction.) The quadratic lower bound on
the tree depth follows immediately.

Backward parsing

The sequence of graphs leads to products where each new graph is multiplied to the right, as
would happen in a time-varying Markov chain. Algebraically, the matrices are multiplied from
left to right. In diffusive systems (eg, multiagent agreement systems, Hegselmann-Krause
models, Deffuant systems, voter models), however, matrices are multiplied from right to
left. Although the dynamics can be quite different, the same parsing algorithm can be used.
Given a sequence g = (gk)k>0, its backward parsing is formed by applying the parser to the
sequence ←−g = (hk)k>0, where hk is derived from gk by reversing the direction of every edge,
ie, (x, y) becomes (y, x). Once the parse tree for ←−g has been built, we simply restore each
edge to its proper direction to produce the backward parse tree of g.

3 The Markov Influence Model

Let Sn−1 (or S when the dimension is understood) be the standard simplex
{

x ∈ Rn | x ≥
0 , ‖x‖1 = 1

}
and let S denote set of all n-by-n rational stochastic matrices. A Markov

influence system (MIS ) is a discrete-time dynamical system with phase space S, which is
defined by the map f : x 7→ f(x) := x>S(x), where S is a function Rn 7→ Sn that is constant
over the pieces of a finite polyhedral partition18 P = {Pk} of Rn. We define the digraph
g(x) (and its corresponding Markov chain) formed by the positive entries of S(x). To avoid
irrelevant technicalities, we assume the presence of self-loops in g(x), ie, S(x)ii > 0. In this
way, any orbit of an MIS corresponds to a lazy, time-varying random walk with transitions
defined endogenously.19 We recall some basic terminology. The orbit of x ∈ S is the infinite
sequence (f t(x))t≥0 and its itinerary is the corresponding sequence of cells Pk visited in the
process. The orbit is periodic if f t(x) = fs(x) for any s = t modulo a fixed integer. It is
asymptotically periodic if it gets arbitrarily close to a periodic orbit over time.

For convenience, we assume a representation of the discontinuities induced by P as
hyperplanes Hi of the form a>i x = 1 + δ, where δ ∈ 1

2 [−1, 1] (for concreteness). Note that
the polyhedral partition is invariant up to scaling for all values of the bifurcation parameter,

18How f is defined on the discontinuities of the partition is immaterial.
19As discussed in the introduction, to access the full power of first-order logic in the stepwise choice of

digraphs requires nonlinear partitions, which can be handled by a suitable tensor lift.
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so the MIS remains well-defined as we vary δ. The parameter δ is necessary for the analysis:
indeed, as we explain below in Section 5, chaos cannot be avoided without it. The coefficient
of ergodicity τ(M) of a matrix M is defined as half the maximum `1-distance between any
two of its rows [20]. It is submultiplicative for stochastic matrices, a direct consequence of
the identity

τ(M) = max
{
‖x>M‖1 : x>1 = 0 and ‖x‖1 = 1

}
.

Given Ω ⊂ R, let LtΩ denote the set of t-long prefixes of any itinerary for any starting position
x ∈ S and any δ ∈ Ω. We define the ergodic renormalizer η = η(Ω) as the smallest integer
such that, for any t ≥ η and any matrix sequence S1, . . . , St matching an element of LtΩ,
the product S1 · · ·St is primitive (ie, some high enough power is a positive matrix) and its
coefficient of ergodicity is less than 1/2. We assume in this section that η = η(R) <∞ and
discuss in §4 how to remove this assumption via renormalization. Let D be the union of
the hyperplanes Hi from P in Rn (where δ is understood). We define Zt =

⋃
0≤k≤t f

−k(D)
and Z =

⋃
t≥0 Zt. Remarkably, for almost all δ, Zt becomes strictly equal to Z in a finite

number of steps.

I Lemma 1. Given any ε > 0, there exists an integer ν ≤ 2ηO(1) | log ε | and a finite union
K of intervals of total length less than ε such that Z = Zν for any δ 6∈ K.

I Corollary 2. For δ almost everywhere,20 every orbit is asymptotically periodic.

Proof. The equality Z = Zν implies the eventual periodicity of the symbolic dynamics.
The period cannot exceed the number of connected components in the complement of Z.
Once an itinerary becomes periodic at time to with period σ, the map f t can be expressed
locally by matrix powers. Indeed, divide t − to by σ and let q be the quotient and r the
remainder; then, locally, f t = gq ◦ f to+r, where g is specified by a stochastic matrix with a
positive diagonal, which implies convergence to a periodic point at an exponential rate. Apply
Lemma 1 repeatedly, with ε = 2−l for l = 1, 2, . . . and denote by Kl be the corresponding
union of “forbidden" intervals. Define Kl =

⋃
j≥lKj and K∞ =

⋂
l>0K

l: Leb(Kl) < 21−l;
hence Leb(K∞) = 0. The lemma follows from the fact that any δ outside of K∞ lies outside
of Kl for some l > 0. J

The corollary states that the set of “nonperiodic" values of δ has measure zero in parameter
space. Our result is actually stronger than that. We prove that the nonperiodic set can be
covered by a Cantor set of Hausdorff dimension strictly less than 1. The remainder of this
section is devoted to a proof of Lemma 1.

3.1 Shift spaces and growth rates
The growth exponent of a language is defined as limn→∞

1
n maxk≤n logN(k), where N(k)

is the number of words of length k; for example, the growth exponent of {0, 1}∗ is 1. The
language consisting of all the itineraries of a Markov influence system forms a shift space
and its growth exponent is the topological entropy of its symbolic dynamics [21].21 It can
be strictly positive, which is a sign of chaos. We show that, for a typical system, it is zero,
the key fact driving periodicity. Let M1, . . . ,MT be n-by-n matrices from a fixed setM of

20Meaning everywhere in 1
2 [−1, 1] outside a set of Lebesgue measure zero.

21Which should not be confused with the topological entropy of the MIS itself.
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primitive stochastic rational matrices with positive diagonals, and assume that τ(M) < 1/2
for M ∈ M; hence τ(M1 · · ·Mk) < 2−k. Because each product M1 · · ·Mk is a primitive
matrix, it can be expressed as 1π>k + Qk (by Perron-Frobenius), where πk is its (unique)
stationary distribution.22 If π is a stationary distribution for a stochastic matrix S, then
its j-th row sj satisfies sj − π> = sj − π>S =

∑
i πi(sj − si); hence, by the triangular

inequality, ‖sj − π‖1 ≤
∑
i πi‖sj − si‖1 ≤ 2τ(S). This implies that{

M1 · · ·Mk = 1π>k +Qk

‖Qk‖∞ ≤ 2τ(M1 · · ·Mk) < 21−k.
(1)

Property U

Fix a vector a ∈ Qn, and denote by M (θ) the n-by-m matrix with the m column vectors
M1 · · ·Mki a, where θ = (k1, . . . , km) is an increasing integer sequence of nonnegative integers
in [T ]. We say that property U holds if there exists a vector u such that 1>u = 1 and
x>M (θ)u does not depend on the variable x ∈ S.23 Intuitively, property U is a quantifier
elimination device for expressing “general position" for MIS. To see the connection, consider
a simple statement such as “the three points

(
x, x2), (x+ 1, (x+ 1)2), and (x+ 2, (x+ 2)2)

cannot be collinear for any value of x." This can be expressed by saying that a certain
determinant polynomial in x is constant. Likewise, the vector u manufactures a quantity,
x>M (θ)u, that “eliminates" the variable x. Note that some condition on u is obviously
needed since we could pick u = 0. We explain below why 1>u = 1 is the right condition.

I Lemma 3. There exists a constant b > 0 (linear in n) such that, given any integer T > 0
and any increasing sequence θ in [T ] of length at least T 1−α/α, property U holds, where
α := µ−b and µ is the number of bits needed to encode any entry of Mk for any k ∈ [T ].

Proof. By choosing b large enough, we can automatically ensure that T is as big as we
want.24 The proof is a mixture of algebraic and combinatorial arguments. We begin with a
Ramsey-like statement about stochastic matrices.

I Lemma 4. There is a constant d > 0 such that, if the sequence θ contains j0, . . . , jn with
ji ≥ dµji−1 for each i ∈ [n], then property U holds.

Proof. By (1), ‖Qka‖∞ < c02−k for constant c0 > 0. Note that Qk has rational entries over
O(µk) bits (with the constant factor depending on n). We write M (θ) = 1a>Π (θ) +Q (θ),
where Π (θ) and Q (θ) are the n-by-m matrices formed by the m column vectors πki and Qkia,
respectively, for i ∈ [m]; recall that θ = (k1, . . . , km). The key fact is that the dependency
on x ∈ S is confined to the term Q (θ): indeed,

x>M (θ)u = a>Π (θ)u + x>Q (θ)u. (2)

This shows that, in order to satisfy property U, it is enough to ensure that Q (θ)u = 0 has
a solution such that 1>u = 1. Let σ = (j0, . . . , jn−1). If Q (σ) is nonsingular then, because

22Positive diagonals play a key role here because primitiveness is not closed under multiplication: for
example,

(
1 1
1 0

)
and

(
0 1
1 1

)
are both primitive but their product is not.

23Because x is a probability distribution, property U does not imply x>M (θ)u = 0; for example, we have
x>
(
11>

)
u = 1, for u = 1

n1.
24All the constants in this work may depend on the input parameters such as n, P, etc. Dependency on

other parameters is indicated by a subscript.
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each one of its entries is a rational over O(µjn−1) bits, we have |detQ (σ)| ≥ c
µjn−1
1 , for

constant c1 > 0. Let R be the (n+ 1)-by-(n+ 1) matrix derived from Q (σ) by adding the
column Qjna to its right and then adding a row of ones at the bottom. If R is nonsingular,
then Ru = (0, . . . , 0, 1)> has a (unique) solution in u and property U holds (after padding
u with zeroes). Otherwise, we expand the determinant of R along the last column. Suppose
that detQ (σ) 6= 0. By Hadamard’s inequality, all the cofactors are at most a constant c2 > 0
in absolute value; hence, for d large enough,

0 = |detR | ≥ | detQ (σ) | − nc2‖Qjna ‖∞ ≥ cµjn−1
1 − nc2c02−jn > 0.

This contradiction implies that Q (σ) is singular, so (at least) one of its rows can be expressed
as a linear combination of the others. We form the n-by-n matrix R′ by removing that
row from R, together with the last column, and setting ujn = 0 to rewrite Q (θ)u = 0 as
R′u′ = (0, . . . , 0, 1)>, where u′ is the restriction of u′ to the columns indexed by R′. Having
reduced the dimension of the system by one variable, we can proceed inductively in the same
way; either we terminate with the discovery of a solution or the induction runs its course
until n = 1 and the corresponding 1-by-1 matrix is null, so that the solution 1 works. Note
that u has rational coordinates over O(µT ) bits. J

Let N(T ) be the largest sequence θ in [T ] such that property U does not hold. Divide [T ]
into bins [(dµ)k, (dµ)k+1 − 1] for k ≥ 0. By Lemma 4, the sequence θ can intersect at most
2n of them, so, if T > t0, for some large enough t0 = (dµ)O(n), there is at least one empty
interval in T of length T/(dµ)2n+3. This gives us the recurrence N(T ) ≤ T for T ≤ t0 and
N(T ) ≤ N(T1) + N(T2), where T1 + T2 ≤ βT , for a positive constant β = 1 − (dµ)−2n−3.
The recursion to the right of the empty interval, say, N(T2), warrants a brief discussion.
The issue is that the proof of Lemma 4 relies crucially on the property that Qk has rational
entries over O(µk) bits—this is needed to lower-bound |detQ (σ)| when it is not 0. But this
is not true any more, because, after the recursion, the columns of the matrix M (θ) are of
the form M1 · · ·Mk a, for T1 + L < k ≤ T , where L is the length of the empty interval and
T = T1 +T2 +L. Left as such, the matrices use too many bits for the recursion to go through.
To overcome this obstacle, we observe that the recursively transformed M (θ) can be factored
as AB, where A = M1 · · ·MT1+L and B consists of the column vectors MT1+L+1 · · ·Mk a.
The key observation now is that, if x>B u does not depend on x, then neither does x>M (θ) u,
since it can be written as y>B u where y = A>x ∈ S. In this way, we can enforce property
U while having restored the proper encoding length for the entries of M (θ).

Plugging in the ansatz N(T ) = t0T
γ , for some unknown positive γ < 1, we find by

Jensen’s inequality that, for all T > 0, N(T ) ≤ t0(T γ1 + T γ2 ) ≤ t021−γβγT γ . For the ansatz
to hold true, we need to ensure that 21−γβγ ≤ 1. Setting γ = 1/(1− log β) < 1 completes
the proof of Lemma 3. J

Define φk(x) = x>M1 · · ·Mk and let hδ : a>x = 1 + δ be some hyperplane in Rn. We
consider a set of canonical intervals of length ρ (or less): Dρ =

{
[kρ, (k + 1)ρ] ∩ ε I | k ∈ Z

}
,

where I := [−1, 1] and ε > 0 is the parameter of Lemma 1. Roughly, the “general position"
lemma below says that, for most δ, the φk-images of any ρ-wide cube centered in the simplex
Sn−1 cannot near-collide with the hyperplane a>x = 1 + δ for most values of k ≤ T . This
may sound seriously counterintuitive. After all, if the stochastic matrices Mi are the identity,
the images do not move, so if the initial cube collide then all of the images will! The point is
that Mi is primitive so it cannot be the identity. The low coefficients of ergodicity will also
play a key role. Notation: α refers to its use in Lemma 3.

I Lemma 5. For any real ρ > 0 and any integer T > 0, there exists U ⊆ Dρ of size
cT = 2O(µT ), where cT is independent of ρ, such that, for any ∆ ∈ Dρ\U and x ∈ S, there
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are at most T 1−α/α integers k ≤ T such that φk(X) ∩ h∆ 6= ∅, where X = x + ρIn and
h∆ :=

⋃
δ∈∆ hδ.

Proof. In what follows, b0, b1, . . . refer to suitably large positive constants. We assume the
existence of more than T 1−α/α integers k ≤ T such that φk(X) ∩ h∆ 6= ∅ and draw the
consequences: in particular, we infer certain linear constraints on δ; by negating them, we
define the forbidden set U and ensure the conclusion of the lemma. Let k1 < · · · < km
be the integers in question, where m > T 1−α/α. For each i ∈ [m], there exists x(i) ∈ X
such that |x(i)>M1 · · ·Mkia − 1 − δ | ≤ ρ. By the stochasticity of the matrices, |

(
x(i) −

x
)>
M1 · · ·Mkia | ≤ b0 ρ; hence |x>M1 · · ·Mkia − 1− δ | ≤ (b0 + 1)ρ. By Lemma 3, there is

a rational vector u such that 1>u = 1 and x>M (θ)u = ψ(M (θ),a) does not depend on the
variable x ∈ S; on the other hand, |x>M (θ)u− (1 + δ) | ≤ b1ρ. Two quick remarks: (i) the
term 1 + δ is derived from (1 + δ)1>u = 1 + δ; (ii) b1 ≤ (b0 + 1)‖u‖1, where u is a rational
over O(µT ) bits. We invalidate the condition on k1, . . . , km by keeping δ outside the interval
ψ(M (θ),a)− 1 + b1ρI, which rules out at most 2(b1 + 1) intervals from Dρ. Repeating this
for all sequences (k1, . . . , km) raises the number of forbidden intervals, ie, the size of U , to
cT = 2O(µT ). J

Topological entropy

We identify the familyM with the set of all matrices of the form S1 · · ·Sk for η ≤ k ≤ 3η.
By definition of the ergodic renormalizer η = η(Ω) (for a set Ω that will be specified later),
any M ∈ M is primitive and τ(M) < 1/2; furthermore, both µ and log |M | are in O(η).
Our next result implies a bound of lim T→∞ T−η

−O(1) = 0 on the topological entropy of the
shift space of itineraries.

I Lemma 6. For any real ρ > 0 and any integer T > 0, there exists tρ = O(η| log ρ |) and
V ⊆ Dρ of size dT = 2O(T ) such that, for any ∆ ∈ Dρ \V , any integer t ≥ tρ, and any
σ ∈ Lt∆, log

∣∣ {σ′ |σ · σ′ ∈ Lt+T∆
} ∣∣ ≤ ηb+1T 1−η−b , for constant b > 0.

Proof. In the lemma, tρ (resp. dT ) is independent of T (resp. ρ). The main point is
that the exponent of T is bounded away from 1. We define the set V as the union of the
sets U formed by applying Lemma 5 to each one of the hyperplanes hδ involved in P and
every possible sequence of T matrices inM. This increases cT to 2O(ηT ). Fix ∆ ∈ Dρ\V
and consider the (lifted) phase space S×∆ for the dynamical system induced by the map
f↑ :

(
x, δ) 7→ ( x>S(x), δ

)
. The system is piecewise-linear with respect to the polyhedral

partition P↑ of Rn+1 formed by treating δ as a variable in hδ. Let Υt be a continuity piece for
f t↑, ie, a maximal region of S×∆ over which the t-th iterate of f↑ is linear. By the argument
leading to (1), therefore, any matrix sequence S1, . . . , St matching an element of Lt∆ is such
that S1 · · ·St = 1π> + Q, where ‖Q‖∞ < 22−t/η; hence there exists tρ = O(η| log ρ |) such
that, for any t ≥ tρ, f t↑(Υt) ⊆ (x + ρIn)×∆, for some x = x(t,Υt) ∈ S.

Consider a nested sequence Υ1 ⊇ Υ2 ⊇ · · · .25 We say there is a split at k if Υk+1 ⊂ Υk,
and we show that, given any t ≥ tρ, there are only O(ηT 1−α/α) splits between t and t+ ηT ,
where α = η−b, for constant b (see Lemma 3 for definitions). We may confine our attention to
splits caused by the same hyperplane hδ (since P features only a constant number of them).
Arguing by contradiction, we assume the presence of at least 6ηT 1−α/α splits, which implies

25Note that Υ1 is a cell of P↑, fk↑ (Υk+1) ⊆ fk↑ (Υk), and Sl is the stochastic matrix used to map f l−1
↑ (Υl)

to f l↑(Υl) (ignoring the dimension δ).
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that at least N := 2T 1−α/α of those splits occur for values of k at least 2η apart. This is
best seen by binning [t+ 1, t+ ηT ] into T intervals of length η and observing that at least
3N intervals must feature splits. In fact, this proves the existence of N splits at positions
separated by a least two consecutive bins. Next, we use the same binning to produce the
matrices M1, . . . ,MT , where Mj = St+1+(j−1)η · · ·St+jη.

Suppose that all of the N splits occur for values k of the form t + jη. In this case,
a straightforward application of Lemma 5 is possible: we set X × ∆ = f t↑(Υt) and note
that the functions φk are all products of matrices from the family M, which happen to
be η-long products. The number of splits, 2T 1−α/α, exceeds the number allowed by the
lemma and we have a contradiction. If the splits do not fall neatly at endpoints of the
bins, we use the fact that M includes matrix products of any length between η and 3η.
This allows us to reconfigure the bins so as to form a sequence M1, . . . ,MT with the splits
occurring at the endpoints: for each split, merge its own bin with the one to its left and the
one to its right (neither of which contains a split) and use the split’s position to subdivide
the resulting interval into two new bins; we leave all the other bins alone.26 This leads
to the same contradiction, which implies the existence of fewer than O(ηT 1−α/α) splits at
k ∈ [t, t+ηT ]; hence the same bound on the number of strict inclusions in the nested sequence
Υt ⊇ · · · ⊇ Υt+ηT . The set of all such sequences forms a tree of depth ηT , where each node
has at most a constant number of children and any path from the root has O(ηT 1−α/α)
nodes with more than one child. Rescaling T to ηT and raising b completes the proof. J

3.2 Proof of Lemma 1
We show that the nonperiodic δ intervals can be covered by a Cantor set of Hausdorff
dimension less than one. All the parameters below refer to Lemma 6 and are set in this order:
T (η), ρ(T, ε), and ν(T, ρ, ε). The details follow. Let δ,∆ such that δ ∈ ∆ ∈ Dρ\V . Given a
continuity piece Ct ⊆ S for f t, the (t+T )-th iterate of f induces a partition of Ct into a finite
number of continuity pieces Ct1, . . . , Ctm, so we can define λt,T (Ct) =

∑
i diam`∞f

t+T (Cti ).
As was observed in the proof of Lemma 6, diam`∞f

t+T (Cti ) = O(2−T/η diam`∞f
t(Ct)). That

same lemma shows that if we pick T = 2η2b , for b large enough then, for any t ≥ tρ,

λt,T (Ct) =
m∑
i=1

diam`∞f
t+T (Cti ) ≤ b2η

b+1T 1−η−b

2−T/ηdiam`∞f
t(Ct) ≤ 1

2diam`∞f
t(Ct). (3)

Next we set ρ = ε/(2dT ) so that the intervals of V cover a length of at most ε/2. This gives
us an extra length of ε/2 worth of forbidden intervals at our disposal. For any t = tρ + kT

large enough, f t(S) is the union of (possibly overlapping) convex bodies K1, . . . ,Kp. A
key observation is that we can prevent any Ki from splitting at time t+ kT by keeping δ
outside an interval of length diam`∞Ki for each discontinuity of f . By iterating (3), we
find that λtρ,kT (Ctρ) ≤ 2−k. We expand V by adding these intervals, which expands the
total length covered by 2O(tρ)−k. To keep this expansion, as stated earlier, below ε/2, we
set k = O(tρ) + | log ε |. It follows that Zν = Zν+1 for ν + 1 = tρ + kT , and hence Zt = Z

for any t ≥ ν.27 In view of T = 2η2b , dT = 2O(T ), ρ = ε/(2dT ), and tρ = O(η| log ρ |), we

26We note the possibility of an inconsequential decrease in T caused by the merges. Also, we can now see
clearly why Lemma 5 is stated in terms of the slab h∆ and not the hyperplane hδ. This allows us to
express splitting caused by the hyperplane a>x = 1 + δ in lifted space Rn+1.

27No point x is such that (a) fν+1(x) is in D (the union of the discontinuities) but fν(x) is not. To
see why this implies that Zt+1 = Zt for any t > ν, and hence Z = Zν , suppose that Zt+1 ⊃ Zt, ie,
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observe that | log ρ | = | log ε |+O(T ), and both tρ and k are in O(η| log ε |+ ηT ); hence

ν = tρ + kT = O
(
η| log ε |T + ηT 2) = 2η

O(1)
| log ε |,

which proves Lemma 1.

4 Applications

We show how the two sets of techniques developed above, renormalization and bifurcation
analysis, allows us to resolve a few important families of MIS.

4.1 Irreducible systems
A Markov influence system is called irreducible if the Markov chain g(x) is irreducible for all
x ∈ S; with our self-loop assumption, this also means ergodic. All the digraphs g(x) of an
irreducible MIS are strongly connected; therefore, in the first instantiation of production (1a)
g→

(
gl
)
gm
(

gr 4 h
)
, the right-hand side expands into

g −→ ((((g1)g2) · · · )gm−1)gm
(

gr 4 h
)
, (4)

with h ∈ K and m < n. In other words, every step sees growth in the cumulant until it
is in K (the family of all complete digraphs). To see why, assume by contradiction that∏
j<k gj =

∏
j≤k gj for k < m. If so, then gk is a subgraph of tf (

∏
j<k gj). Because the latter

is transitive and it has in gk a strongly connected subgraph that spans all the vertices, it
must belong to K; hence k = m, which contradicts our assumption. Since the last cumulant
is in K, the parsing of gr 4 h in (4) proceeds via (1b); hence

g −→ ((((g1)g2) · · · )gm1−1) gm1(
((((gm1+1)gm1+2) · · · )gm2−1)gm2 ((((gm2+1)gm2+2) · · · )gm3−1)gm3 · · ·

)
. (5)

It follows that η(R) is polynomial in n. By Lemma 1 and Corollary 2, this shows that
irreducible Markov influence systems are typically asymptotically periodic. We strengthen
this result in our next application.

4.2 Weakly irreducible systems
We now assume a fixed partition of the vertices such that each digraph g(x) consists of disjoint
strongly connected graphs defined over the subsets V1, . . . , Vl of the partition. Irreducible
systems correspond to the case l = 1. What makes weak irreducibility interesting is that
the systems are not simply the union of independent irreducible systems. Indeed, note that
communication flows among states in two ways: (i) directly, vertices collect information
from neighbors to update their states; and (ii) indirectly, via the polyhedral partition P , the
sequence of graphs for Vi may be determined by the current states within Vj . In the extreme
case, we can have the co-evolution of two systems V1 and V2, each one depending entirely
on the other one yet with no links between the two of them. If the two subsystems were

that f t+1(y) is in D but f t(y) is not, for y ∈ S; then (a) holds for x = f t−ν(y), a contradiction. This
shows that the continuity pieces for fν are the same as for any fν+k, which implies that the f -image of
any such piece must fall entirely inside a single one of them. The eventual periodicity of the itinerary
follows.
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independent, their joint dynamics could be expressed as a direct sum and resolved separately.
This cannot be done, in general, and the bifurcation analysis requires some modifications.

As before, the right-hand side of production (1a) expands into (4). The difference is that
h is now a collection of disjoint complete digraphs h1, . . . , hl, one for each Vi. This gives us
an opportunity to use network renormalization (2a) to derive

g4 h −→
(

g |h1 4 h1
)
· · ·

(
g |hl 4 hl

)
.

Each g |hi 4 hi is parsed as in (1b) into
(

g1
|hi

)
gm1
|hi

(
g2
|hi

)
gm2
|hi · · · (with indices moved up

for clarity). For the bifurcation analysis, Lemma 4 relies on the rank-l expansion

x>M (θ) =
l∑
i=1

(∑
j∈Vi

xj

)
a>Π (θ)

i + x>Q (θ) ,

where (i) M1 · · ·Mk =
∑l
i=1 1|Viπ>i,k +Qk; (ii) all vectors 1|Vi and πi,k have support in Vi;

(iii) Qk is block-diagonal and ‖Qk‖∞ < 21−k; (iv) Π (θ)
i and Q (θ) are formed, respectively, by

the column vectors πi,kj and Qkj a for j ∈ [m], with θ = (k1, . . . , km). Property U no longer
holds, however (see §3.1): indeed, if l > 1, it is no longer true that x>M (θ)u is independent
of the variable x ∈ S. The dependency is confined to the sums si :=

∑
j∈Vi xj for i ∈ [l].

The key observation is that these sums are time-invariant. We fix them once and for all
and redefine the phase space as the invariant manifold

∏l
i=1
(
si S|Vi|−1), which induces a

foliation of the original simplex Sn−1 via Sl−1. The rest of the proof mimics the irreducible
case, whose conclusion therefore still applies.

4.3 Condensation systems
We now assume that the condensations of the g(x) all share the same transitive reduction.
In other words, the condensations may change with time but all of them feature the same
pairs of path-connected vertices.28 Past the first n steps, a temporal walk will have been set
up joining all pairs of path-connected vertices. We ignore the possibility of a call to (2a),
which would be handled as in the weakly irreducible case. The parse tree features a node
labeled (2b), where the cumulant h is the common transitive closure of any g(x):

g4 h −→
(

g |h′ 4 h′
) { (

g |h1 4 h1
)
· · ·

(
g |hl 4 hl

) }
.

It helps to think of the right-hand side of as the absorbing states of a time-varying Markov
chain. Every n steps, another temporal walk is established to match any path in h. Let∑
h′ xi be the sum of the probabilities at the nodes of the stem h′. It is easy to see that, after

every interval of n steps,
∑
h′ xi is multiplied by less than 1 − O(1)−n < 1/c for constant

c > 1. We are now ready to reduce the problem to the case of weakly irreducible systems.
Indeed, the sums si approach a fixed value with an additive error rate of c−t/n, which is
fast enough to keep the previous analysis valid. We omit the technical details, which simply
recycle the reasoning from the previous sections.

The term “typically" below means almost everywhere, ie, for δ in a subset of 1
2 [−1, 1] of

full Lebesgue measure 1. Recall that the result below applies, de facto, to irreducible and
weakly irreducible systems.

28 It is is implicit that the vertices of the condensations must match the same set of vertices. Note that the
condensations have the same transitive closure and that any system with a time-invariant condensation
forms a condensation MIS.
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I Theorem 7. Typically, every orbit of a condensation Markov influence system is asymp-
totically periodic.

5 Hyper-Torpid Mixing and Chaos

Among the MIS that converge to a single stationary distribution, we show that the mixing
time can be super-exponential. The creation of new timescales is what most distinguishes
MIS from standard Markov chains. As we mentioned earlier, the system can be chaotic. We
prove all of these claims below.

5.1 A super-exponential mixer
How can reaching a fixed point distribution take so long? Before we answer this question
formally, we provide a bit of intuition. Imagine having three unit-volume water reservoirs
A,B,C alongside a clock that rings at noon and 1pm every day. Initially, the clock is at
2pm and A is full while B and C are empty. Reservoir A transfers half of its contents to B
and repeats this each hour until the clock rings noon. At this point, reservoir A empties into
C the little water that it has left. Next, the clock now rings 1pm and B empties its contents
into A. At 2pm, we resume what we did the day before at the same hour, ie, A transfers half
of its water contents to B, etc. This goes on until some day, at 1pm, reservoir C finds its
more than half full. (Note that the water level of C rises by about 10−3 every day.) At this
point, both B and C transfer all their water back to A, so that at 2pm on that day, we are
back to square 1. The original 12-step clock has been extended into a new clock of period
roughly 1,000. The proof below shows how to simulate this iterative process with an MIS.

I Theorem 8. There exist Markov influence systems that mix to a stationary distribution in
time equal to a tower-of-twos of height linear in the number of states.

Proof. We construct an MIS with a periodic orbit of length equal to a power-of-twos. It is
easy to turn it into an orbit with a fixed-point attractor that reaches a stationary distribution
and we omit this part of the discussion. Assume, by induction, that we have a Markov
influence system M cycling through states 1, . . . , p, for p > 1. We build another one with
period cp, for fixed c > 1, by adding a “gadget" to it consisting of a three-vertex graph 1, 2, 3
with probability distribution (x, y, z) ∈ S. We initialize the system by placing M in state 1
(ie, 2pm in our clock example) and setting x = 1. The dynamic graph is specified by these
rules:
1. Suppose that z > 1/2. If M is in state p, then the graph has the edges (2, 1) and (3, 1);

both are given probability 1 (so that nodes 2, 3 have no self-loops). If M is in any other
state, the graph has only three self-loops, each one assigned probability 1.

2. Suppose that z ≤ 1/2.
a. If M is in state 1, . . . , p − 2, then the graph has the edge (1, 2), which is assigned

probability 1/2, as is the self-loop at 1.
b. If M is in state p−1, then the graph has the edge (1, 3), which is assigned probability 1

(hence no self-loop at 1).
c. If M is in state p, then the graph has the edge (2, 1), which is assigned probability 1
(hence no self-loop at 2).

Suppose thatM is in state 1 and that y = 0 and z ≤ 1/2. WhenM reaches state p−1, the
probability vector is

(
(1− z)22−p, (1− z)(1−22−p), z

)
. At the next step, M is in state p and

the vector becomes
(

0, (1−z)(1−22−p), z+(1−z)22−p ). If the last coordinate is still at most
1/2, then M moves to state 1 and the vector becomes

(
(1− z)(1− 22−p), 0, z + (1− z)22−p ).

The key observation is that z increases by (1− z)22−p, which is between 21−p and 22−p as
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long as z ≤ 1/2. Since z begins at 0, it will cross the threshold 1/2 after on the order of p2p
steps. Transfers of mass to vertex 3 only happens when M is in state p− 1, so at the next
step, M is in state p and z > 1/2. The system moves to state 1 and restores its initial vector
(1, 0, 0): the cycle is closed. The construction on top of M adds three new vertices so we can
push this recursion roughly n/3 times to produce a Markov influence system that is periodic
with a period of length equal to a tower-of-twos of height roughly n/3. We tie up the loose
ends now:

The construction needs to recognize two consecutive states of M : they are labeled p− 1
and p in our description but, by symmetry, they could be any other consecutive pair. We
give each one of these two states their own distinct polyhedral cell. The obvious choice is
the unique state satisfying z > 1/2, which is followed by the only state such that x ≥ 1.
The basis case of our inductive construction consists of a two-vertex system of constant
period k with initial distribution (1, 0). If x > 21−k, the graph has an edge from 1 to 2
assigned probability 1/2; else an edge from 2 to 1 given probability 1 to reset the system.
The construction assumes probabilities summing up to 1 within each of b(n− 2)/3c+ 1
gadgets, which is clearly wrong. Being piecewise-linear, however, the system suggests an
easy fix: we divide the probability weights equally among each gadget and adjust the
linear discontinuities appropriately. J

5.2 Chaos
We give a simple 5-state construction with chaotic symbolic dynamics:

A = 1
3


2 1 0 0 0
0 1 2 0 0
0 0 3 0 0
0 0 0 2 1
0 0 0 0 3

 if x1 + x2 > x4 and B = 1
3


1 0 2 0 0
1 2 0 0 0
0 0 3 0 0
0 0 0 2 1
0 0 0 0 3

 else,

for x ∈ S4. We focus our attention on Σ =
{

(x1, x2, x4) | 0 < x1 ≤ x4/2 and x4/2 ≤ x2 < x4
}
,

and easily check that it is an invariant manifold. At time 0, we fix x4 = 1/4 and x5 = 0; at
all times, of course, x3 = 1− x1 − x2 − x4 − x5. The variable y := (2x2 − x4)/(2x1 − x4) is
always nonpositive over Σ.29 It evolves as follows:

y ←

{
1
2 (y + 1) if y < −1
2y
y+1 if −1 ≤ y ≤ 0.

Writing z = (y + 1)/(y − 1), we note that −1 ≤ z < 1 and it evolves according to z 7→ 2z + 1
if z ≤ 0, and z 7→ 2z − 1 otherwise, a map that conjugates with the baker’s map and is well
known to be chaotic [11].

Acknowledgments. I wish to thank Maria Chudnovsky and Ramon van Handel for helpful
comments.
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