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Abstract
The well-known DeMillo-Lipton-Schwartz-Zippel lemma says that n-variate polynomials of total
degree at most d over grids, i.e. sets of the form A1×A2×· · ·×An, form error-correcting codes (of
distance at least 2−d provided mini{|Ai|} ≥ 2). In this work we explore their local decodability
and local testability. While these aspects have been studied extensively when A1 = · · · = An = Fq
are the same finite field, the setting when Ai’s are not the full field does not seem to have been
explored before.

In this work we focus on the case Ai = {0, 1} for every i. We show that for every field
(finite or otherwise) there is a test whose query complexity depends only on the degree (and
not on the number of variables). In contrast we show that decodability is possible over fields
of positive characteristic (with query complexity growing with the degree of the polynomial and
the characteristic), but not over the reals, where the query complexity must grow with n. As a
consequence we get a natural example of a code (one with a transitive group of symmetries) that
is locally testable but not locally decodable.

Classical results on local decoding and testing of polynomials have relied on the 2-transitive
symmetries of the space of low-degree polynomials (under affine transformations). Grids do not
possess this symmetry: So we introduce some new techniques to overcome this handicap and in
particular use the hypercontractivity of the (constant weight) noise operator on the Hamming
cube.
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1 Introduction

Low-degree polynomials have played a central role in computational complexity. (See for
instance [27, 8, 5, 21, 23, 19, 28, 3, 2] for some of the early applications.) One of the
key properties of low-degree n-variate polynomials underlying many of the applications
is the “DeMillo-Lipton-Schwartz-Zippel” distance lemma [10, 26, 30] which upper bounds
the number of zeroes that a non-zero low-degree polynomial may have over “grids”, i.e.,
over domains of the form A1 × · · · × An. This turns the space of polynomials into an
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26:2 Local Decoding and Testing of Polynomials over Grids

error-correcting code (first observed by Reed [24] and Muller [20]) and many applications
are built around this class of codes. These applications have also motivated a rich collection
of tools including polynomial time (global) decoding algorithms for these codes, and “local
decoding” [4, 18, 9] and “local testing” [25, 1, 15] procedures for these codes.

Somewhat strikingly though, many of these tools associated with these codes don’t work
(at least not immediately) for all grid-like domains, but work only for the specific case of the
domain being the vector space Fn where F is the field over which the polynomial is defined
and F is finite. The simplest example of such a gap in knowledge was the case of “global
decoding”. Here, given a function f :

∏n
i=1 Ai → F as a truth-table, the goal is to find a

nearby polynomial (up to half the distance of the underlying code) in time polynomial in
|
∏
iAi|. When the domain equals Fn then such algorithms date back to the 1950s. However

the case of general Ai remained open till 2016 when Kim and Kopparty [17] finally solved
this problem.

In this paper we initiate the study of local decoding and testing algorithms for polynomials
when the domain is not a vector space. As a first step towards this we consider the case
of polynomials over hypercubes i.e., when Ai = {0, 1} ⊆ F for every i. (This setting easily
extends to the case where |Ai| = 2 for all i — see more on this at the end of Section 1.1.
The setting of |Ai| > 2 seems to offer new challenges that we don’t explore in this paper.)
We describe the problems formally next and then describe our results.

1.1 Distance, Local Decoding and Local Testing
We start with some brief notation. For finite sets A1, . . . , An ⊆ F and functions f, g : A1 ×
· · ·An → F, let the distance between f and g, denoted δ(f, g) be the quantity Pra[f(a) 6= g(a)]
where a is drawn uniformly from A1 × · · · × An. We say f is δ-close to g if δ(f, g) ≤ δ,
and δ-far otherwise. For a family of functions F ⊆ {h : A1 × · · · × An → F}, let δ(F) =
minf 6=g∈F{δ(f, g)}.

To set the context for some of the results on local decoding and testing, we first recall
the distance property of polynomials. If |Ai| ≥ 2 for every i, the polynomial distance lemma
asserts that the distance between any two distinct degree d polynomials1 is at least 2−d.
Of particular interest is the fact that for fixed d this distance is bounded away from 0,
independent of n or |F| or the structure of the sets Ai. In turn this behavior effectively has
led to “local decoding” and “local testing” algorithms with complexity depending only on d
— we define these notions and elaborate on this sentence next.

Given a family of functions F from the domain A1×· · ·×An to F, we say F is (δ, q)-locally
decodable if there exists a probabilistic algorithm that, given a ∈ A1 × · · · ×An and oracle
access to a function f : A1 × · · · ×An → F that is δ-close to some function p ∈ F , makes at
most q oracle queries to f and outputs p(a) with probability at least 3/4. (The existence
of a (δ, q)-local decoder for F in particular implies that δ(F) ≥ 2δ.) We say that F is
(δ, q)-locally testable if there exists a probabilistic algorithm that makes q queries to an oracle
for f : A1× · · · ×An → F and accepts with probability at least 3/4 if f ∈ F and rejects with
probability at least 3/4 if f is δ-far from every function in F .

When A1 = · · · = An = F (and so F is finite) it was shown by Kaufman and Ron [15]
(with similar results in Jutla et al. [13]) that the family of n-variate degree d polynomials over
F is (δ, q)-locally decodable and (δ, q)-locally testable for some δ = exp(−d) and q = exp(d).

1 Throughout this paper we only consider the functions represented by degree d polynomials. So, without
loss of generality, these maybe viewed as polynomials of degree at most |Ai| − 1 in the ith variable, and
specifically multilinear polynomials when |Ai| = 2.
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In particular both q and 1/δ are bounded for fixed d, independent of n and F. Indeed in
both cases δ is lower bounded by a constant factor of δ(F(n, d)) and q is upper bounded
by a polynomial in the inverse of δ(F(n, d)) where F(n, d) denotes the family of functions
corresponding to degree d n-variate polynomials over F, seemingly suggesting that the
testability and decodability may be consequences of the distance. If so does this phenomenon
should extend to the case of other sets Ai 6= F - does it? We explore this question in this
paper.

In what follows we say that the family of degree d n-variate polynomials is locally
decodable (resp. testable) if there is bounded q = q(d) and positive δ = δ(d) such that
F(n, d) is (δ, q)-locally decodable (resp. testable) for every n. The specific question we
address below is when are the family of degree d n-variate polynomials locally decodable
and testable when the domain is {0, 1}n. (We stress that the choice of {0, 1}n as domain is
for simplicity and is equivalent to the setting of |Ai| = 2 for all i. Working with domains
of other (and varying) sizes would lead to qualitative changes and we do not consider that
setting in this paper.)

1.2 Main Results

Our first result (Theorem 3.2) shows that even the space of degree 1 polynomials is not locally
decodable over fields of zero characteristic or over fields of large characteristic. This statement
already stresses the main difference between the vector space setting ( domain being Fn) and
the “grid” setting (domain = {0, 1}n). One key reason underlying this difference is that the
domain Fn has a rich group of symmetries that preserve the space of degree d polynomials,
where the space of symmetries is much smaller when the domain is {0, 1}n. Specifically the
space of degree d polynomials over Fn is “affine-invariant” (invariant under all affine maps
from Fn to Fn). The richness of this group of symmetries is well-known to lead to local
decoding algorithms (see for instance [1]) and this explains the local decodability of F(n, d)
over the domain Fn. Of course the absence of this rich group of symmetries does not rule
out local decodability — and so some work has to be done to establish Theorem 3.2. We
give an overview of the proof in Section 1.3 and then give the proof in Section 5.

Our second result (Theorem 3.3) shows, in contrast, that the class of degree d polynomials
over fields of small characteristic are locally decodable. Specifically, we show that there is
a q = q(d, p) < ∞ and δ = δ(d, p) > 0 such that F(n, d) over the domain {0, 1}n over a
(possibly infinite) field F of characteristic p is (δ, q)-locally decodable. This is perhaps the
first local-decodability result for polynomials over infinite fields. A key technical ingredient
that leads to this result, which may be of independent interest, is that when n = 2pt (twice a
power of the characteristic of F) and g is a degree d polynomial for d < n/2 then g(0) can be
determined from the value of g on the ball on Hamming weight n/2 (see Lemma 6.1). Again,
we give an overview of the proof in Section 1.3 and then give the actual proof in Section 6.

Our final, and main technical, result (Theorem 3.1) shows somewhat surprisingly that
F(n, d) is always (i.e., over all fields) locally testable. This leads to perhaps the simplest
natural example of a locally testable code that is not locally decodable. We remark there
are of course many examples of such codes (see, for instance, the locally testable codes
of Dinur [11]) but these are results of careful constructions and in particular not very
symmetric. On the other hand F(n, d) over {0, 1}n does possess moderate symmetry and
in particular the automorphism group is transitive. We remark that for both our positive
results (Theorems 3.3 and 3.1), the algorithms themselves are not obvious and the analysis
leads to further interesting questions. We elaborate on these in the next section.

ITCS 2018
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1.3 Overview of proofs
1.3.1 Impossibility of local decoding over fields of large characteristic
In Section 5 we show that even the family of affine functions over {0, 1}n is not locally
decodable. The main idea behind this construction and proof is to show that the value of a
affine function ` : {0, 1}n → F at 1n can not be determined from its values on any set S if
|S| is small (specifically |S| = o(logn/ log logn)) and S contains only “balanced” elements
(i.e., x ∈ S ⇒ |

∑
i xi − (n/2)| = O(

√
n). Since the space of affine functions from {0, 1}n to

F forms a vector space, this in turn translates to showing that no set of up to |S| balanced
vectors contain the vector 1n in their affine span (over F) and we prove this in Lemma 5.2.

Going from the above statement to Theorem 3.2 is relatively standard in the case of
finite fields. We show that if one picks a random linear function and simply erase its values
on imbalanced inputs, this leads to only a small fraction of error, but its value at 1n is not
decodable with o(logn/ log logn) queries. (Indeed many of the ingredients go back to the
work of [6], who show that a canonical non-adaptive algorithm is effectively optimal for linear
codes, though their results are stated in terms of local testing rather than local decoding.) In
the case of infinite fields one has to be careful since one can not simply work with functions
that are chosen uniformly at random. Instead we work with random linear functions with
bounded coefficients. The bound on the coefficients leads to mild complications due to
border effects that need care. In the proof of Theorem 5.3, we show how to overcome these
complications using a counting (or encoding) argument.

The technical heart of this part is thus the proof of Lemma 5.2 and we give some idea of
this proof next. Suppose S = {x1, . . . , xt} contained x0 = 1n in its affine span and suppose
|
∑n
j=1 x

i
j − (n/2)| ≤ n/s for all i. Let a1, . . . , at ∈ F be coefficients such that x0 =

∑
i aix

i

with
∑
i ai = 1. Our proof involves reasoning about the size of the coefficients a1, . . . , at. To

get some intuition why this may help, note that

n

2 =

∣∣∣∣∣∣
n∑
j=1

x0
j −

n

2

∣∣∣∣∣∣ =

∣∣∣∣∣∣
t∑
i=1

ai ·

 n∑
j=1

xij −
n

2

∣∣∣∣∣∣ ≤
t∑
i=1
|ai| ·

∣∣∣∣∣∣
n∑
j=1

xij −
n

2

∣∣∣∣∣∣ ≤ n

s
·
∑
j

|aj |.

So in particular if the aj ’s are small, specifically if |aj | ≤ 1 then we conclude t = Ω(s). But
what happens if large aj ’s are used? To understand this, we first show that the coefficients
need not be too large (as a function of t) - see Lemma 5.1, and then use this to prove
Lemma 5.2. The details are in Section 5.1.

1.3.2 Local decodability over fields of small characteristic
The classical method to obtain a q-query local decoder is to find, given a target point
x0 ∈ Fn, a distribution on queries x1, . . . , xq ∈ Fn such that (1) P (x0) is determined by
P (x1), . . . , P (xq) for every degree d polynomial P , and (2) the query xi is independent of x0

(so that an oracle f that usually equals P will satisfy P (xi) = f(xi) for all i, with probability
at least 3/4). Classical reductions used the “2-transitivity” of the underlying space of
automorphisms to guarantee that xi is independent of xj for every pair i 6= j ∈ {0, . . . , q} —
a stronger property than required! Unfortunately, our automorphism space is not “2-transitive”
but it turns out we can still find a distribution that satisfies the minimal needs.

Specifically, in our reduction we identify a parameter k = k(p, d) and map each variable
x` to either yj or 1− yj for some j = j(`) ∈ [k]. This reduces the n-variate decoding task
with oracle access to f(x1, . . . , xk) to a k-variate decoding task with access to the function
g(y1, . . . , yk). Since there are only 2k distinct inputs to g, decoding can solved with at most
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2k queries (if it can be solved at all). The choice of whether x` is mapped to yj or 1− yj is
determined by x0

j so that f(x0) = g(0k). Thus given x0, the only randomness is in the choice
of j(`). We choose j(`) uniformly and independently from [k] for each `. For y ∈ {0, 1}k, xy
denote the corresponding query in {0, 1}n (i.e., g(y) = f(xy)). Given our choices, xy is not
independent of x0 for every choice of y. Indeed if y has Hamming weight 1, then xy is very
likely to have Hamming distance ≈ n/k from x0 which is far from independent. However if
y ∈ {0, 1}k is a balanced vector with exactly k/2 1s (so in particular we will need k to be
even), then it turns out xy is indeed independent of x0. So we query only those xy for which
y is balanced. But this leads to a new challenge: can P (0k) be determined from the values of
P (y) for balanced ys? It turns out that for a careful choice of k (and this is where the small
characteristic plays a role) the value of a degree d polynomial at 0 is indeed determined by
its values on balanced inputs (see Lemma 6.1) and this turns out to be sufficient to build a
decoding algorithm over fields of small characteristic. Details may be found in Section 6.

1.3.3 Local testability over all fields
We now turn to the main technical result of the paper, namely the local testability of
polynomials over grids. All previous analyses of local testability of polynomials with query
complexity independent of the number of variables have relied on symmetry either implicitly
or explicitly. (See for example [16] for further elaboration.) Furthermore many also depend
on the local decodability explicitly; and in our setting we seem to have insufficient symmetry
and definitely no local decodability. This forces us to choose the test and analysis quite
carefully.

It turns out that among existing approaches to analyses of local tests, the one due to
Bhattacharyya et al [7] (henceforth BKSSZ) seems to make the least use of local decodability
and our hope is to be able to simulate this analysis in our case — but the question remains:
“which tester should we use?". This is a non-trivial question since the BKSSZ test is a natural
one in a setting with sufficient symmetry; but their analysis relies crucially on the ability
to view their test as a sequence of restrictions: Given a function f : Fn → F they produce
a sequence of functions f = fn, fn−1, . . . , fk, where the function fr is an r-variate function
obtained by restricting fr+1 to a codimension one affine subspace. Their test finally checks to
see if fk is a degree d polynomial. To emulate this analysis, we design a somewhat artificial
test: We also produce a sequence of functions fn, fn−1, . . . , fk with fr being an r-variate
function. Since we do not have the luxury to restrict to arbitrary subspaces, we instead
derive fr from fr+1(z1, . . . , zr+1) by setting zi = zj or zi = 1− zj for some random pair i, j
(since these are the only simple affine restrictions that preserve the domain). We stop when
the number of variables k is small enough (and hopefully a number depending on d alone
and not on n or F). We then test that the final function has degree d.

The analysis of this test is not straightforward even given previous works, but we are able
to adapt the analyses to our setting. Two new ingredients that appear in our analyses are
the hypercontractivity of hypercube with the constant weight noise operator (analyzed by
Polyanskiy [22]) and the intriguing stochastics of a random set-union problem. We explain
our analysis and where the above appear next.

We start with the part which is more immediate from the BKSSZ analysis. This
corresponds to a key step in the BKSSZ analysis where it is shown that if fr+1 is far from
degree d polynomials then, with high probability, so also is fr. This step is argued via
contradiction. If fr is close to the space of degree d polynomials for many restrictions, then
from the many polynomials that agree with fr (for many of the restrictions) one can glue
together an r + 1-variate polynomial that is close to fr+1. This step is mostly algebraic and
works out in our case also; though the actual algebra is different and involves more cases.

ITCS 2018
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The new part in our analysis is in the case where fn is moderately close to some low-degree
polynomial P . In this case we would still like to show that the test rejects fn with positive
probability. In both BKSSZ and in our analysis this is shown by showing the the 2k queries
into fn (that given the entire truth table of the function fk) satisfy the property that exactly
fn is not equal to P on exactly one of the queried points. Note that the value of fk(y) is
obtained by querying f at some point, which we denote xy. In the BKSSZ analysis xa and
xb are completely independent given a 6= b ∈ {0, 1}k. (Note that the mapping from y to xy
is randomized and depends on the random choices of the tester.) In our setting the behavior
of xa and xb is more complex and depends on both the set of coordinates j such that where
aj 6= bj and on the number of indices i ∈ [n] such that the variable xi is mapped to variable
yj . Our analysis ends up depending on two new ingredients: (1) The number of variables
xi that map to any particular variable yj is Ω(n/k) with probability at least 2−O(k). This
part involves the analysis of a random set-union process elaborated on below. (2) Once
the exact number of indices i such that xi maps to yj is fixed for every j ∈ [k] and none
of the sets is too small, the distribution of xa and xb is sufficiently independent to ensure
that the events f(xa) = P (xa) and f(xb) = P (xb) co-occur with probability much smaller
than the individual probabilities of these events. This part uses the hypercontractivity of
the hypercube but under an unusual noise operator corresponding to the “constant weight
operator”, fortunately analyzed by Polyanskiy [22]. Invoking his theorem we are able to
conclude the proof of this section.

We now briefly expand on the “random set-union” process alluded to above. Recall that
our process starts with n variables, and at each stage a pair of remaining variables is identified
and given the same name. (We may ignore the complications due to the complementation
of the form zi = 1 − zj for this part.) Equivalently we start with n sets X1, . . . , Xn with
Xi = {i} initially. We then pick two random sets and merge them. We stop when there
are k sets left and our goal is to understand the likelihood that one of the sets turn out to
be too tiny. (The expected size of a set is n/k and too tiny corresponds to being smaller
than n/(4k).) It turns out that the distribution of set sizes produced by this process has
a particularly clean description as follows: Randomly arrange the elements 1 to n on a
cycle and consider the partition into k sets generated by the set of elements that start with
a special element and end before the next special element as we go clockwise around the
cycle, where the elements in {1, . . . , k} are the special ones. The sizes of these partitions
are distributed identically to the sizes of the sets Sj ! For example, when k = 2 the two sets
have sizes distributed uniformly from 1 to n− 1. In particular the sets size are not strongly
concentrated around n/k - but nevertheless the probability that no set is tiny is not too
small and this suffices for our analysis.

Details of this analysis may be found in Section 4.

Organization

In Section 2 we start with some preliminaries including the main definitions and some of the
tools we will need later. In Section 3 we give a formal statement of our results. In Section 4
we present the local tester over all fields. In Section 5 we sketch our proof that over fields of
large (or zero) characteristic, local decoding is not possible. Finally in Section 6 we give a
local decoder over fields of small characteristic. Most analysis is omitted from this version
and included in the full version of this paper [29].
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2 Preliminaries

2.1 Basic notation

Fix a field F and an n ∈ N. We consider functions f : {0, 1}n → F that can be written as
multilinear polynomials of total degree at most d. We denote this space by F(n, d;F). The
space of all functions from {0, 1}n to F will be denoted simply as F(n;F). (We will simplify
these to F(n, d) and F(n) respectively, if the field F is clear from context.)

Given f, g ∈ F(n), we use δ(f, g) to denote the fractional Hamming distance between f
and g. I.e.,

δ(f, g) := Pr
x∈{0,1}n

[f(x) 6= g(x)]

For a family F ′ ⊆ F(n), we use δ(f,F ′) to denote ming∈F ′{δ(f, g)}. Given an f ∈ F(n)
and d ≥ 0, we use δd(f) to denote δ(f,F(n, d)).

2.2 Local Testers and Decoders

Let F be any field. We define the notion of a local tester and local decoder for subspaces of
F(n). These notions go back at least to the works of Goldreich and Sudan [12] and Katz
and Trevisan [14], though the exact definitions and paramaters may differ here.

I Definition 2.1 (Local tester). Fix q ∈ N and δ ∈ (0, 1). Let F ′ be any subspace of F(n).
We say that a randomized algorithm T is a (δ, q)-local tester for F ′ if on an input

f ∈ F(n), the algorithm does the following.
T makes at most q queries to f and either accepts or rejects.
(Completeness) If f ∈ F ′, then T accepts with probability at least 3/4.
(Soundness) If δ(f,F ′) ≥ δ, then T rejects with probability at least 3/4.

We say that a tester is adaptive if the queries it makes to the input f depend on the answers
to its earlier queries. Otherwise, we say that the tester is non-adaptive.

I Definition 2.2 (Local decoder). Fix q ∈ N and δ ∈ (0, 1). Let F ′ be any subspace of F(n).
We say that a randomized algorithm T is a (δ, q)-local decoder for F ′ if on an input

f ∈ F(n) and x ∈ {0, 1}n, the algorithm does the following.
T makes at most q queries to f and outputs b ∈ F.
If δ(f,F ′) ≤ δ, then the output b = f(x) with probability at least 3/4.

We say that a decoder is adaptive if the queries it makes to the input f depend on the
answers to its earlier queries. Otherwise, we say that the tester is non-adaptive.

2.3 Some basic facts about binomial coefficients

I Fact 2.3. For integer parameters 0 ≤ b ≤ a, let
(
a
≤b
)
denote the size of a Hamming ball of

radius b in {0, 1}a; equivalently,
(
a
≤b
)

=
∑
j≤b
(
a
j

)
. Then, we have(

a

≤ b

)
≤ 2aH(b/a)

where H(·) is the binary entropy function.

ITCS 2018
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2.4 Hypercontractivity theorem for spherical averages.

In this section, let R be the underlying field. Let η ∈ (0, 1) be arbitrary. We define a
smoothing operator Tη, which maps F(r) = {f : {0, 1}r → R} to itself. For F ∈ F(r), we
define TηF as follows

TηF (x) = E
J∈([r]

ηr)
[F (x⊕ J)]

where x⊕ J is the point y ∈ {0, 1}r obtained by flipping x at exactly the coordinates in J .
Recall that for any F ∈ F(r) and any p ≥ 1, ‖F‖p denotes Ex∈{0,1}r [|F (x)|p]1/p.
We will use the following hypercontractivity theorem of Polanskiy [22].

I Theorem 2.4 (Follows from Theorem 1 in [22]). Assume that η ∈ [1/20, 19/20] and
η0 = 1/20. For any F ∈ F(r), we have

‖TηF‖2 ≤ C · ‖F‖p

for p = 1 + (1− 2η0)2 and C is an absolute constant.

I Corollary 2.5. Assume that η0, η are as in the statement of Theorem 2.4 and let δ ∈ (0, 1)
be arbitrary. Say E ⊆ {0, 1}r s.t. |E| ≤ δ · 2r. Assume that (x′, x′′) ∈ {0, 1}r are chosen as
follows: x′ ∈ {0, 1}r and I ′ ∈

([r]
ηr

)
are chosen i.u.a.r., and we set x′′ = x′⊕ I ′. Then we have

Pr
x′,I′

[x′ ∈ E ∧ x′′ ∈ E] ≤ C · δ1+(1/40)

where C is the constant from Theorem 2.4.

Proof. Let F : {0, 1}n → {0, 1} ⊆ R be the indicator function of the set E. Note that we
have

Pr
x′,I′

[x′ ∈ E ∧ x′′ ∈ E] = E
x′,I′

[F (x′)F (x′ ⊕ I ′)] = E
x′

[F (x′)TηF (x′)] .

By the Cauchy-Schwarz inequality and Theorem 2.4 we get

E
x′

[F (x′)TηF (x′)] ≤ ‖F‖2 · C · ‖F‖p (1)

for p = 1 + (1− 2η0)2. Note that we have

‖F‖p ≤ δ
1/p = δ

1
1+(1−2η0)2

= δ
1

2(1−2η0(1−η0)) ≤ (
√
δ)1+min{η0,1−η0} =

√
δ

1+(1/20)

where for the last inequality we have used the fact that for η0 ∈ [0, 1] we have

1
1− 2η0(1− η0) ≥ 1 + 2η0(1− η0) ≥ 1 + min{η0, 1− η0}.

Putting the upper bound on ‖F‖p together with the fact that ‖F‖2 ≤
√
δ and (1), we

get the claim. J
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3 Results

We show upper and lower bounds for testing and decoding polynomial codes over grids.
All our upper bounds hold in the non-adaptive setting, while our lower bounds hold in the
stronger adaptive setting.

Our first result is that for any choice of the field F (possibly even infinite), the space of
functions F(n, d) is locally testable. More precisely, we show the following.

I Theorem 3.1 (F(n, d) has a local tester for any field). There exists a constant c <∞ and
polynomial p0(x) such that the following holds for every field F, every non-negative integer d,
every positive integer n and every real number ε > 0: The space F(n, d;F) has a non-adaptive
(ε, q)-local tester for q ≤ 2c·d · p0(1/ε).

In contrast, we show that the space F(n, d) is not locally decodable over fields of large
characteristic, even for d = 1.

I Theorem 3.2 (F(n, d) does not have a local decoder for large characteristic). For every
ε > 0 there exists cε > 0 such that the following holds: Let n ∈ N and let F be a field such
that either char(F) = 0 or char(F) ≥ n2. Then any adaptive (ε, q)-local decoder for F(n, 1;F)
must satisfy q ≥ cε · logn/ log logn.

Complementing the above result, we can show that if char(F) is a constant, then in fact
the space F(n, d) does have a local decoding procedure.

I Theorem 3.3 (F(n, d) has a local decoder for constant characteristic). There exists a
constant c < ∞ such that for every field F of characteristic p, every non-negative integer
d and every positive integer n, the space F(n, d;F) has a non-adaptive (2−c·p·d, 4p·d)-local
decoder.

4 A local tester for F(n, d) over any field

We now present our local tester and its analysis. The reader may find the overview from
Section 1.3 helpful while reading the below.

We start by introducing some notation for this section. Throughout, fix any field F. We
consider functions f : {0, 1}I → F where I is a finite set of positive integers and indexes into
the set of variables {Xi | i ∈ I}. We denote this space as F(I). Similarly, F(I, d) is defined
to be the space of functions of degree at most d over the variables indexed by I.

The following is the test we use to check if a given function f : {0, 1}I → F is close to
F(I, d).

Test Tk,I(fI)

Notation. Given two variables X and Y and a ∈ {0, 1}, “replacing X by a⊕ Y ” refers to
substituting X by Y if a = 0 and by 1− Y if a = 1.

If |I| > k, then
Choose a random a ∈ {0, 1} and distinct i0, j0 ∈ I at random and replace Xj0 by
a⊕Xi0 . Let f ′I denote the resulting restriction of fI .
Run Tk,I\{j0}(f ′I) and output what it outputs.

If |I| = k then
Choose a uniformly random bijection σ : I → [k].

ITCS 2018
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Choose an a ∈ {0, 1}k uniformly at random.
Replace each Xi (i ∈ I) with Yσ(i) ⊕ ai.
Check if the restricted function g(Y1, . . . , Yk) ∈ F(k, d) by querying g on all its inputs.
Accept if so and reject otherwise.

I Remark. It is not strictly necessary to choose a random bijection σ in the test Tk,I and
a fixed bijection σ : I → [k] would do just as well. However, the above leads to a cleaner
reformulation of the test.

I Observation 4.1. Test Tk,I has query complexity 2k.

I Observation 4.2. If fI ∈ F(I, d), then Tk,I accepts with probability 1.

The following theorem is the main result of this section and implies Theorem 3.1 from
Section 3.

I Theorem 4.3. For each positive integer d, there is a k = O(d) and ε0 = 1/2O(d) such that
for any I of size at least k + 1 and any fI ∈ F(I),

Pr [Test Tk,I rejects fI ] ≥
1

2O(d) ·min{δd(fI), ε0}.

Theorem 3.1 immediately follows from Theorem 4.3 since to get an (ε, 2O(d))-tester, we
repeat the test Tk,[n] t = 2O(d) · poly(1/ε) many times and accept if and only if each iteration
of the test accepts. If the input function f ∈ F(n) is of degree at most d, this test accepts
with probability 1. Otherwise, this test rejects with probability at least 3/4 for suitably
chosen t as above. The number of queries made by the test is 2k · t = 2O(d) · poly(1/ε).

5 Impossibility of local decoding when char(F) is large

In this section, we prove Theorem 5.3 which is a more detailed version of Theorem 3.2. Again
we remind the reader that an overview may be found in Section 1.3.

Let n be a growing parameter and F a field of characteristic 0 or positive characteristic
greater than n2. For the results in this section, it will be easier to deal with the domain
{−1, 1}n rather than {0, 1}n. Since there a natural invertible linear map that maps {0, 1} to
{−1, 1} (i.e. a 7→ 1− 2a), this change of input space is without loss of generality.

5.1 Local linear spans of balanced vectors
Let u ∈ Fn and U ⊆ Fn. For any integer t ∈ N, we say that u is in the t-span of U if it can
be written as a linear combination of at most t elements of U . For x ∈ {−1, 1}n, we use |x|
to denote the sum of the entries of x over Z. In this section, we wish to show that if the
vector 1n is in the t-span of balanced vectors, i.e., vectors x with |x| ≤ n/s then t is must be
growing as a function of s.

As explained earlier we first establish a bound on the size of the solutions of linear
equations in systems over Q with few variables or few constraints. This fact is well-known,
but we prove it here for completeness.

I Lemma 5.1. Let r, s ∈ N and let t = min{r, s}. Let Mx = u be a system of linear
equations with M ∈ {−1, 0, 1}r×s and u ∈ {−1, 0, 1}r.

If F is a field of characteristic zero and the system has a solution in Fs, then there exist
integers a1, . . . , as, b ∈ Z with |ai|, |b| ≤ t! such that xi = ai/b is a solution to Mx = u.
In particular, there is a solution in Qs.
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If F is a field of characteristic p and if the system has a solution in Fs, then there exist
integers a1, . . . , as, b ∈ Z with |ai|, |b| ≤ t! such that xi = ai/b (mod p) is a solution to
Mx = u. In particular, there is a solution in Fsp.

Proof omitted from this version.
We now turn to the main technical lemma of this section showing that 1n is not in linear

span of a small number of nearly balanced elements of {−1, 1}n.

I Lemma 5.2. Let n, s = s(n) ∈ N with s(n) ≤ n. Let S = {x ∈ {−1, 1}n | |x| ≤ n/s)}.
Then x0 = 1n is not in the t-span of S unless t ≥ log s/ log log s provided F is field of zero
characteristic or of characteristic p ≥ 2n2.

Proof. We first consider the case when F is of zero characteristic. Note that in this case Q ⊆ F.
Suppose x0 ∈ Span{x1, . . . , xt} with x0 =

∑n
i=1 cix

i. Note that the ci’s are expressible as
the solution to a linear system whose Mz = u where M and u have entries in {−1, 0, 1} and
M is a n× t matrix. By Lemma 5.1 we have that ci ∈ Q with |ci| ≤ t! (more specifically we
have ci = ai/b with |ai| ≤ t! and this implies |ci| ≤ t!). We thus have

n =

∣∣∣∣∣∣
n∑
j=1

x0
j

∣∣∣∣∣∣ =

∣∣∣∣∣∣
t∑
i=1

ci

n∑
j=1

xij

∣∣∣∣∣∣ ≤
t∑
i=1
|ci| ·

∣∣∣∣∣∣
n∑
j=1

xij

∣∣∣∣∣∣ ≤
t∑
i=1

(t!) · (n/s) ≤ (t+ 1)! · (n/s).

We thus conclude that (t+ 1)! ≥ s and thus t ≥ log s/ log log s.
In the case of finite field F, we proceed as above and let x0 =

∑t
i=1 cix

i. By Lemma 5.1
we have that there are integers ai, b with |ai|, |b| ≤ t! such that ci = ai/b (mod p) is a
solution to x0 =

∑t
i=1 cix

i. Now consider b · n and we get b · n =
∑t
i=1 ai

∑n
j=1 x

i
j (mod p).

We now show that this implies (t + 1)! ≥ min{p/(2n), s} = s (where the equality follows
from p ≥ 2n2 and s ≤ n). Assume (t+ 1)! ≤ p/(2n). Then we have n ≤ |b · n| ≤ t! · n < p/2
over the integers, and

∣∣∣∑t
i=1 ai

∑n
j=1 x

i
j

∣∣∣ ≤ (t + 1)!(n/s) < p/2 also over the integers. We
again conclude that n ≤ (t+ 1)!(n/s) and so (t+ 1)! ≥ s as claimed. The lemma follows. J

We now state the main result of this section which immediately implies Theorem 3.2.

I Theorem 5.3. Let n ∈ N be a growing parameter and ε ∈ (0, 1) such that ε ≥ 2 exp(−n/2s2)
for some s ∈ N with 100 ≤ s ≤

√
n/100. Let F be any field such that either char(F) = 0 or

char(F) ≥ n2. Then any adaptive (ε, q)-local decoder for F(n, 1) that corrects an ε fraction
of errors must satisfy q = Ω(log s/ log log s).

Proof omitted from this version.

6 Local decoding when char(F) is small

In this section, we give a local decoder over fields of small characteristic. An overview of this
construction may be found in Section 1.3.

Let p be a prime of constant size and let F be any (possibly infinite) field of characteristic
p. Let d be the degree parameter and k be the smallest power of p that is strictly greater
than d. Note that k ≤ pd. We show that the space F(n, d) has a (1/(4 ·

(2k
k

)
),
(2k
k

)
)-local

decoder, hence proving Theorem 3.3.
The main technical tool we use is a suitable linear relation on the space F(2k, d), which we

describe now. We say that a set S ⊆ {0, 1}2k is useful if for every polynomial G ∈ F(2k, d),
G(02k) is determined by the restriction of the function G to the inputs in S. Let B ⊆ {0, 1}2k

denote the set of all balanced inputs (i.e. inputs of Hamming weight exactly k).
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I Lemma 6.1. Fix d, k as above. Then the set B ⊆ {0, 1}2k of balanced inputs is useful.

The proof of the above lemma will use Lucas’ theorem, which we recall below.

I Theorem 6.2 (Lucas’ theorem). Let p be any prime and a, b ∈ N. Let a1, . . . , a` ∈
{0, . . . , p− 1} and b1, . . . , b` ∈ {0, . . . , p− 1} be the digits in the p-ary expansion of a and b,
i.e., a =

∑
j∈[`] ajp

j−1 and b =
∑
j∈[`] bjp

j−1. Then, we have(
a

b

)
≡
∏
i≤`

(
ai
bi

)
(mod p)

where
(
ai
bi

)
is defined to be 0 if ai < bi.

I Corollary 6.3. For i ∈ {0, . . . , d}, we have
(
d+k−i
k−i

)
6≡ 0 (mod p) if and only if i = 0.

Proof omitted from this version.

Proof of Lemma 6.1. Fix any G ∈ F(2k, d). Assume that

G(Y1, . . . , Y2k) =
∑

I⊆[2k]:|I|≤d

αIY
I

where Y I denotes
∏
i∈I Yi.

Let B′ denote all those inputs in B where the last k−d bits are set to 0. We will compute
the sum of G on inputs from B′. But let us first consider a monomial Y I and see what its
sum over y ∈ B′ looks like. The monomial evaluates to 1 on y ∈ B′ if yi = 1 for every i ∈ I,
and evaluates to 0 otherwise. There are exactly

(
d+k−|I|
k−|I|

)
choices of y ∈ B′ that satisfy yi = 1

for every i ∈ I. Thus summing over y ∈ B′ we get
∑
y∈B′ y

I =
(
d+k−|I|
k−|I|

)
. Summing over all

monomials we get:∑
y∈B′

G(y) =
∑

I⊆[2k]:|I|≤d

αI ·
∑
y∈B′

Y I

=
∑

I⊆[2k]:|I|≤d

αI ·
(
d+ k − |I|
k − |I|

)
(2)

By Corollary 6.3, it follows that for i ∈ {0, . . . , d}, we have(
d+ k − i
k − i

)
6≡ 0 (mod p)

if and only if i = 0 and so
∑
y∈B′ G(y) =

(
d+k
k

)
· α∅. Let c =

(
d+k
k

)
(mod p). We have

c ∈ F∗p ⊆ F∗ and in particular c is invertible in F, and
∑
y∈B′ G(y) = c · α∅ = c · G(02k).

Hence, we get G(02k) = c−1 ·
∑
y∈B′ G(y). Therefore, G(02k) is determined by the restriction

of G to B′ and hence also by its restriction to B. J

We now show that F(n, d) has a (1/(4 ·
(2k
k

)
),
(2k
k

)
)-local decoder.

The decoder. We now give the formal description of the decoder. Let the decoder be given
oracle access to f with the promise that f is 1/(4 ·

(2k
k

)
)-close to some F ∈ F(n, d). Let the

input to the decoder be x ∈ {0, 1}n. The problem is to find F (x).
We describe the decoder below:
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Decoder Df
k (x).

Partition [n] into 2k parts by choosing a uniformly random map h : [n]→ [2k]. I.e. each
h(j) is chosen i.u.a.r. from [2k].
For i ∈ [2k] and j ∈ [n] such that h(j) = i, identify Xj with Yi ⊕ xj .
Let g(Y1, . . . , Y2k) and G(Y1, . . . , Y2k) be the restrictions of f and F respectively. Assum-
ing g|B = G|B , query g at all inputs in B and decode G(02k) from G|B . Output the value
decoded.

The main theorem of this section is the following. Note that this implies Theorem 3.3.

I Theorem 6.4. Let F be a field of characteristic p. For integer d ≥ 0, let k be the smallest
power of p greater than d. Then the decoder Dk is a (1/(4 ·

(2k
k

)
),
(2k
k

)
)-local decoder for

F(n, d;F).

Proof omitted from this version.
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