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Abstract
We consider the problem of learning a discrete distribution in the presence of an ε fraction of
malicious data sources. Specifically, we consider the setting where there is some underlying
distribution, p, and each data source provides a batch of ≥ k samples, with the guarantee that at
least a (1− ε) fraction of the sources draw their samples from a distribution with total variation
distance at most η from p. We make no assumptions on the data provided by the remaining ε
fraction of sources – this data can even be chosen as an adversarial function of the (1−ε) fraction
of “good” batches. We provide two algorithms: one with runtime exponential in the support size,
n, but polynomial in k, 1/ε and 1/η that takes O((n + k)/ε2) batches and recovers p to error
O(η + ε/

√
k). This recovery accuracy is information theoretically optimal, to constant factors,

even given an infinite number of data sources. Our second algorithm applies to the η = 0 setting
and also achieves an O(ε/

√
k) recover guarantee, though it runs in poly((nk)k) time. This second

algorithm, which approximates a certain tensor via a rank-1 tensor minimizing `1 distance, is
surprising in light of the hardness of many low-rank tensor approximation problems, and may be
of independent interest.
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1 Introduction

Consider the following real-world problem: suppose there are millions of people texting
away on their phones, and you wish to learn the distribution of words corresponding to a
given mis-typed word, or the distribution of words that follow a given sequence, etc. The
challenge of this setup is twofold. First, each person provides far too little data to accurately
learn these distributions based solely on one person’s data, hence a successful learning or
estimation algorithm must combine data from different sources. Second, these sources are
heterogeneous – some people have wider fingers than others, and the nature of typos likely
differs between people. Further complicating this heterogeneity is the very real possibility
that a small but not negligible fraction of the sources might be operated by adversarial agents
whose goal is to embarrass the learning algorithm either as a form of corporate sabotage or
as a publicity stunt. In much the same way as “Google bombing” or “link bombing” was
used to associate specific websites with certain terms – perhaps the most famous of which
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47:2 Learning Discrete Distributions from Untrusted Batches

resulting in the George W. Bush biography being the top Google and Yahoo! hit when
searching for the term “miserable failure” back in Sept. 2006 – it seems likely that certain
groups of people would collectively attempt to influence the auto-correct or auto-suggest
responses to certain misspellings.

This general problem of learning or estimation given data supplied by a large number
of individuals has gained attention in the more practical communities under the keyword
Federated Learning (see e.g. [24, 17] and Google research blog post [23]), and raises a number
of pertinent questions: What notions of privacy can be maintained while leveraging everyone’s
data? Do we train a single model or try to personalize models for each user?

In this work, we consider a basic yet fundamental problem in this space: learning a
discrete distribution given access to batches of samples, where an unknown (1− ε) fraction
of batches are drawn i.i.d. from distributions that each has total variation (equivalently, `1)
distance at most η from some target distribution, p, and we make no assumptions about
the data contained in the remaining ε fraction of batches. The data in this “bad” ε fraction
of the batches can even be chosen adversarially as a function of the “good” data. This
problem is also a natural problem in the space of “robust statistics”, and the recent line of
recent work from the theory community on estimation and learning with untrusted data
(e.g. [20, 7, 31, 6, 30, 8]), and we outline these connections in Section 1.2.

We begin by summarizing our main results and discuss the connections with related
work. We conclude the introduction with a discussion of several relevant directions for future
research.

1.1 Summary of Results
The following theorem characterizes our tight information theoretic result for robustly learning
a discrete distribution in the setting where a certain fraction of batches of data are arbitrarily
corrupted:

I Theorem 1. Let p denote a distribution supported on n domain elements, and fix parameters
ε ∈ (0, 1/900), η > 0, failure probability δ ∈ (0, 1), and integer k ≥ 1. Suppose we have access
to m = O((n+ k + log(1/δ))/ε2) batches of data such that at least m(1− ε) of the batches
consist of ≥ k i.i.d. draws from some distribution with `1 distance at most η from p. There
exists an algorithm that runs in time poly (2n, k, 1/ε, 1/η, log(1/δ)) and, with probability at
least 1−δ, returns a distribution p̂ satisfying ‖p− p̂‖1 = O(η+ε/

√
k), where the “O” notation

hides an absolute constant.

The recovery guarantees of the above theorem are information theoretically optimal, even
given infinite data, as the following lower bound formalizes:

I Theorem 2. In the setup of Theorem 1 for integers k ≥ 1 and n ≥ 2 and parameters
ε ∈ (0, 1/2) and η ∈ [0, 1/4), no algorithm can, with probability greater than 1/2, return a
distribution p̂ satisfying ‖p− p̂‖1 < 2η + ε/

√
2k, even in the limit as the number of batches,

m, tends to infinity.

To provide some intuition for these results, consider the setting where η = 0, namely
where the (1 − ε) fraction of “good” batches all consist of k i.i.d. draws from p. In this
case, the above results claim an optimal recovery error of Θ(ε/

√
k). Intuitively, this is due

to the following “tensorization” property of the total variation distance, which we show
in Appendix B: given two distributions p and q with ‖p − q‖1 = α = O(1/

√
k), the `1

distance between their kth tensor products, ‖p⊗k − q⊗k‖1, is at least Θ(α
√
k). Here, the

kth tensor product p⊗k denotes the nk sized object, indexed by a k-tuple i1, . . . , ik, with
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p⊗ki1,...,ik =
∏k
j=1 p(ij). This lower bound on the distance between the kth tensor products

implies that, even though the adversary can alter the observed k-fold product distribution of
p by ε (w.r.t. the `1 or total variation distance), any two k-tensors with distance ≤ ε that
each correspond to the kth tensor products of distributions will correspond to distributions
whose distance is only O(ε/

√
k), motivating our claimed recovery guarantees.

The algorithm to which the guarantees of Theorem 1 apply proceeds by reducing the
problem at hand to ≤ 2n instances of the problem of learning a Bernoulli random variable in
this setting of untrusted batches. Specifically, for each of the ≤ 2n possible subsets of the
observed domain elements, the algorithm attempts to estimate the probability mass that p
assigns to that set. The algorithm then combines these ≤ 2n estimates to estimate p. In
Section 1.3, we discuss the possibility of an efficient variant of this algorithm that proceeds
via estimating these weights for only a polynomial number of subsets. We also note that the
requirement that ε ≤ 1/900 can be relaxed slightly at the expense of readability of the proof.

Our proof of the lower bound (Theorem 2) proceeds by providing a construction of
an explicit pair of indistinguishable instances, one corresponding to a distribution p, one
corresponding to a distribution q, with ‖p−q‖1 = 4η+2ε/

√
2k. Each instance consists of two

parts – a distribution from which the “good” batches of data are drawn, and a distribution
over k-tuples of samples from which the ε fraction of “bad” batches are drawn. For the pair
of instances constructed, the mixture of the good and bad batches corresponding to p is
identical to the mixture of the good and bad batches corresponding to q.

In addition to the algorithm of Theorem 1, which runs in time exponential in the support
size, we provide a second algorithm in the setting where η = 0, with runtime (nk)O(k) that
also achieves the information theoretically optimal recovery error of O(ε/

√
k).

I Theorem 3. As in the setup of Theorem 1, given m = (nk)O(k) log(1/δ)/ε2 batches of
samples, of which a (1−ε) fraction consist of ≥ k i.i.d. draws from a distribution p, supported
on ≤ n elements, there is an algorithm that runs in time poly((nk)k, 1/ε, log(1/δ)) which,
with probability at least 1− δ, returns a distribution p̂ such that ‖p− p̂‖1 = O(ε/

√
k).

The algorithm to which the above theorem applies proceeds by forming the k-tensor
corresponding to the empirical distribution over the m batches, with each batch regarded as
a k-tuple. The algorithm then efficiently computes a rank-1 k-tensor which approximates this
empirical tensor in the (element-wise) `1 sense. The ability to efficiently (in time polynomial
in the size of the k-tensor) compute this rank-1 approximation is rather surprising, and
crucially leverages the structure of the empirical k-tensor guaranteed by the setup of our
problem. Indeed the general problem of finding the best rank-1 approximation (in either
an `1 or `2 sense) of a k-tensor is NP-hard for k ≥ 3 [13]. Additionally, even for various
“nice” random distributions of 3-tensors, efficient algorithms for related rank-1 approximation
problems would yield efficient algorithms for recovering planted cliques of size o(

√
n) from

G(n, 1/2) [9].1

1.2 Related Work
There are a number of relevant lines of related work, including work from the theoretical
computer science and information theory communities on learning, estimating and testing
properties of distributions or collections of distributions, the classical work on “robust

1 Specifically, [9] shows that given an n× n× n 3-tensor A constructed from an instance of planted-clique,
the ability to efficiently find a unit vector v that nearly maximizes max‖v‖=1

∑
i,j,k

vivjvkAi,j,k would
yield an algorithm for finding cliques of size at least O(n1/3 polylog(n)) planted in G(n, 1/2).
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statistics”, the recent line of work from the computer science community on robust learning
and estimation with untrusted data and “adversarial” machine learning, and the very recent
work from the more applied community on “federated learning”. From a technical perspective,
there are also connections between our work and the body of work on tensor factorizations,
and low rank matrix and tensor approximations with respect to the `1 norm. We briefly
summarize these main lines of related work.

1.2.1 Learning and Testing Discrete Distributions
The problem of learning a discrete distribution given access to independent samples has been
intensely studied over the past century (see, e.g. [10, 18] and the references therein). For
distributions supported on n elements, given access to k i.i.d. samples, minimax optimal
loss rates as a function of n and k have been considered for various loss functions, including
KL-divergence [4], `2 [15], χ2 loss [15]. For `1 error (equivalently, “total variation distance”
or “statistical distance”), it is easy to show that the expected worst-case error is Θ(

√
n/k),

and the recent work [15] establishes the exact first-order coefficients of this loss. Beyond this
worst-case setting, there has also been significant work considering this learning problem
with the goal of developing “instance optimal” algorithms that leverage whatever structure
might be present in the given distribution (see e.g. [28, 35]).

In the context of work on testing distributional properties from the theoretical computer
science community, the work closest to this current paper is the work of Levi, Ron, and
Rubinfeld [21], which considers the following task: given access to independent draws from
each of m distributions, distinguish whether all m distributions are identical (or very close),
versus the case that there is significant variation between the distributions – namely that
the average distance to any single distribution is at least a constant. We note that in this
work, as in much of the distribution testing literature, the results are extremely sensitive to
assumption that in the “yes” case, the distributions are all extremely close to one distribution.
For example, the task of distinguishing whether the distributions have average distance at
most α1 from a single distribution, versus having average distance at least α2, seems to be a
significantly harder problem when α1 is not asymptotically smaller than α2.2 In a related
vein, the recent work [32] considers the setting of drawing k i.i.d. samples from each of m
possibly heterogeneous distributions, and shows that the set of such distributions can be
accurately learned. For example, if each distribution is a Bernoulli random variable with
the ith distribution corresponding to some probability pi, the histogram of the pi’s can be
recovered to error O(1/k), rather than the Θ(1/

√
k) that would be given by the empirical

estimates. Both [21] and [32], however, crucially rely on the assumption that the data consists
of independent draws from the m distributions, and the algorithms and results do not extend
to the present setting where some non-negligible fraction of the data is arbitrary/adversarial.

1.2.2 Robust Statistics, Learning with Unreliable Data, and Adversarial
Learning

The problem of estimation and learning in the presence of contaminated or outlying data
points has a history of study in the Statistics community, dating back to early work of
Tukey [33] (see also the surveys [14, 12]). Recently, these problems have gained attention

2 For example, testing whether two distributions supported on ≤ n elements are identical, vs have distance
at least 0.1 requires Θ(n2/3) samples, whereas distinguishing whether the two distributions have distance
≤ 0.1 versus ≥ 0.9 requires Θ(n/ logn) samples. [2, 5, 34].
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from both the applied and theoretical computer science communities. On the applied side,
the interest in “adversarial” machine learning stems from the very real vulnerabilities of
many deployed learning systems to “data poisoning” attacks in which an adversary selectively
alters or plants a small amount of carefully chosen training data that significantly impacts
the resulting trained model (see e.g. [27, 26, 36]).

On the theory side, recent work has revisited some of the classical robust statistics settings
with an eye towards 1) establishing the information theoretic dependencies between the
fraction of corrupted data, dimension of the problem, and achievable accuracy of returned
model or estimate, and 2) developing computationally tractable algorithms that approach
or achieve these information theoretic bounds. These recent works include [20, 7, 8] who
consider the problem of robustly estimating the mean and covariance of high-dimensional
Gaussians (and other distributions such as product distributions), and [31] who consider
a sparse ratings aggregation setting. Other learning problems, such as robustly learning
halfspaces [16], robust linear regression [3] and more general convex optimization [6] have
also been considered in similar settings where some fraction of the data is drawn from a
distribution of interest, and no assumptions are made about the remaining data. This latter
work and [25] also considers several models for which strong positive results can be attained
even when the majority of the data is arbitrary (i.e. ε > 1/2).

The present setting, in which data arrives in batches, with some batches corresponding
to “good” data represents a practically relevant instance of this more general robust learning
problem, and we are not aware of previous work from the theory community that explicitly
considers it.3 The recent attention on “federated learning” [24, 17, 23] focuses on a similar
setting where data is presented in batches (corresponding to individual users), although the
current emphasis is largely on privacy and communication concerns, as opposed to robustness.

1.2.3 Low Rank Approximations in `1

The algorithm underlying Theorem 3 efficiently computes a rank-1 approximation of the
empirical k-tensor of data, where the recovered rank-1 tensor is close in the (element-wise) `1
sense. Both the problems of computing the best low-rank `1 approximation of a matrix, and
the problems of computing the best rank-1 approximation of a k-tensor for k ≥ 3 are NP-
hard [11, 13]. Nevertheless, recent work has provided efficient algorithms for returning good
(in a competitive-analysis sense) low-rank approximations of matrices in the `1 norm [29], and
for efficiently recovering low-rank approximations of special classes of tensors, including those
with random or “incoherent” factors (see e.g. [19, 22]). Still, for many tensor decomposition
problems over various families of random nearly low-rank tensors – such as those obtained
from instances of planted-clique [9] – these decomposition problems remain mysterious.

1.3 Future directions and discussion
Two concrete open directions raised by this work are 1) understanding the computational
hardness of this basic learning question, and 2) extending the information theoretic and
algorithmic results to the setting where a minority of the batches of data are “good”, which
generalizes the problem of robustly learning a mixture of distributions. Before discussing
these problems, we note that there are a number of other practically relevant related questions,

3 One could view each batch of k samples as a single k-dimensional draw from a product of multinomial
distributions, or as a k-sparse sample from an n-dimensional product distribution, although the results
of previous work do not yield strong results for these settings.

ITCS 2018
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including the extent to which this problem can be solved while maintaining some notion of
privacy for each batch/user, and considering other basic learning and estimation tasks in
this batched robust setting.

1.3.1 An Efficient Algorithm?
Recall that the algorithm of Theorem 1 has a linear sample complexity (treating ε as fixed),
yet requires a runtime exponential in n. The algorithm of Theorem 3 requires more data,
but runs in time (nk)O(k), and only applies to the clean but less practically relevant setting
where η = 0. One natural question is whether there exists an algorithm that achieves both
the linear sample complexity and the (nk)O(k) runtime. Alternately, does there exist an
algorithm with data requirements and runtime that are polynomial in all the parameters,
n, k, 1/ε, and achieves the optimal recovery guarantees even in the η = 0 regime? Or are
there natural barriers to such efficiency or connections to other problems that we believe to
be computationally intractable?

One natural approach to yielding an efficient algorithm is via a variant of our first
algorithm. At a high level, our algorithm proceeds by recovering ε/

√
k-accurate estimates of

the probability mass of each of the 2n possible subsets of the n domain elements, and then
recovering a distribution consistent with these estimates via a linear program. A natural
approach to improving the running time of the algorithm is to find an efficient separation
oracle for this linear program. Alternately, one could even imagine recovering ε/

√
k-accurate

estimates of the mass of a random poly(k, n) sized set of subsets of the domain and then
using these to recover the distribution. If the error in each estimate were independent, say
distributed according to N(0, ε2/k), then a polynomial (and even linear!) number of such
measurements would suffice to recover the distribution to error O(ε/

√
k). On the other hand,

if an adversary is allowed to choose the errors in each measurement, trivially, an exponential
number would be required. In our setting, however, the adversaries are somewhat limited in
their ability to corrupt the measurements, and it is plausible that such an approach could
work, perhaps both in practice and theory.

1.3.2 The small-α regime
Our positive results (Theorems 1 and 3) assume that the fraction of adversarial data, ε, is
relatively small (at most of order 10−3). While this assumption can be slightly relaxed by
carefully adjusting the constants in the proofs, it is also natural to ask: what can we do
if ε is much larger and even close to 1? This regime is examined in [6, 25]. It is clearly
impossible to estimate the distribution in question to a nontrivial precision in the setting
where ε ≥ 1/2 due to the symmetry between the real distribution and the one chosen by
the adversary. Nevertheless, two learning frameworks were proposed for this case in [6]: the
list-decodable learning framework (first introduced by Balcan et al. [1]), in which the learning
algorithm is allowed to output multiple answers to the learning problem (perhaps 1/(1− ε)),
and the semi-verified model, where a small amount of reliable/verified data is available. It
seems plausible that variants of our algorithms that attempt to recover a rank 1/(1 − ε)
approximation to the empirical tensor might be successful, though the algorithm and analysis
are certainly not immediate.

1.4 Organization of Paper
In Section 2 we establish our information theoretic lower bound, Theorem 2, which bounds the
accuracy of the recovered distribution and applies even in the infinite data setting. Section 3
describes our information theoretically optimal algorithm that has runtime exponential in the
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support size, n, and establishes Theorem 1. Section 4 describes our more efficient algorithm,
with runtime (nk)O(k), which directly approximates the k-tensor of observations via a rank-1
tensor, establishing Theorem 3. We conclude this section with a brief summary of the
notation that will be used throughout the remainder of the paper.

1.5 Notation
Throughout, we use p to denote a discrete distribution of support size at most n. Without
loss of generality, we assume that the support of p is [n] = {1, 2, . . . , n}. Thus, p can also be
interpreted as a probability vector (p1, p2, . . . , pn) ∈ Rn, where pi denotes the probability of
element i. For a set S ⊆ [n], we adopt the shorthand notation p(S) =

∑
i∈S pi to denote the

total probability mass assigned to elements of S.
Let p⊗k denote the k-fold product distribution corresponding to p, which is the kth tensor

power of vector p. Each entry of p⊗k is indexed by k indices i1, i2, . . . , ik ∈ [n], and

p⊗ki1,i2,...,ik = pi1pi2 · · · pik .

More generally, a nk-tensor is a k-dimensional array in which each entry is indexed by k
elements in [n]. The marginal of nk-tensor A is the vector a ∈ Rn defined as

ai =
∑

i2,...,ik∈[n]

Ai,i2,...,ik .

The i-th slice of A is the nk−1-tensor obtained by restricting the first index of A to i.
A probability vector (resp. probability tensor) is a vector (resp. tensor) whose entries are

nonnegative and sum to 1. Note that a probability nk-vector defines a probability distribution
on [n]k. Moreover, its marginal is the marginal distribution of the first component, and its
i-th slice (after normalization) is the conditional distribution of the other k − 1 components
given that the first component equals i.

The learning algorithm is given m batches of data, each of which is a k-tuple in [n]k.
Among the m batches, m(1− ε) are “good” in the sense that each of them is drawn from
p̃⊗k for some distribution p̃ with ∆(p, p̃) ≤ η.4 The other mε batches are chosen arbitrarily
after the m(1− ε) good batches are drawn. The objective is to output a distribution q such
that ∆(p, q) is small. Here ∆(p, q) stands for the total variation distance between p and q,
i.e., one half of the `1-distance between vectors p and q:

∆(p, q) := 1
2 ‖p− q‖1 = 1

2

n∑
i=1
|pi − qi| = max

S⊆[n]
[p(S)− q(S)] .

2 Information Theoretic Lower Bound

In this section we establish Theorem 2, showing that it is impossible to learn p to an
o(η + ε/

√
k) precision in `1 distance, even for distributions supported on 2 domain elements.

This lower bound holds even if the learning algorithm is given unlimited computation power
and access to infinitely many batches, i.e., the input of the algorithm is simply the mixture
distribution (1−ε)P+εN , where P is a mixture of k-fold product distributions of distributions
that are η-close to p in the total variation distance, and N is a probability nk-tensor that
corresponds to the distribution of the adversarial batches.

4 The distribution p̃ may vary for different good batches.

ITCS 2018
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I Lemma 4. For integer k ≥ 1 and parameters ε ∈ (0, 1/2) and η ∈ [0, 1/4), there are
Bernoulli distributions p, q, p′, q′, together with two probability 2k-tensors N (p) and N (q),
such that:
1. ∆(p, q) = 2η + ε/

√
2k.

2. ∆(p, p′) = ∆(q, q′) = η. item (1− ε)p′⊗k + εN (p) = (1− ε)q′⊗k + εN (q).

Lemma 4 implies that given the distribution (1− ε)p′⊗k + εN (p) = (1− ε)q′⊗k + εN (q) as
input, the algorithm cannot determine whether the underlying distribution is p or q. This
establishes the Ω(η + ε/

√
k) lower bound in Theorem 2.

Proof of Lemma 4. Since ε/
√

2k < ε < 1/2, by Lemma 11, for Bernoulli distributions p′
and q′ with means (1− ε/

√
2k)/2 and (1 + ε/

√
2k)/2, it holds that ∆(p′, q′) = ε/

√
2k and

∆(p′⊗k, q′⊗k) ≤ ε. Let p and q be Bernoulli distributions with means (1− ε/
√

2k)/2− η and
(1 + ε/

√
2k)/2 + η.5 Then the distributions clearly satisfy the first two conditions.

Let A be the entrywise maximum of p′⊗k and q′⊗k, i.e., Ai = max(p′⊗ki , q′
⊗k
i ) for every

i ∈ [2]k. Let α denote the sum of entries in A. Then, α = 1+∆(p′⊗k, q′⊗k) ≤ 1+ε ≤ 1/(1−ε).
Define N (p) =

[
A/α− (1− ε)p′⊗k

]
/ε and N (q) =

[
A/α− (1− ε)q′⊗k

]
/ε. Then the third

condition is met, and it remains to prove that N (p) and N (q) are probability tensors.
Note that the elements in N (p) sum to (α/α − (1 − ε) · 1)/ε = 1. Moreover, since

α ≤ 1/(1 − ε), N (p)
i = Ai/α − (1 − ε)p′⊗ki ≥ (1 − ε)(Ai − p′⊗ki ) ≥ 0 for any i ∈ [2]k. This

shows that N (p) and N (q) are probability tensors and finishes the proof. J

3 An Information Theoretically Optimal Algorithm

In this section, we present an algorithm that approximates the distribution to an inform-
ation theoretically optimal O(η + ε/

√
k) accuracy using O((n + k + ln(1/δ))/ε2) batches.

The algorithm runs in time poly(2n, k, 1/ε, 1/η, ln(1/δ)). In particular, the algorithm is
computationally efficient if the distribution has a relatively small support.

Our approach is to reduce the problem to learning Bernoulli distributions: we estimate
the probability mass of any subset of the support to an O(η + ε/

√
k) accuracy, and output

a distribution that is consistent with the measurements. Then the total variation distance
between our output and the true distribution would also be upper bounded by O(η + ε/

√
k).

In the following we define a subroutine that efficiently estimates p(S), the probability
mass that p assigns to set S ⊆ [n]. Given batches x1, x2, . . . , xm ∈ [n]k, the algorithm
counts the number of batches that contain exactly i elements in S (0 ≤ i ≤ k) and obtains
a distribution fS over {0, 1, . . . , k}. Then it outputs (i + 2)η for some 0 ≤ i ≤ 1/η − 4 as
the estimation, if there is a mixture of binomial distributions with success probabilities in
interval [iη, (i+ 4)η] such that its `1 distance to fS is upper bounded by O(ε).

Note that the mathematical program (8) can be transformed to an equivalent linear
program, and therefore can be efficiently solved.

The following lemma bounds the difference between the estimation
BinomialEst((xi)i∈[m], S, ε, η) and p(S).

I Lemma 5. Suppose that S ⊆ [n], ε ∈ (0, 1/900), and η, δ ∈ (0, 1). For some m =
O((k+ ln(1/δ))/ε2), x1, x2, . . . , xm are m batches chosen as in the setup of Theorem 1. With
probability 1− δ over the randomness of the m(1− ε) good batches,∣∣BinomialEst((xi)i∈[m], S, ε, η)− p(S)

∣∣ ≤ 3η + 60ε/
√
k.

5 p and q are well defined since ε/(2
√

2k) + η < 1/4 + 1/4 = 1/2.
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Algorithm 1: BinomialEst((xi)i∈[m], S, ε, η)
Input: Batches x1, x2, . . . , xm ∈ [n]k, set S ⊆ [n], and parameters ε, η.
Output: An estimation of p(S).

1 for i = 1, 2, . . . ,m do
2 cnti ←

∑k
j=1 I {xi,j ∈ S};

3 for i = 0, 1, . . . , k do
4 fSi ← 1

m

∑m
j=1 I {cntj = i};

5 tot← 4η/(ε/k);
6 for i = 0, 1, . . . , 1/η − 4 do
7 return (i+ 2)η if the following mathematical program is feasible:
8

find α0, α1, . . . , αtot

subject to ∆

 tot∑
j=0

αjB (k, iη + jε/k) , fS
 ≤ 2ε

tot∑
j=0

αj = 1

αj ≥ 0, ∀j ∈ {0, 1, . . . , tot} (1)

Here the “O” notation hides an absolute constant.

Proof of Lemma 5. Let I ⊆ [m] denote the indices of the m(1 − ε) good batches and
let I be its complement. Define distributions p̂S and δS over {0, 1, . . . , k} as: p̂Si =
1
|I|
∑
j∈I I {cntj = i} and δSi = 1

|I|
∑
j∈I I {cntj = i} . Then the distribution fS defined in

Algorithm 1 can be rewritten as fS = (1− ε)p̂S + εδS .

Concentration of p̂S. For each good batch j ∈ I, let θj denote the probability of set S in the
actual distribution from which batch j is drawn. By the assumption that the underlying
distribution of each good batch is η-close to the target p, we have |θj − p(S)| ≤ η.
Define pS as the uniform mixture of binomial distributions B(k, θj) for j ∈ I, i.e.,
pS = 1

|I|
∑
j∈I B(k, θj). Since p̂S denotes the frequency of |I| = Ω(m) samples, exactly

one of which is drawn from B(k, θj) for each j ∈ I, for some m = O((k + ln(1/δ))/ε2), it
holds with probability 1− δ that ∆(pS , p̂S) ≤ ε/2. It follows that

∆(pS , fS) ≤ ∆(pS , p̂S) + ∆(p̂S , fS) = ∆(pS , p̂S) + ε∆(p̂S , δS) ≤ 3ε/2.

Feasibility of mathematical program (8). Let i∗ = bp(S)/ηc − 2. We show that with prob-
ability 1− δ, the mathematical program (8) is feasible for i = i∗.
Since |(i∗ + 2)η − p(S)| ≤ η and |θj − p(S)| ≤ η, it holds for any j ∈ I that i∗η ≤ θj ≤
(i∗ + 4)η. Let θ̃j be the value among {i∗η + tε/k : t ∈ {0, 1, . . . , tot}} that is closest to θj .
By definition, we have |θ̃j − θj | ≤ ε/(2k), which implies that

∆(B(k, θj), B(k, θ̃j)) ≤ k · ε/(2k) = ε/2.
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Let p̃S = 1
|I|
∑
j∈I B(k, θ̃j). Then we have

∆(pS , p̃S) ≤ 1
|I|
∑
j∈I

∆(B(k, θj), B(k, θ̃j)) ≤ ε/2,

and it follows that with probability 1− δ,

∆(p̃S , fS) ≤ ∆(pS , p̃S) + ∆(pS , fS) ≤ ε/2 + 3ε/2 = 2ε.

Note that this naturally defines a feasible solution to the mathematical program (8) for
i = i∗: for each t ∈ {0, 1, . . . , tot}, αt = 1

|I|
∑
j∈I I

{
θ̃j = i∗η + tε/k

}
.

Approximation guarantee. Let x0 denote BinomialEst((xi)i∈[m], S, ε, η). In the following we
prove that, with probability 1− δ, x0 is a good approximation of p(S).
Recall that pS = 1

|I|
∑
j∈I B(k, θj) is a mixture of binomial distributions with success

probabilities in [p(S) − η, p(S) + η]. Moreover, by definition of procedure BinomialEst,
fS is 2ε-close to a mixture of binomial distributions with success probabilities that lie in
[x0 − 2η, x0 + 2η]. Then the inequality ∆(pS , fS) ≤ 3ε/2, which holds with probability
1− δ, further implies that the two mixtures above are 4ε-close to each other.
Let ε′ = 60ε/

√
k. Note that our assumption ε < 1/900 implies that ε′ < 1/(15

√
k). Now

suppose for a contradiction that |x0− p(S)| > 3η+ ε′. Without loss of generality, we have
x0 > p(S)+3η+ε′, or equivalently, x0−2η > p(S)+η+ε′. Applying the contrapositive of
Lemma 13 with parameters ε = ε′, p = p(S)+η and q = x0−2η gives a contradiction. J

Now we prove our main theorem by Lemma 5 and a reduction to the estimation of
Bernoulli random variables.

Proof of Theorem 1. We compute p̂(S) = BinomialEst((xi)i∈[m], S) for each S ⊆ [n], and
then output an arbitrary feasible solution (if any) to the following linear program:

find q ∈ Rn

subject to

∣∣∣∣∣∑
i∈S

qi − p̂(S)

∣∣∣∣∣ ≤ 3η + 60ε/
√
k, ∀S ⊆ [n]

n∑
i=1

qi = 1

qi ≥ 0, ∀i ∈ [n] (2)

The algorithm described above involves solving a linear program with n variables and O(2n)
constraints, as well as 2n calls to the subroutine BinomialEst, each of which takes polynomial
time. Thus the whole algorithm runs in poly(2n, k, 1/ε, 1/η, log(1/δ)) time.

Let δ0 = δ/2n. By Lemma 5 and a union bound, for some m = O
(
(k + ln(1/δ0))/ε2

)
=

O
(
(n+ k + ln(1/δ))/ε2

)
, it holds with probability 1− 2n · δ0 = 1− δ that, for any S ⊆ [n],

|p̂(S)− p(S)| ≤ 3η+60ε/
√
k. This implies that linear program (2) is feasible with probability

1− δ. Moreover, let q be any feasible solution to (2). Then it holds for any S ⊆ [n] that

|p(S)− q(S)| ≤ |p(S)− p̂(S)|+ |q(S)− p̂(S)| ≤ 6η + 120ε/
√
k.

And hence, from the definition of total variation distance, ∆(p, q) = O(η + ε/
√
k). J
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4 A Tensor-Based Algorithm

In this section, we present a different algorithm that efficiently learns the distribution in
the small-batch regime where k is a constant, and where all the good batches are drawn
from the actual distribution p, i.e., η = 0. The algorithm works on the frequency tensor
A defined by the m batches, i.e., Ai1,i2,...,ik is the fraction of batches whose set of samples
equal (i1, i2, . . . , ik).

The following recursive function DistSet(n, k,A) takes tensor A and outputs a set of
“guesses” of the distribution.

Algorithm 2: DistSet(n, k,A)
Input: n, k, and nk-tensor A.
Output: A set of n-dimensional vectors.

1 if k = 1 then
2 return {A};
3 for i = 1, 2, . . . , n do
4 Ai ← the normalized i-th slice of A;
5 Si ← DistSet(n, k − 1, Ai);
6 a← the marginal of A;
7 return S1 ∪ S2 ∪ · · · ∪ Sn ∪ {a};

The following lemma states that given sufficiently many batches, DistSet(n, k,A) contains
a vector that is O(ε/k)-close to the real distribution p in the total variation distance.

I Lemma 6. Suppose that ε ∈ (0, 1/2) and vector p is a probability distribution on [n]. Let
A ∈ Rnk be the frequency tensor of m batches, among which m(1− ε) are drawn from p⊗k

and the other mε batches are arbitrary and may depend on the m(1− ε) good batches. Then,
with probability 1− δ (over the randomness in the good batches),

min
q∈DistSet(n,k,A)

∆(p, q) ≤ 6ε
k

+O

(√
nk · k! · (n+ k lnn+ ln(1/δ))

m

)
.

Proof of Lemma 6. Let δ0 = δ/(n + 1)k−1. We recursively define functions fn,1(ε,m)
through fn,k(ε,m) for ε,m > 0 as follows:

fn,1(ε,m) = 3ε+ C

√
n+ ln(1/δ0)

m
(3)

and for t ≥ 2,

fn,t(ε,m) = max
(

3ε
t

+ C

√
n+ ln(1/δ0)

m
, fn,t−1

(
1− (1− ε)(t−1)/t,

m

nt

))
. (4)

Here C is an absolute constant to be determined later.
The following claim states that minq∈DistSet(n,k,A) ∆(p, q) is upper bounded by fn,k(ε,m(1−

ε)) with high probability.

I Claim 1. Suppose that t ∈ [k], ε ∈ (0, 1/2), and A ∈ Rnt is the frequency tensor of a data
set, in which at least m batches are drawn from p⊗t, and the fraction of these batches is at
least 1− ε. Then, with probability 1− (n+ 1)t−1 · δ0, it holds that

min
q∈DistSet(n,t,A)

∆(p, q) ≤ fn,t(ε,m).
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The following claim further upper bounds fn,k(ε,m).

I Claim 2. For any ε ∈ (0, 1/2) and m > 0,

fn,k(ε,m) ≤ 6ε
k

+ C

√
nk · k! · (n+ ln(1/δ0))

m
.

Claims 1 and 2 together imply that with probability 1− (n+ 1)k−1 · δ0 = 1− δ, it holds that

min
q∈DistSet(n,k,A)

∆(p, q) ≤ fn,k(ε,m(1− ε))

≤ 6ε
k

+O

(√
nk · k! · (n+ k lnn+ ln(1/δ))

m

)
. J

Lemma 6 implies that given

m = O(nk · k! · (n+ k lnn+ ln(1/δ)) · k2/ε2) = (nk)O(k) ln(1/δ)/ε2

batches, the minimum distance is upper bounded by O(ε/k). Now we prove Theorem 3 by
leveraging this approximation guarantee of procedure DistSet.

Proof of Theorem 3. Let q0 = argminq∈DistSet(n,k,A) ∆(A, q⊗k) and
q1 = argminq∈DistSet(n,k,A) ∆(p, q). Note that q0 can be computed from A in (nk)O(k)/ε2

time. In the following we prove that q0 is a good approximation of p. By Lemma 6, for
some m = (nk)O(k) ln(1/δ)/ε2, it holds with probability 1− δ/2 that ∆(p, q1) ≤ 7ε/k, and
thus, ∆(p⊗k, q1

⊗k) ≤ k∆(p, q1) ≤ 7ε. We write A as A = (1 − ε)P̂ + εN , where P̂ and N
are the frequency tensor of the “good” and “bad” batches, respectively. Since P̂ denotes
the frequency among m(1 − ε) = Ω(m) samples drawn from p⊗k, and the support of p⊗k
is of size nk, for some m = O

(
(nk + ln(1/δ))/ε2

)
, it holds with probability 1 − δ/2 that

∆(P̂ , p⊗k) ≤ ε. Therefore,

∆(A, p⊗k) ≤ ∆(A, P̂ ) + ∆(P̂ , p⊗k) = ε∆(P̂ , N) + ∆(P̂ , p⊗k) ≤ 2ε.

By a union bound, it holds with probability 1− δ that

∆(A, q1
⊗k) ≤ ∆(A, p⊗k) + ∆(p⊗k, q1

⊗k) ≤ 2ε+ 7ε = 9ε.

Furthermore, by definition of q0, ∆(A, q0
⊗k) ≤ ∆(A, q1

⊗k) ≤ 9ε, and thus

∆(p⊗k, q0
⊗k) ≤ ∆(A, p⊗k) + ∆(A, q0

⊗k) ≤ 2ε+ 9ε = 11ε.

Let ε′ = 165ε/
√
k < 1/(15

√
k). Since ∆(p⊗k, q0

⊗k) ≤ 11ε = ε′
√
k/15, applying the

contrapositive of Lemma 12 with parameter ε′ yields that, with probability at least 1− δ,
∆(p, q0) ≤ ε′ = O(ε/

√
k). J
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A Technical Lemmas

We prove a few useful technical lemmas.

I Lemma 7. For any ε ∈ [0, 1/2] and α ∈ [0, 1], (1− ε)α ≥ 1− 2αε.

Proof of Lemma 7. Let f(x) = (1− x)α − (1− 2αx). Since f ′(x) = α[2− (1− x)α−1] ≥ 0
for any x ∈ [0, 1/2] and α ∈ [0, 1], it holds for any ε ∈ [0, 1/2] that f(ε) ≥ f(0) = 0, which
proves the lemma. J

I Lemma 8. For any a > 0, the function (1− a/x)x is increasing on (a,+∞).

Proof of Lemma 8. Let f(x) = x ln(1 − a/x). Then for x ∈ (a,+∞), we have f ′(x) =
ln
(
1− a

x

)
+ a

x−a and f ′′(x) = − a2

x(x−a)2 < 0. Since limx→+∞ f ′(x) = 0, f ′ is positive on
(a,+∞), which proves the lemma. J
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I Lemma 9. Suppose that n and m are positive integers such that m ≥ max(n, 2). Then for
any α ∈ [0, 1.1

√
n],
(
1 + α

n

)n (1− α
m

)m ≥ 1
7 .

Proof of Lemma 9. For x ∈ [0, 1.1
√
n], define

fn,m(x) = n ln
(

1 + x

n

)
+m ln

(
1− x

m

)
.

Note that fn,m is well-defined since x ≤ 1.1
√
n ≤ 1.1

√
m < m. Moreover,

f ′n,m(x) = 1/(1 + x/n)− 1/(1− x/m) ≤ 0.

Thus, it remains to prove the inequality for α = 1.1
√
n, i.e.,(

1 + 1.1√
n

)n(
1− 1.1

√
n

m

)m
≥ 1

7 . (5)

If n ≥ 2, we lower bound the lefthand side of (5) by(
1 + 1.1√

n

)n(
1− 1.1

√
n

m

)m
≥
(

1 + 1.1√
n

)n(
1− 1.1

√
n

n

)n
=
(

1− 1.21
n

)n
≥
(

1− 1.21
2

)2

≥ 1
7 .

Here the first and third steps follow from Lemma 8. For n = 1, we have(
1 + 1.1√

n

)n(
1− 1.1

√
n

m

)m
= 2.1×

(
1− 1.1

m

)m
≥ 2.1×

(
1− 1.1

2

)2
≥ 1

7 . J

I Lemma 10. For any k ∈ N and t ∈ {1, . . . , k − 1},(
k

t

)(
t

k

)t(
k − t
k

)k−t
≥ 1

3
√
t
.

Proof of Lemma 10. Stirling’s approximation states that
√

2πn ·(n/e)n ≤ n! ≤ e
√
n ·(n/e)n

for any positive integer n. Thus,(
k

t

)
= k!
t!(k − t)! ≥

√
2πk

e2
√
t(k − t)

· (k/e)k

(t/e)t[(k − t)/e]k−t =
√

2π
e2 ·

√
k

t(k − t) ·
kk

tt(k − t)k−t .

We conclude that(
k

t

)(
t

k

)t(
k − t
k

)k−t
≥
√

2π
e2 ·

√
k

t(k − t) ≥
1

3
√
t
. J

B Tensorization of the Total Variation Distance

In this section we prove two inequalities regarding the total variation distance between k-fold
product distributions.
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I Lemma 11. For any ε ∈ (0, 1/2) and k ∈ N, there exist Bernoulli distributions P and Q
such that:
1. ∆(P,Q) = ε.
2. ∆(P⊗k, Q⊗k) ≤ ε

√
2k.

In particular, Bernoulli distributions with means (1− ε)/2 and (1 + ε)/2 satisfy the above
conditions.

Proof of Lemma 11. Let P and Q be Bernoulli distributions with means (1 − ε)/2 and
(1 + ε)/2, respectively. Clearly, we have ∆(P,Q) = ε and

KL(P,Q) = ε ln 1 + ε

1− ε ≤
2ε2

1− ε ≤ 4ε2.

Here the second step applies the inequality ln(1 + x) ≤ x. By Pinsker’s inequality,

∆(P⊗k, Q⊗k) ≤
√

1
2KL(P⊗k, Q⊗k) =

√
k

2 KL(P,Q) ≤ ε
√

2k. J

The next lemma shows that for sufficiently small ε, the O(
√
k) ratio between ∆(P⊗k, Q⊗k)

and ∆(P,Q) in Lemma 11 is tight (up to a constant factor).

I Lemma 12. Suppose that k ∈ N and ε ∈
(

0, 1/(15
√
k)
)
. P and Q are two distributions

on the same support such that ∆(P,Q) ≥ ε. Then, ∆(P⊗k, Q⊗k) ≥ ε
√
k

15 .

To prove Lemma 12, we have the following weaker claim for the special case of Bernoulli
distributions.

I Lemma 13. Suppose that k ∈ N, ε ∈ (0, 1/(15
√
k)), p, q ∈ [0, 1] and q − p ≥ ε. P̃

is a mixture of binomial distributions with k trials and success probabilities in [0, p], i.e.,
P̃ =

∑tot
i=1 αiB(k, pi) for some nonnegative weights α1, . . . , αtot and probabilities p1, . . . , ptot

in [0, p], such that
∑tot
i=1 αi = 1. Q̃ is a mixture of binomial distributions with k trials and

success probabilities in [q, 1]. Then, ∆(P̃ , Q̃) ≥ ε
√
k

15 .

We prove Lemma 12 by a reduction to Bernoulli distributions.

Proof of Lemma 12. Suppose that P and Q share the support [n]. Define π : [n]→ {0, 1}

as π(x) =
{

1, P (x) ≥ Q(x),
0, P (x) < Q(x).

Let p and q the means of π(P ) and π(Q). Without loss of

generality, p ≤ q. By construction, we have |p− q| = ∆(P,Q) ≥ ε, and

∆(B(k, p), B(k, q)) = ∆((π(P1), π(P2), . . . , π(Pk)), (π(Q1), π(Q2), . . . , π(Qk)))
≤ ∆((P1, P2, . . . , Pk), (Q1, Q2, . . . , Qk))
= ∆(P⊗k, Q⊗k),

where (Pi)i∈[k] and (Qi)i∈[k] are independent copies of P and Q. Here the second step applies
the data processing inequality. Applying Lemma 13 with P̃ = B(k, p) and Q̃ = B(k, q) yields
that ∆(P⊗k, Q⊗k) ≥ ∆(B(k, p), B(k, q)) ≥ ε

√
k/15. J

Now we turn to the more technical proof of Lemma 13.
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Proof of Lemma 13. If k < 10, the inequality trivially follows from ∆(P̃ , Q̃) ≥ |p − q| >
ε
√
k/15. Thus we assume that k ≥ 10 in the following proof. Without loss of generality, we

have p ≤ 1/2 (otherwise we prove the lemma for p′ = 1− q ≤ 1/2 and q′ = 1− p).
Let t = bp(k − 1)c. Note that t ≤ (k − 1)/2 and t ≤ p(k − 1) < t + 1. Define function

f(x) =
∑t
j=0

(
k
j

)
xj(1− x)k−j . Note that

f ′(x) = k

t∑
j=0

[(
k − 1
j − 1

)
xj−1(1− x)k−j −

(
k − 1
j

)
xj(1− x)k−j−1

]

= −k
(
k − 1
t

)
xt(1− x)k−1−t ≤ 0, (6)

and thus f is non-increasing.
Since f(x) is the probability that the binomial distribution B(k, x) assigns to set

{0, 1, . . . , t}, P̃ ({0, 1, . . . , t}) can be written as a weighted average of f(pi)’s for p1, p2, . . . ∈
[0, p]. Similarly, Q̃({0, 1, . . . , t}) is a weighted average of f(qi)’s for q1, q2, . . . ∈ [q, 1]. Since
P̃ ({0, 1, . . . , t}) − Q̃({0, 1, . . . , t}) is a lower bound on ∆(P̃ , Q̃), it remains to show that
f(pi)− f(qi) ≥ ε

√
k/15 for any pi ≤ p and qi ≥ q. The monotonicity of f and the fact that

q ≥ p + ε further imply that it suffices to prove f(p) − f(p + ε) ≥ ε
√
k/15. We prove the

inequality in the following two cases.

Case 1: t = 0. In this case, we have 0 ≤ p < 1/(t− 1). Note that

f(p)− f(p+ ε) = −εf ′(x) = εk(1− x)k−1

for some x ∈ (p, p+ ε). If ε ≤ 1/k, we have x ≤ p+ ε ≤ 2/(k − 1), and

f(p)− f(p+ ε) ≥ εk
(

1− 2
k − 1

)k−1
≥ εk

(
1− 2

9

)9
≥ εk

10 . (7)

Here the second step follows from Lemma 8 and the assumption that k ≥ 10. It then
follows that f(p)− f(p+ ε) ≥ ε

√
k/15.

If ε ≥ 1/k, by Inequality (7) and the assumption that ε < 1/(15
√
k),

f(p)− f(p+ ε) ≥ f(p)− f(p+ 1/k) ≥ 1
10 ≥

ε
√
k

15 .

Case 2: t > 0. Let x0 = t/(k − 1). By Equation (6) and Lemma 10, we have

|f ′(x0)| = k

(
k − 1
t

)(
t

k − 1

)t(
k − 1− t
k − 1

)k−1−t
≥ k

3
√
t
.

For any x ∈ [p, p+ ε], we can write x = (t+ α)/(k − 1) for some α ≥ 0. Then,

|f ′(x)|
|f ′(x0)| =

(
1 + α

t

)t(
1− α

k − 1− t

)k−1−t

Since t ≤ (k − 1)/2 and k ≥ 10, we have k − 1 − t ≥ max(t, (k − 1)/2) ≥ max(t, 2).
Applying Lemma 9 with n = t and m = k − 1− t yields that

(
1 + α

t

)t(
1− α

k − 1− t

)k−1−t
≥ 1

7
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for any α ∈
[
0, 1.1

√
t
]
. Consequently, |f ′(x)| ≥ |f ′(x0)|

7 ≥ k
21
√
t
for any x ∈ [x0, x0 +

1.1
√
t/(k − 1)].

Let l be the length of the intersection of [p, p+ ε] and [x0, x0 + 1.1
√
t/(k − 1)]. By our

choice of t, we have t ≤ p(k− 1) < t+ 1, and thus, x0 ≤ p < x0 + 1/(k− 1). This implies
that

l = min(p+ ε, x0 + 1.1
√
t/(k − 1))− p ≥ min(ε,

√
t/[10(k − 1)]).

Therefore, we conclude that

f(p)− f(p+ ε) ≥ l · k

21
√
t
≥ 1

21 min
(
εk√
t
,

1
10

)
≥ 1

21 min
(
ε
√

2k, 1
10

)
≥ ε
√
k

15 .

Here the last step holds since our assumption ε < 1/(15
√
k) implies that ε

√
2k < 1/10. J

C Missing Proofs from Section 4

C.1 Proof of Claim 1
Proof of Claim 1. By assumption, the frequency tensor A can be written as A = (1− ε)P̂ +
εN , where P̂ and N are probability nt-tensors. In particular, P̂ denotes the frequency among
the m “good” samples drawn from p⊗t, while N denotes the frequency among the other
batches. We prove the lemma by induction on t.

Base case. When t = 1, we have DistSet(n, t, A) = {A}, and thus,

min
q∈DistSet(n,t,A)

∆(p, q) = ∆(p,A) ≤ ∆(p, P̂ )+∆(P̂ , A) = ∆(p, P̂ )+ε∆(P̂ , N) ≤ ∆(p, P̂ )+ε.

It is well-known that with probability 1− δ0, ∆(p, P̂ ) ≤ C
√

n+ln δ−1
0

m for some absolute
constant C. Therefore,

min
q∈DistSet(n,t,A)

∆(p, q) ≤ C

√
n+ ln δ−1

0
m

+ ε ≤ fn,1(ε,m).

Inductive step. Let p̂ and δ be the marginals of P̂ and N , respectively. Then the marginal
of A is given by a = (1− ε)p̂+ εδ. Moreover, the i-th slice of A after normalization is
given by

Ai = (1− ε)p̂i · P̂i + εδi ·Ni
(1− ε)p̂i + εδi

= (1− ε′i)P̂i + ε′iNi,

where ε′i = εδi

(1−ε)p̂i+εδi
. Moreover, Ai contains m′i = m · p̂i samples drawn from p⊗(t−1).

Let α = (1− t
√

1− ε)/ε and β = 1/t. We consider the following two cases.

Case 1: For every i ∈ [n], either δi/p̂i ≥ 1− α or p̂i ≤ β/n.
Since a ∈ DistSet(n, t, A), we have

min
q∈DistSet(n,t,A)

∆(p, q) ≤ ∆(p, a) ≤ ∆(p, p̂) + ∆(p̂, a) = ∆(p, p̂) + ε∆(p̂, δ).
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Moreover, since for any i ∈ [n], either δi ≥ (1 − α)p̂i or p̂i ≤ β/n, it holds that
p̂i − δi ≤ αp̂i + β/n, and thus

∆(p̂, δ) =
n∑
i=1

max(p̂i − δi, 0) ≤
n∑
i=1

(αp̂i + β/n) = α+ β.

It follows that

min
q∈DistSet(n,t,A)

∆(p, q) ≤ ∆(p, p̂)+ε(α+β) = ∆(p, p̂)+1− t
√

1− ε+ε/t ≤ 3ε
t

+∆(p, p̂).

Here the last step t
√

1− ε ≥ 1− 2ε/t follows from Lemma 7.

Case 2: For some i ∈ [n], both δi/p̂i < 1− α and p̂i > β/n hold. In this case, we
have

ε′i = ε(δi/p̂i)
1− ε+ ε(δi/p̂i)

≤ ε(1− α)
1− εα = 1− (1− ε)(t−1)/t

and m′i = m · p̂i ≥ βm/n = m/(nt). We have the following bound:

min
q∈DistSet(n,t,A)

∆(p, q) ≤ min
q∈DistSet(n,t−1,Ai)

∆(p, q).

Combining the two cases shows that minq∈DistSet(n,t,A) ∆(p, q) is upper bounded by
either 3ε/t + ∆(p, p̂) or minq∈DistSet(n,t−1,Ai) ∆(p, q) for some i ∈ [n] such that ε′i ≤
1− (1− ε)(t−1)/t and m′i ≥ m/(nt). According to the induction hypothesis, for each
i ∈ [n], it holds with probability 1− (n+ 1)t−2 · δ0 that

min
q∈DistSet(n,t−1,Ai)

∆(p, q) ≤ fn,t−1 (ε′i,m′i) .

Moreover, with probability 1 − δ0, ∆(p, p̂) ≤ C

√
n+ln δ−1

0
m . By a union bound, with

probability 1− n · (n+ 1)t−2δ0 − δ0 ≥ 1− (n+ 1)t−1δ0, it holds that

min
q∈DistSet(n,t,A)

∆(p, q)

≤ max

3ε
t

+ C

√
n+ ln δ−1

0
m

, fn,t−1

(
1− (1− ε)(t−1)/t,

m

nt

)
= fn,t(ε,m).

This completes the inductive step. J
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C.2 Proof of Claim 2
Proof of Claim 2. Define (εk,mk) = (ε,m) and (εt−1,mt−1) =

(
1− (1− εt)(t−1)/t,mt/(nt)

)
.

Then by Equations (3) and (4),

fn,k(εk,mk)

= max

3εk
k

+ C

√
n+ ln δ−1

0
mk

, fn,k−1(εk−1,mk−1)


= max

3εk
k

+ C

√
n+ ln δ−1

0
mk

,
3εk−1

k − 1 + C

√
n+ ln δ−1

0
mk−1

, fn,k−2(εk−2,mk−2)


= · · ·

= max
t∈[k]

3εt
t

+ C

√
n+ ln δ−1

0
mt

 .

Moreover, by Lemma 7 and a simple induction, εt = 1 − (1 − ε)t/k ≤ 2tε/k and mt =
m/(nk−tAk−tk ), where Amn denotes n(n− 1) · · · (n−m+ 1). It follows that for any t ∈ [k],

3εt
t

+ C

√
n+ ln δ−1

0
mt

≤ 3
t
· 2tε
k

+ C

√
nk−tAk−tk (n+ ln δ−1

0 )
m

≤ 6ε
k

+ C

√
nk · k! · (n+ ln δ−1

0 )
m

. J
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