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Abstract
We show a 2n+o(n)-time (and space) algorithm for the Shortest Vector Problem on lattices (SVP)
that works by repeatedly running an embarrassingly simple “pair and average” sieving-like pro-
cedure on a list of lattice vectors. This matches the running time (and space) of the current
fastest known algorithm, due to Aggarwal, Dadush, Regev, and Stephens-Davidowitz (ADRS, in
STOC, 2015), with a far simpler algorithm. Our algorithm is in fact a modification of the ADRS
algorithm, with a certain careful rejection sampling step removed.

The correctness of our algorithm follows from a more general “meta-theorem,” showing that
such rejection sampling steps are unnecessary for a certain class of algorithms and use cases. In
particular, this also applies to the related 2n+o(n)-time algorithm for the Closest Vector Problem
(CVP), due to Aggarwal, Dadush, and Stephens-Davidowitz (ADS, in FOCS, 2015), yielding a
similar embarrassingly simple algorithm for γ-approximate CVP for any γ = 1 + 2−o(n/ log n).
(We can also remove the rejection sampling procedure from the 2n+o(n)-time ADS algorithm for
exact CVP, but the resulting algorithm is still quite complicated.)

1998 ACM Subject Classification F.2.2 Nonnumerical algorithms and problems – Geometrical
problems and computations

Keywords and phrases Lattices, SVP, CVP

Digital Object Identifier 10.4230/OASIcs.SOSA.2018.12

1 Introduction

A lattice L ⊂ Rn is the set of all integer linear combinations of some linearly independent
basis vectors b1, . . . , bn ∈ Rn,

L :=
{ n∑

i=1
zibi : zi ∈ Z

}
.

The two most important computational problems on lattices are the Shortest Vector
Problem (SVP) and the Closest Vector Problem (CVP). Given a basis b1, . . . , bn for a lattice
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12:2 Just Take the Average!

L ⊂ Rn, SVP asks us to find a shortest non-zero vector in L, and CVP asks us to find
a closest lattice vector to some target vector t ∈ Rn. (Throughout this paper, we define
distance in terms of the Euclidean, or `2, norm.) CVP seems to be the harder of the two
problems, as there is an efficient reduction from CVP to SVP that preserves the dimension
n [17], but both problems are known to be NP-hard [36, 3]. They are even known to be hard
to approximate for certain approximation factors [24, 14, 21, 18].

Algorithms for solving these problems, both exactly and over a wide range of approxima-
tion factors, have found innumerable applications since the founding work by Lenstra, Lenstra,
and Lovász in 1982 [23]. (E.g., [23, 19, 34, 20, 13].) More recently, following the celebrated
work of Ajtai [4] and Regev [31], a long series of works has resulted in many cryptographic
constructions whose security is based on the assumed worst-case hardness of approximating
these (or closely related) problems. (See [29] for a survey of such constructions.) And, some
of these constructions are now nearing widespread deployment. (See, e.g., [28, 7, 11].)

Nearly all of the fastest known algorithms for lattice problems – either approximate
or exact – work via a reduction to either exact SVP or exact CVP (typically in a lower
dimension). Even the fastest known polynomial-time algorithms (which solve lattice problems
only up to large approximation factors) work by solving exact SVP on low-dimensional
sublattices [33, 15, 27]. Therefore, algorithms for exact lattice problems are of particular
importance, both theoretically and practically (and both for direct applications and to aid in
the selection of parameters for cryptography). Indeed, much work has gone into improving
the running time of these algorithms (e.g., [20, 5, 6, 30, 25, 26]), culminating in 2n+o(n)-time
algorithms for both problems based on the technique of discrete Gaussian sampling, from
our joint work with Dadush and Regev [1] and follow-up work with Dadush [2].

In order to explain our contribution, we first give a high-level description of the SVP
algorithm from [1], which we refer to as the ADRS algorithm. (The presentation below does
not represent the way that we typically view that algorithm.)

1.1 Sieving by averages
One can think of the ADRS algorithm as a rather strange variant of randomized sieving. Recall
that the celebrated randomized sieving technique due to Ajtai, Kumar, and Sivakumar [5]
starts out with a list of 2O(n) not-too-long random vectors X1, . . . ,XM sampled from some
efficiently samplable distribution. The sieving algorithm then repeatedly (1) searches for
pairs of vectors (Xi,Xj) that happen to be remarkably close together; and then (2) replaces
the old list of vectors with the differences of these pairs Xi −Xj .

The ADRS algorithm similarly starts with a randomly chosen collection of 2n+o(n) not-
too-long vectors X1, . . . ,XM and repeatedly (1) selects pairs of vectors according to some
rule; and (2) replaces the old list of vectors with some new vectors generated from these
pairs. However, instead of taking the differences Xi −Xj of pairs (Xi,Xj), the ADRS
algorithm takes averages, (Xi + Xj)/2.

Notice that the average (Xi + Xj)/2 of two lattice vectors Xi,Xj ∈ L will not generally
be in the lattice. In fact, this average will be in the lattice if and only if the two vectors are
equivalent mod 2L, i.e., Xi ≡Xj mod 2L. Therefore, at a minimum, the ADRS algorithm
should select pairs that lie in the same coset mod 2L. (Notice that there are 2n possible
cosets.) I.e., the simplest possible version of “sieving by averages” just repeats Procedure 1
many times (starting with a list of 2n+o(n) vectors, which is sufficient to guarantee that we
can pair nearly every vector with a different unique vector in the same coset). The ADRS
algorithm is more complicated than this, but it still only uses the cosets of the vectors mod
2L when it decides which vectors to pair.

It might seem like a rather big sacrifice to only look at a vector’s coset, essentially ignoring
all geometric information. For example, the ADRS algorithm (and our variant) is likely to
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Procedure 1: The basic “pair and average” procedure, which computes the averages
(Xi + Xj)/2 of disjoint pairs (Xi,Xj) satisfying Xi ≡Xj mod 2L.
Pair_and_Average (X1, . . . ,XM )
Input : List of vectors Xi ∈ L − t

Output : List of vectors Y i ∈ L − t

for each unpaired vector Xi do
if there exists an unpaired vector Xj with Xj ≡Xi mod 2L then

add (Xi + Xj)/2 to the output
end

end

Procedure 2: The “reject and average” sieving procedure, which repeatedly applies
some rejection sampling procedure f according to the cosets of the Xi mod 2L and
then applies Procedure 1 (Pair_and_Average) to the “accepted” vectors. Here, f is
some (possibly randomized) function that maps a list of cosets (c1, . . . , cM ) mod
2L to a set of “accepted” indices {j1, . . . , jm} ⊆ {1, . . . ,M}.
Reject-and-Average Sieve (`; X1, . . . ,XM )
Input : Number of steps `, list of vectors Xi ∈ L − t

Output : List of vectors Y i ∈ L − t

for i = 1, . . . , ` do
for j = 1, . . . ,M do

set cj to be the coset of Xj mod 2L
end
{j1, . . . , jm} ← f(c1, . . . , cM )
(X1, . . . ,XM ′)← Pair_and_Average(Xj1 , . . . ,Xjm)
M ←M ′

end
output (X1, . . . ,XM ).

miss many opportunities to pair two vectors whose average is very short. But, in exchange
for this sacrifice, we get very strong control over the distribution of the vectors at each step.
In particular, before applying Procedure 1, the ADRS algorithm uses a careful rejection
sampling procedure over the cosets to guarantee that at each step of the algorithm, the
vectors are distributed as independent samples from a distribution that we understand very
well (the discrete Gaussian, which we describe in Section 1.3). I.e., at each step, the algorithm
randomly throws away many of the vectors in each coset according to some rule that depends
only on the list of cosets, and it only runs Procedure 1 on the remaining vectors, as shown in
Procedure 2. This rejection sampling procedure is so selective that, though the algorithm
starts out with 2n+o(n) vectors, it typically finishes with only about 2n/2 vectors.

This does seem quite wasteful (since the algorithm typically throws away the vast majority
of its input vectors) and a bit naive (since the algorithm ignores, e.g., the lengths of the
vectors). But, because we get such good control over the output distribution, the result is
still the fastest known algorithm for SVP.1 (The algorithm for CVP in [2], which we refer

1 There are various “heuristic” sieving algorithms for SVP that run significantly faster (e.g., in time
(3/2)n/2 [10]) but do not have formal proofs of correctness. One of the reasons that these algorithms
lack proofs is because we do not understand their output distributions.
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to as the ADS algorithm, relies on the same core idea, plus a rather complicated recursive
procedure that converts an approximate CVP algorithm with certain special properties into
an exact CVP algorithm.)

1.2 Our contribution
Our main contribution is to show that the rejection sampling procedure used in the ADRS
algorithm is unnecessary! Indeed, informally, we show that “any collection of vectors that can
be found via such a procedure (when the input vectors are sampled independently from an
appropriate distribution) can also be found without it.” (We make this precise in Theorem 9.)
In particular, the SVP algorithm in [1] can be replaced by an extremely simple algorithm,
which starts with a list of 2n+o(n) vectors sampled from the right distribution and then just
runs Procedure 1 repeatedly. (Equivalently, it runs Procedure 2 with f taken to be the trivial
function that always outputs all indices, {1, . . . ,M}.)

I Theorem 1 (SVP, informal). There is a 2n+o(n)-time (and space) algorithm for SVP that
starts with 2n+o(n) vectors sampled from the same distribution as the ADRS algorithm and
then simply applies Procedure 1 repeatedly, ` = O(logn) times.

The situation for CVP is, alas, more complicated because Procedure 2 is not the most
difficult part of the exact CVP algorithm from [2]. Indeed, while this algorithm does run
Procedure 2 and we do show that we can remove the rejection sampling procedure, the
resulting algorithm retains the complicated recursive structure of the original algorithm.
However, [2] also shows a much simpler non-recursive version of the algorithm that solves
CVP up to an extremely good approximation factor. If we are willing to settle for such an
algorithm, then we get the same result for CVP.

I Theorem 2 (CVP, informal). There is a 2n+o(n)-time (and space) algorithm that approx-
imates CVP up to an approximation factor γ for any γ = 1 + 2−o(n/ log n) that starts with
2n+o(n) vectors from the same distribution as the ADS algorithm and then simply applies
Procedure 1 repeatedly, ` = o(n/ logn) times.

In practice, such a tiny approximation factor is almost always good enough for applications.

1.3 Proof techniques
To describe the technical ideas behind our result, we now define the discrete Gaussian
distribution, which plays a fundamental role in the algorithms in [1, 2] and a big part in our
analysis. For any vector x ∈ Rn and parameter s > 0, we define its Gaussian mass as

ρs(x) := exp(−π‖x‖2/s2) ,

and we extend this definition to a shift of a lattice L ⊂ Rn with shift vector t ∈ Rn in the
natural way,

ρs(L − t) :=
∑
y∈L

ρs(y − t) .

The discrete Gaussian distribution DL−t,s is the probability distribution over L − t induced
by this measure, given by

Pr
X∼DL−t,s

[X = y − t] := ρs(y − t)
ρs(L − t)

for any y ∈ L.
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For very large parameters s > 0, we can sample from the discrete Gaussian DL−t,s

efficiently [16, 12]. (Notice that DL−t,s tends to concentrate on shorter vectors as the
parameter s > 0 gets smaller. In particular, [1] showed that about 1.38n independent samples
from the discrete Gaussian DL,s with an appropriately chosen parameter s will contain a
shortest non-zero lattice vector with high probability. See Proposition 16.) So, in [1, 2], we
use Procedure 2 with a carefully chosen rejection sampling procedure f in order to convert
many independent samples from DL−t,s with a relatively large parameter s to some smaller
number of independent samples from DL−t,s/2`/2 .

This rejection sampling is certainly necessary if we wish to use Procedure 1 to sample
from the discrete Gaussian distribution. Our new observation is that, even when we do
not do this rejection sampling, the output of Procedure 1 still has a nice distribution. In
particular, if we fix the coset mod 2L of a pair of discrete Gaussian vectors (Xi,Xj) with
parameter s > 0, then their average will be distributed as a mixture of discrete Gaussians
with parameter s/

√
2 over the cosets of 2L. I.e., while the probability of their average landing

in any particular coset will not in general be proportional to the Gaussian mass of the coset,
the distribution inside each coset will be exactly Gaussian. (See Lemma 6.)

This observation is sufficient to prove that no matter what rejection sampling procedure
f we use in Procedure 2, if the input consists of independent samples from DL−t,s, the
output will always be distributed as some mixture of samples from D2L+c−t,s/2`/2 over the
cosets c ∈ L/(2L). I.e., while the output distribution might distribute weight amongst the
cosets differently, if we condition on a fixed number of vectors landing in each coset, the
output will always be distributed as independent discrete Gaussian vectors with parameter
s/2`/2. It follows immediately that “rejection sampling cannot help us.” In particular, the
probability that the output of Procedure 2 will contain a particular vector (say a shortest
non-zero vector) with any rejection sampling procedure f will never be greater than the
probability that we would see that vector without rejection sampling (i.e., when f is the
trivial function that outputs {1, . . . ,M}).2 See Corollary 8 and Theorem 9 for more detail.

1.4 An open problem – towards a 2n/2-time algorithm
Our result shows that all known applications of the 2n+o(n)-time discrete Gaussian sampling
algorithms in [1, 2] work just as well if we remove the rejection sampling procedure from
these algorithms. This in particular includes the SVP application mentioned in Theorem 1
and the approximate CVP application mentioned in Theorem 2. (More generally, we can
remove the rejection sampling procedure from any application that simply relies on finding a
set of vectors with a certain property in the output distribution, such as a shortest non-zero
vector, all shortest non-zero vectors, a vector that is close to a shortest lattice vector in L− t,
etc.)

However, [1] also presents a 2n/2+o(n)-time algorithm that samples from DL−t,s as long as
the parameter s > 0 is not too small. (In particular, we need s ≥

√
2η1/2(L), where η1/2(L)

is the smoothing parameter of the lattice. See [1] or [35] for the details.) This algorithm is
similar to the 2n+o(n)-time algorithms in that it starts with independent discrete Gaussian
vectors with some high parameter, and it gradually lowers the parameter using a rejection
sampling procedure together with a procedure that takes the averages of pairs of vectors that
lie in the same coset modulo some sublattice. But, it fails for smaller parameters specifically

2 Notice that this property is far from obvious without the observation that the output distribution is
always a mixture of Gaussians over the cosets. For example, if we modified Procedure 2 so that f acted
on the Xi themselves, rather than just their cosets mod 2L, then this property would no longer hold.

SOSA 2018
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because the rejection sampling procedure that it uses must throw out too many vectors in
this case. (In [35], we use a different rejection sampling procedure that never throws away
too many vectors, but we do not know how to implement it in 2n/2+o(n) time for small
parameters s <

√
2η1/2(L).) If we could find a suitable variant of this algorithm that works

for small parameters, we would be able to solve SVP in 2n/2+o(n) time.
So, we are naturally very interested in understanding what happens when we simply

remove the rejection sampling procedure from this algorithm. And, the fact that this works
out so nicely for the 2n+o(n)-time algorithm works seems quite auspicious! Unfortunately,
we are unable to say very much at all about the resulting distribution in the 2n/2+o(n)-time
case.3 So, we leave the study of this distribution as an open problem.

Organization
In Section 2, we review a few basic facts necessary to prove our main “meta-theorem,”
Theorem 9, which shows that “rejection sampling is unnecessary.” In Section 3, we finish this
proof. In particular, this implies Theorem 1 and 2. For completeness, in the appendix, we
prove these theorems more directly and show the resulting algorithms in full detail.

2 Preliminaries

We write N := {0, 1, . . .} for the natural numbers (including zero). We make little to no
distinction between a random variable and its distribution. For x = (x1, . . . , xn) ∈ Rn,
we write ‖x‖ := (x2

1 + · · · + x2
n)1/2 for the Euclidean norm of x. For any set S, we write

S∗ := {(x1, . . . , xM ) : xi ∈ S} for the set lists over S of finite length. (The order of elements
in a listM∈ S∗ will never concern us. We could therefore instead use multisets.)

2.1 Lattices
A lattice L ⊂ Rn is the set of integer linear combinations

L := {a1b1 + · · ·+ anbn : ai ∈ Z}

of some linearly independent basis vectors B := (b1, . . . , bn). We sometimes write L(B) for
the lattice spanned by B.

We write L/(2L) for the set of cosets of L over 2L. E.g., if b1, . . . , bn is a basis for L, then
each coset c ∈ L/(2L) corresponds to a unique vector a1b1 + · · ·+ anbn with ai ∈ {0, 1}, and
this correspondence is a bijection. Notice that the cosets in L/(2L) have a group structure
under addition that is isomorphic to Zn

2 .

2.2 The discrete Gaussian
For a parameter s > 0 and vector x ∈ Rn, we write

ρs(x) := exp(−π‖x‖2/s2)

3 After one step of “pairing and averaging,” we know exactly the distribution that we get, and it is a
weighted combination of Gaussians over the cosets of a certain sublattice! This seems quite auspicious.
Unfortunately, the particular sublattice is not the same sublattice that we use to pair the vectors in the
next step, and we therefore are unable to say much at all about what happens even after two steps.
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for the Gaussian mass of x with parameter s > 0. Up to scaling, the Gaussian mass is the
unique function on Rn that is invariant under rotations and a product function. In particular,
it satisfies the following nice rotation identity,

ρs(x)ρs(y) = ρ√2s(x + y)ρ√2s(x− y) (1)

for any parameter s > 0 and vectors x,y ∈ Rn. This identity is fundamental to the results
of [1, 2]. (See [32, 35] for a more detailed description of this connection and some additional
results.)

We extend the Gaussian mass to a shift t ∈ Rn of a lattice L ⊂ Rn in the natural way,

ρs(L − t) :=
∑
y∈L

ρs(y − t) ,

and we call this the Gaussian mass of L − t with parameter s.
We will need the following identity from [2]. (See [32, 35] for a much more general

identity.)

I Lemma 3. For any lattice L ⊂ Rn, shift t, and parameter s > 0, we have∑
c∈L/(2L)

ρs(2L+ c− t)2 = ρs/
√

2(L)ρs/
√

2(L − t) .

Proof. We have∑
c∈L/(2L)

ρs(2L+ c− t)2 =
∑

c∈L/(2L)

∑
y1,y2∈L

ρs(2y1 + c− t)ρs(2y2 + c− t)

=
∑

c∈L/(2L)

∑
y1,y2∈L

ρs/
√

2(y1 + y2 + c− t)ρs/
√

2(y1 − y2)

=
∑

c∈L/(2L)

∑
w,y1∈L

ρs/
√

2(2y1 −w + c− t)ρs/
√

2(w)

= ρs/
√

2(L − t)
∑
w∈L

ρs/
√

2(w)

= ρs/
√

2(L − t)ρs/
√

2(L) ,

as needed. J

2.3 Dominating distributions
Intuitively, we say that some random listM∈ S∗ dominates another random listM′ ∈ S∗ if
for every fixed list S ∈ S∗, “M is at least as likely to contain S as a subsequence asM′ is.”

I Definition 4 (Dominating distribution). For some finite set S (which we identify with
{1, . . . , N} without loss of generality) and two random listsM := (X1, . . . , XM ) ∈ S∗ and
M′ := (X ′1, . . . , X ′M ′) ∈ S∗ (where M and M ′ might themselves be random variables), we
say thatM dominates M′ if for any (k1, . . . , kN ) ∈ NN ,

Pr[|{j : Xj = i}| ≥ ki, ∀i] ≥ Pr[|{j : X ′j = i}| ≥ ki, ∀i] .

We note the following basic facts about dominant distributions, which show that domina-
tion yields a partial order over random variables on S∗, and that this partial order behaves
nicely under taking sublists.

SOSA 2018
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I Fact 5. For any finite set S and random variable M ∈ S∗ that dominates some other
random variableM′ ∈ S∗,
1. M dominates itself;
2. ifM′ dominates some random variableM′′ ∈ S∗, thenM also dominatesM′′; and
3. for any function f : S∗ → S∗ that maps a list of elements to a sublist, M dominates

f(M′).

3 No need for rejection!

We now show our main observation: if X1 ∈ L − t and X2 ∈ L − t are sampled from the
discrete Gaussian over a fixed coset 2L + c − t for some c ∈ L/(2L), then their average
(X1 +X2)/2 is distributed as a mixture of Gaussians over the cosets 2L+d−t for d ∈ L/(2L)
with parameter lowered by a factor of

√
2.

I Lemma 6. For any lattice L ⊂ Rn, shift t ∈ Rn, parameter s > 0, coset c ∈ L/(2L),
s > 0, and y ∈ L, we have

Pr
X1,X2∼D2L+c−t,s

[(X1 + X2)/2 = y − t] = ρs/
√

2(y − t) ·
ρs/
√

2(2L+ c + y)
ρs(2L+ c− t)2 .

In particular, for any d ∈ L/(2L) and y ∈ 2L+ d,

Pr
X1,X2∼D2L+c−t,s

[(X1 +X2)/2 = y− t | (X1 +X2)/2 ∈ 2L+d− t] =
ρs/
√

2(y − t)
ρs/
√

2(2L+ d− t) .

Proof. We have

ρs(2L+ c− t)2 · Pr
X1,X2∼D2L+c−t,s

[(X1 + X2)/2 = y − t]

=
∑

x∈2L+c

ρs(x− t)ρs(2y − x− t)

= ρs/
√

2(y − t)
∑

x∈2L+c

ρs/
√

2(x− y) (Eq. (1))

= ρs/
√

2(y − t)ρs/
√

2(2L+ c + y) ,

as needed. The “in particular” then follows from the fact that ρs/
√

2(2L + c + y) =
ρs/
√

2(2L+ c + d) is constant for y ∈ 2L+ d for some fixed d ∈ L/(2L). J

Lemma 6 motivates the following definition, which captures a key property of the distribution
described in Lemma 6.

I Definition 7. For a lattice L ⊂ Rn, shift t ∈ Rn, and parameter s > 0 we say that the
random list (X1, . . . ,XM ) ∈ (L − t)∗ is a mixture of independent Gaussians over L − t

with parameter s if the “distributions within the cosets of 2L” are independent Gaussians
with parameter s. I.e., for any list of cosets (c1, . . . , cM ) ∈ ((L − t)/(2L))∗ mod 2L, if we
condition on Xi ∈ 2L+ ci for all i, then the Xi are independent with Xi ∼ D2L+ci,s.

We call (2L+ X1, . . . , 2L+ XM ) the coset distribution of the Xi. We say that a mixture
of independent GaussiansM over L− t with parameter s > 0 dominates another,M′, if the
coset distribution ofM dominates the coset distribution ofM′ (as in Definition 4).

In other words, mixtures of independent Gaussians are exactly the distributions obtained
by first sampling (c1, . . . , cM ) ∈ ((L− t)/(2L))∗ from some arbitrary coset distributions and
then sampling Xi ∼ DL+ci,s independently for each i. We now list some basic facts that
follow from what we have done so far.
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I Corollary 8 (Properties of mixtures of Gaussians and Procedure 1). For any lattice L ⊂ Rn,
shift t ∈ Rn, and parameter s > 0,
1. a mixture of independent Gaussians over L− t with parameter s is uniquely characterized

by its coset distribution;
2. if we apply Procedure 1 to a mixture of independent Gaussians over L− t with parameter

s, the result will be a mixture of Gaussians over L − t with parameter s/
√

2;
3. Procedure 1 preserves domination – i.e., if we apply Procedure 1 to two mixturesM,M′

of Gaussians over L − t with parameter s and M dominates M′, then the output of
Procedure 1 on inputM will dominate that ofM′; and

4. if X1,X2 are a mixture of independent Gaussians over L− t with parameter s with coset
distribution given by X1 ≡X2 mod 2L and

Pr[2L+ X1 + t = c] = ρs(2L+ c− t)2∑
d∈L/(2L) ρs(2L+ d− t)2

for any c ∈ L/(2L), then their average (X1 + X2)/2 is distributed exactly as DL−t,s/
√

2.

Proof. Item 1 follows immediately from the definition of a mixture of Gaussians. Items 2
and 3 are immediate consequences of Lemma 6.

For Item 4, we apply Lemma 6 to see that for any y ∈ L,

Pr[(X1 + X2)/2 = y − t] =
ρs/
√

2(y − t)∑
d∈L/(2L) ρs(2L+ d− t)2

∑
c∈L/(2L)

ρs/
√

2(2L+ c + y)

=
ρs/
√

2(y − t)∑
d∈L/(2L) ρs(2L+ d− t)2 · ρs/

√
2(L) .

The result then follows from Lemma 3. (Indeed, summing the left-hand side and the
right-hand side over all y ∈ L gives a proof of Lemma 3.) J

In [1, 2], we performed a careful rejection sampling procedure f in Procedure 2 so that,
at each step of the algorithm, the output was distributed exactly as DL−t,s/2i/2 (up to
some small statistical distance). In particular, we applied the rejection sampling procedure
guaranteed by Theorem 12 to obtain independent vectors distributed as in Item 4, which
yield independent Gaussians with a lower parameter when combined as in Procedure 1. But,
Corollary 8 makes this unnecessary. Indeed, Corollary 8 shows that “any collection of vectors
that can be found with any rejection sampling procedure can be found without it.” The
following meta-theorem makes this formal.

I Theorem 9. For any (possibly randomized) rejection function f mapping lists of cosets
modulo 2L to a subset of indices (as in Procedure 2), let A be the algorithm defined in
Procedure 2. Let A′ be the same algorithm with f replaced by the trivial function that just
outputs all indices (i.e., A′ just repeatedly runs Procedure 1 with no rejection).

Then, for any lattice L ⊂ Rn, shift vector t ∈ Rn, parameter s > 0, if A and A′ are each
called on input ` ≥ 1 and a list of M ≥ 2 independent samples from DL−t,s, the resulting
output distributions will be mixtures of independent Gaussians over L − t with parameter
s/2`/2. Furthermore, the distribution corresponding to A′ will dominate the distribution
corresponding to A. In particular, for any finite set S ⊂ L− t,

Pr
X1,...,XM∼DL−t,s

[S ⊆ A(`,X1, . . . ,XM )] ≤ Pr
X1,...,XM∼DL−t,s

[S ⊆ A′(`,X1, . . . ,XM )] .

SOSA 2018
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Proof. Notice that, since f only acts on the cosets of the Xi, f “preserves mixtures of
independent Gaussians.” I.e., if (X1, . . . ,XM ′) is some mixture of independent Gaussians
over L − t with parameter s′ > 0 and (j1, . . . , jm) ← f(2L + X1, . . . , 2L + XM ′), then
(Xj1 , . . . ,Xjm) is also a mixture of independent Gaussians over L − t with parameter s′.
(Notice that this would not be true if f acted on vectors, rather than cosets.) Similarly, by
Item 2, Procedure 1 maps mixtures of independent Gaussians over L− t with parameter s′
to mixtures with parameter s′/

√
2. It follows that for both A and A′, after the ith step of

the algorithm, the list of vectors is a mixture of Gaussians over L − t with parameter s/2i/2.
And, the same holds after the application of f in algorithm A. Therefore, the only question
is the coset distributions.

By Fact 5, we see that (X1, . . . ,XM ) dominates (Xj1 , . . . ,Xjm). Therefore, by Item 3,
the distribution of vectors corresponding to A′ dominates the distribution of A after the
first step. If we assume for induction that, after the (i− 1)st step, the distribution of vectors
corresponding to A′ dominates the distribution corresponding to A, then the exact same
argument together with another application of Fact 5 shows that the same holds after step i.
The result follows. J

Theorem 9, together with the corresponding algorithms in [1, 2], immediately implies
Theorems 1 and 2. For completeness, we give more direct proofs of these theorems in the
appendix, more-or-less recreating the corresponding proofs in [1, 2].

Acknowledgments. We thank Oded Regev and Daniel Dadush for many helpful discussions.
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A Additional preliminaries

We will need some additional preliminaries. We write

λ1(L) := min
y∈L\{0}

‖y‖

for the length of the shortest non-zero vector in the lattice. And, for a target vector t ∈ Rn,
we write

dist(t,L) := min
y∈L
‖y − t‖

for the distance from t to the lattice. Notice that this is the same as the length of the shortest
vector in L − t.

A.1 Some known algorithms
We will need the famous result of Lenstra, Lenstra, and Lovász [23].

I Theorem 10 ([23]). There is an efficient algorithm that take as input a lattice L ⊂ Rn

and outputs λ̃ > 0 with

λ1(L) ≤ d̃ ≤ 2n/2λ1(L) .

We will also need the following celebrated result due to Babai [8].

I Theorem 11 ([8]). There is an efficient algorithm that takes as input a lattice L ⊂ Rn

and a target t ∈ Rn and outputs d̃ > 0 with

dist(t,L) ≤ d̃ ≤ 2n/2 dist(t,L) .

A.2 The distribution of disjoint pairs
Recall that Procedure 1 takes the Ti elements from the ith coset and converts them into
bTi/2c disjoint pairs. Therefore, for a listM := (X1, . . . , XM ) ∈ S∗ over some finite set S,
we write bM/2c for the random variable obtained as in Procedure 1. I.e., up to ordering
(which does not concern us), bM/2c := (X ′1, . . . , X ′M ′) ∈ (S × S)∗ is defined by

|{j : X ′j = (s, s)}| = b|{j : Xj = s}|/2c

for each s ∈ S.

http://dx.doi.org/10.1016/0304-3975(87)90064-8
http://dx.doi.org/10.1109/TIT.1984.1056964
http://dx.doi.org/10.1109/TIT.1984.1056964
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I Theorem 12 ([1, Theorem 3.3]). For any probabilities, p1, . . . , pN ∈ [0, 1] with
∑
pi = 1,

integer M , and κ ≥ Ω(logM) (the confidence parameter) with M ≥ 10κ2/pmax, let M =
(X1, . . . , XM ) ∈ {1, . . . , N}M be the distribution obtained by sampling each Xj independ-
ently from the distribution that assigns to element i probability pi. Then, there exists a
rejection sampling procedure that, up to statistical distance exp(−Ω(κ)), maps M to the
distribution M′ := (X ′1, . . . , X ′M ) ∈ {(1, 1), . . . , (N,N)}M ′ obtained by sampling each pair
Xj independently from the distribution that assigns to the pair (i, i) probability p2

i /pcol, where

M ′ :=
⌈
M · pcol

32κpmax

⌉
,

pmax := max pi, and pcol :=
∑
p2

i .

I Corollary 13. For any probabilities, p1, . . . , pN ∈ [0, 1] with
∑
pi = 1, integer M , and

κ ≥ Ω(logM) (the confidence parameter) with M ≥ 10κ2/pmax, let M := (X1, . . . , XM ) ∈
{1, . . . , N}M be the distribution obtained by sampling each Xj independently from the distribu-
tion that assigns to element i probability pi. LetM′ := (X ′1, . . . , X ′M ′) ∈ {(1, 1), . . . , (N,N)}M ′

be the distribution obtained by sampling each pair X ′j independently from the distribution
that assigns to the pair (i, i) probability p2

i /pcol, where

M ′ :=
⌈
M · pcol

32κpmax

⌉
,

pmax := max pi, and pcol :=
∑
p2

i . Then,M dominatesM′.

A.3 Additional facts about the discrete Gaussian
We will also need some additional facts about the discrete Gaussian.

I Lemma 14 ([9]). For any lattice L ⊂ Rn, parameter s ≥ 1, and shift t ∈ Rn, ρs(L − t) ≤
snρ(L).

The following theorem shows that, if the parameter s is appropriately small, then
DL−t,s + t will be an approximate closest vector to t, with approximation factor roughly
1 +
√
ns/dist(t,L). (This is a basic consequence of Banaszczyk’s celebrated theorem [9].)

I Proposition 15 ([35, Corollary 1.3.11], see also [2, Corollary 2.8]). For any lattice L ⊂ Rn,
parameter s > 0, shift t ∈ Rn, and radius r >

√
n/(2π) · s, with r > dist(t,L) and

r2 > dist(t,L)2 + ns2

π
· log(2π dist(t,L)2/(ns2)) ,

we have

Pr
X∼DL−t,s

[‖X‖ > r] < (2e)n/2+1 exp(−πy2/2) ,

where y :=
√
r2 − dist(t,L)2/s.

The next theorem shows that exponentially many samples from DL,s with s ≈ λ1(L)/
√
n

is sufficient to find a shortest non-zero lattice vector.

I Proposition 16 ([1, Proposition 4.3]). For any lattice L ⊂ Rn, and parameter

s :=
√

20.198πe/n · λ1(L) ,

we have

Pr
X∼DL,s

[‖X‖ = λ1(L)] ≥ 1.38−n−o(n) .

SOSA 2018
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The next corollary follows immediately from Proposition 16 and Lemma 14.

I Corollary 17. For any lattice L ⊂ Rn, and parameter√
20.198πe/n · λ1(L) ≤ s ≤ 1.01 ·

√
20.198πe/n · λ1(L) ,

we have

Pr
X∼DL,s

[‖X‖ = λ1(L)] ≥ 1.4−n−o(n) .

We will also need the following result from [2], which is an immediate consequence of the
main identity in [32]. (See also [35].)

I Lemma 18 ([2, Corollary 3.3]). For any lattice L ⊂ Rn, shift t ∈ Rn, and parameter s > 0,
we have

max
c∈L/(2L)

ρs(2L+ c− t)2 ≤ ρs/
√

2(L) max
c∈L

ρs/
√

2(2L+ c− t) .

From this, we derive the following rather technical-looking inequality, which is implicit
in [2]. (This inequality comes up naturally in the proof of Corollary 21. We separate it out
here to make that proof cleaner.)

I Corollary 19. For any lattice L ⊂ Rn, shift t ∈ Rn, parameter s > 0, and integer ` ≥ 0,
we have

`−1∏
i=0

ρs/2(i+1)/2(L − t)ρs/2(i+1)/2(L)
ρs/2i/2(L − t) ·maxc∈L/(2L) ρs/2i/2(2L+ c− t)

≥
ρs/2`/2(L − t)

maxc∈L/(2L) ρs/2`/2(2L+ c− t) ·
maxc∈L/(2L) ρs(2L+ c− t)

ρs(L − t) .

Proof. From Lemma 18, we see that for all i,

ρs/2(i+1)/2(L)
maxc∈L/(2L) ρs/2i/2(2L+ c− t) ≥

maxc∈L/(2L) ρs/2i/2(2L+ c− t)
maxc∈L/(2L) ρs/2(i+1)/2(2L+ c− t) .

Therefore, the product in the statement of the corollary is at least

`−1∏
i=0

ρs/2(i+1)/2(L − t) ·maxc∈L/(2L) ρs/2i/2(2L+ c− t)
ρs/2i/2(L − t) ·maxc∈L/(2L) ρs/2(i+1)/2(2L+ c− t)

=
ρs/2`/2(L − t)

maxc∈L/(2L) ρs/2`/2(2L+ c− t) ·
maxc∈L/(2L) ρs(2L+ c− t)

ρs(L − t) ,

where we have used the fact that this is a telescoping product. J

B Running Procedure 1 on Gaussian input

I Theorem 20. For any lattice L ⊂ Rn, shift t ∈ Rn, parameter s > 0, integer M , and
confidence parameter κ ≥ Ω(logM), if X1, . . . ,XM are sampled independently from DL−t,s

with

M ≥ 10κ2 · ρs(L − t)
maxc∈L/(2L) ρs(2L+ c− t) ,
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then the output of Procedure 1 applied to the Xi will be a mixture of independent Gaussians
with parameter s/

√
2 that dominates the distribution of

M ′ :=
⌈
M

32κ ·
ρs/
√

2(L − t) · ρs/
√

2(L)
ρs(L − t) ·maxd∈L/(2L) ρs(2L+ d− t)

⌉
independent samples from DL−t,s/

√
2, up to statistical distance exp(−Ω(κ)).

Proof. By Item 2 of Corollary 8, the resulting distribution will in fact be a mixture of
independent Gaussians over L − t with parameter s/

√
2. Notice that, if M is the coset

distribution of (X1, . . . ,XM ), then Procedure 1 first maps the Xi into the mixture of
independent Gaussians over L − t with parameter s and coset distribution bM/2c and then
takes the averages of the corresponding pairs of these vectors.

We wish to apply Corollary 13 over the coset distribution, with the probabilities pi :=
p2L+c taken to be the weights of the cosets in the original distribution discrete Gaussian,

p2L+c := ρs(2L+ c− t)
ρs(L − t) .

Notice that, by Lemma 3,

M ′ =
⌈
M · pcol

32κpmax

⌉
,

which is exactly what is needed to apply Corollary 13. By the corollary, up to statistical
distance exp(−Ω(κ)) this distribution dominates the mixture of independent Gaussians over
L − t with parameter s whose coset distribution is given by c2k−1 = c2k for 1 ≤ k ≤ M ′,
with the odd-indexed cosets c2k−1 sampled independently from the distribution that assigns
to coset c ∈ L/(2L) probability

pi

pcol
= ρs(2L+ c− t)2∑

d∈L/(2L) ρs(2L+ d− t)2 .

Notice that this “squared” distribution” (so-called because the cosets are given weight
proportional to their square) is simply M ′ independent copies of the distribution from Item 4
of Corollary 8. So, if we run Procedure 1 on this “squared” distribution, the output will be
exactly M ′ independent samples from DL−t,s/

√
2.

Finally, by Fact 5, we see that, since the actual pairs dominate these “squared” pairs
(up to statistical distance exp(−Ω(κ))), the output must dominate M ′ independent samples
from DL−t,s/

√
2. J

I Corollary 21. For any lattice L ⊂ Rn, shift t ∈ Rn, parameter s > 0, integer M ≥ 2, and
confidence parameter κ ≥ Ω(logM), if X1, . . . ,XM are sampled independently from DL−t,s

with

M ≥ (10κ)2` · ρs(L − t)
maxc∈L/(2L) ρs(2L+ c− t) ,

and we apply Procedure 1 repeatedly to the Xi a total of ` ≥ 1 times, the result will be a
mixture of independent Gaussians with parameter s/2`/2 that dominates the distribution of

M ′ :=
⌈

M

(32κ)`
·

`−1∏
i=0

ρs/2(i+1)/2(L − t)ρs/2(i+1)/2(L)
ρs/2i/2(L − t) ·maxc∈L/(2L) ρs/2i/2(2L+ c− t)

⌉
independent samples from DL−t,s/2`/2 , up to statistical distance ` exp(−Ω(κ)).

SOSA 2018
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Proof. By Item 2 of Corollary 8, the output will in fact be a mixture of independent Gaussians
over L − t with parameter s/2`/2. The only question is what the coset distribution is.

To show that the coset distribution is as claimed, the idea is to simply apply Theorem 20
` times. In particular, we prove the result via induction on `. When ` = 1, this is exactly
Theorem 20. For ` > 1, we assume the statement is true for ` − 1. In particular, before
applying Procedure 1 the `th time, we have a mixture of independent Gaussians with
parameter s/2`/2 that dominates

M̂ :=
⌈

M

(32κ)`
·

`−2∏
i=0

ρs/2(i+1)/2(L − t)ρs/2(i+1)/2(L)
ρs/2i/2(L − t) ·maxc∈L/(2L) ρs/2i/2(2L+ c− t)

⌉

≥ 10κ2 · ρs(L − t)
maxc∈L/(2L) ρs(L+ c− t) ·

`−2∏
i=0

ρs/2(i+1)/2(L − t)ρs/2(i+1)/2(L)
ρs/2i/2(L − t) ·maxc∈L/(2L) ρs/2i/2(2L+ c− t)

independent Gaussians up to statistical distance (`− 1) exp(−Ω(κ)).
By Fact 5, it suffices to prove that the output of Procedure 1 on these M̂ samples

dominates M ′ independent samples from DL−t,s/2`/2 up to statistical distance exp(−Ω(κ)).
Indeed, this is exactly what Theorem 20 says, provided that

M̂ ≥ 10κ2 ·
ρs/2(`−1)/2(L − t)

maxc∈L/(2L) ρs/2(`−1)/2(2L+ c− t) .

And, this inequality follows immediately from Corollary 19 together with the assumed lower
bound on M̂ . J

C The initial distribution

The following theorem was proven by Ajtai, Kumar, and Sivakumar [5], building on work of
Schnorr [33].

I Theorem 22 ([33, 5]). There is an algorithm that takes as input a lattice L ⊂ Rn and
u ≥ 2 and outputs an un/y-reduced basis of L in time exp(O(u)) · poly(n), where we say that
a basis B = (b1, . . . , bn) of a lattice L is γ-reduced for some γ ≥ 1 if
1. ‖b1‖ ≤ γ · λ1(L); and
2. π{b1}⊥(b2), . . . , π{b1}⊥(bn) is a γ-reduced basis of π{b1}⊥(L).

This next theorem is originally due to [16], based on analysis of an algorithm originally
studied by Klein [22]. We present a slightly stronger version due to [12] for convenience.

I Theorem 23 ([12, Lemma 2.3]). There is a probabilistic polynomial-time algorithm that
takes as input a basis B for a lattice L ⊂ Rn with n ≥ 2, a shift t ∈ Rn, and ŝ > C

√
logn·‖B̃‖

and outputs a vector that is distributed exactly as DL−t,ŝ, where ‖B̃‖ := max‖b̃i‖.

I Proposition 24 ([2, Proposition 4.5]). There is an algorithm that takes as input a lattice
L ⊂ Rn, shift t ∈ Rn, r > 0, and parameter u ≥ 2, such that if

r ≥ un/u(1 +
√
nun/u) · dist(t,L) ,

then the output of the algorithm is y ∈ L and a basis B′ of a (possibly trivial) sublattice
L′ ⊆ L such that all vectors from L−t of length at most r/un/u−dist(t,L) are also contained
in L′ − y − t, and ‖B̃

′
‖ ≤ r. The algorithm runs in time poly(n) · 2O(u).
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Proof. On input a lattice L ⊂ Rn, t ∈ Rn, and r > 0, the algorithm behaves as follows.
First, it calls the procedure from Theorem 22 to compute a un/u-HKZ basis B = (b1, . . . , bn)
of L. Let (b̃1, . . . , b̃n) be the corresponding Gram-Schmidt vectors. Let k ≥ 0 be maximal
such that ‖b̃i‖ ≤ r for 1 ≤ i ≤ k, and let B′ = (b1, . . . , bk). Let πk = π{b1,...,bk}⊥ and
M = πk(L). The algorithm then calls the procedure from Theorem 22 again with the same s
and input πk(t) andM, receiving as output x =

∑n
i=k+1 aiπk(bi) where ai ∈ Z, a

√
nun/u-

approximate closest vector to πk(t) inM. Finally, the algorithm returns y = −
∑n

i=k+1 aibi

and B′ = (b1, . . . , bk).
The running time is clear, as is the fact that ‖B̃′‖ ≤ r. It remains to prove that L′−y− t

contains all sufficiently short vectors in L− t. If k = n, then L′ = L and y is irrelevant, so we
may assume that k < n. Note that, since B is a un/u-HKZ basis, λ1(M) ≥ ‖b̃k+1‖/un/u >

r/un/u. In particular, λ1(M) > (1 +
√
n · un/u) · dist(t,L) ≥ (1 +

√
n · un/u) · dist(πk(t),M).

So, there is a unique closest vector to πk(t) in M, and by triangle inequality, the next
closest vector is at distance greater than

√
n · un/u dist(πk(t),M). Therefore, the call to the

subprocedure from Theorem 22 will output the exact closest vector x ∈M to πk(t).
Let w ∈ L \ (L′ − y) so that πk(w) 6= πk(−y) = x. We need to show that w − t is

relatively long. Since B is a sn/s-HKZ basis, it follows that

‖πk(w)− x‖ ≥ λ1(M) > r/un/u .

Applying triangle inequality, we have

‖w − t‖ ≥ ‖πk(w)− πk(t)‖ ≥ ‖πk(w)− x‖ − ‖x− πk(t)‖ > r/un/u − dist(t,L) ,

as needed. J

I Corollary 25 ([2, Corollary 4.6]). There is an algorithm that takes as input a lattice L ⊂ Rn

with n ≥ 2, shift t ∈ Rn, M ∈ N (the desired number of output vectors), and parameters
u ≥ 2 and ŝ > 0 and outputs y ∈ L, a (possibly trivial) sublattice L′ ⊆ L, and M vectors
from L′ − y − t such that if

ŝ ≥ 10
√
n logn · u2n/u · dist(t,L) ,

then the output vectors are distributed as M independent samples from DL′−y−t,ŝ, and
L′ − y − t contains all vectors in L − t of length at most ŝ/(10un/u

√
logn). The algorithm

runs in time poly(n) · 2O(u) + poly(n) ·M . (And, if t = 0, then y = 0.)

Proof. The algorithm first calls the procedure from Proposition 24 with input L, t, and

r := 10ŝ√
logn

≥ un/u(1 +
√
nun/u) · dist(t,L) ,

receiving as output y ∈ L and a basis B′ of a sublattice L′ ⊂ L. It then runs the algorithm
from Theorem 23 M times with input L′, y + t, and ŝ and outputs the resulting vectors, y,
and L′.

The running time is clear. By Proposition 24, L′ − y − t contains all vectors of length
at most r/un/u − dist(t,L) ≥ ŝ/(10un/u

√
logn) in L− t, and ‖B̃

′
‖ ≤ r ≤ Cŝ/

√
logn. So, it

follows from Theorem 23 that the output has the correct distribution. J

D Finishing the proof

I Theorem 26 (SVP algorithm). For any lattice L ⊂ Rn, the output of Procedure 3 on input
L will be a shortest non-zero vector in L except with probability at most exp(−Ω(n)).
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Procedure 3: The final 2n+o(n)-time SVP algorithm. Here M = 2n+Θ(log2 n),
u = Θ(n), and ` = Θ(logn).
SVP (L)
Input : A lattice L ⊂ Rn

Output : A vector y ∈ L with ‖y‖ = λ1(L)
Use the procedure from Thereom 10 to compute λ̂ with λ1(L) ≤ λ̂ ≤ 2n/2λ1(L).
for i = 1, . . . , 200n do

Set L′ ⊆ L and X1, . . . ,XM ∈ L to be the output of Corollary 25 on input L,
t := 0, u, and si := 1.01−i · λ̂.

for j = 1, . . . , ` do
(X1, . . . ,XM ′)← Pair_and_Average(X1, . . . ,XM )
M ←M ′

end
Y i ← arg minXj 6=0 ‖Xj‖.

end
Output arg min ‖Y i‖.

Proof. The running time is clear. Let κ = Θ(n). Let i such that si/2`/2 satisfies the
inequality in Corollary 17. By Corollary 25, the (X1, . . . ,XM ) corresponding to this i
will be distributed exactly as DL′,si

where L′ ⊆ L contains all vectors of length at most
λ1(L). So, λ1(L′) = λ1(L), and it suffices to argue that we will find a shortest vector in L′.
By Corollary 21, the output distribution (X1, . . . , XM ) will be a mixture of independent
Gaussians over L′ with parameter si/2`/2 that dominates the distribution of

M ′ =

 M

(32κ)`
·

`−1∏
j=0

ρsi/2(j+1)/2(L′)2

ρsi/2j/2(L′) · ρsi/2(j+2)/2(L′)


independent samples from DL′,si/2`/2 up to statistical distance exp(−Ω(κ)), where we have
applied Lemma 14 to show that the coset with maximal mass is the central coset. Noting
that this product is telescoping, we have

M ′ =
⌈

M

(32κ)`
·
ρsi/

√
2(L′)

ρsi
(L′) ·

ρsi/2`/2(L′)
ρsi/2(`+1)/2(L′)

⌉
≥ 2n/2 ,

where we have applied Lemma 14. The result then follows from Corollary 17, together with
the fact that

√
2 > 1.4. J
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Procedure 4: The final 2n+o(n)-time SVP algorithm. Here M = 2n+Θ(n/ log n),
u = Θ(n), and ` = Θ(n/ log2 n).
CVP (L, t)
Input : A lattice L ⊂ Rn and target t ∈ Rn

Output : A vector y ∈ L with ‖y − t‖ ≤ (1 + 2−n/ log2 n) · dist(t,L)
Use the procedure from Thereom 11 to compute d̂ with
dist(L, t) ≤ d̂ ≤ 2n/2 dist(t,L).

for i = 1, . . . , n do
Set L′ ⊆ L, y ∈ L, and X1, . . . , XM ∈ L′ − y − t to be the output of Corollary 25
on input L, t, u, and si := 20n2 · 2−i · d̂.

for j = 1, . . . , ` do
(X1, . . . ,XM ′)← Pair_and_Average(X1, . . . ,XM )
M ←M ′

end
Y i ← arg minXj

‖Xj‖.
end
Output t + arg min ‖Y i‖.

I Theorem 27 (CVP algorithm). For any lattice L ⊂ Rn and t ∈ Rn, the output of Procedure 4
on input L and t will a vector y ∈ L with ‖y − t‖ ≤ (1 + exp(−Ω(n/ log2 n))) · dist(t,L),
except with probability at most exp(−Ω(n)).4

Proof. The running time is clear. Let κ = Θ(n). Let i such that

10
√
n logn · u2n/u · dist(t,L) ≤ si ≤ 20

√
n logn · u2n/u · dist(t,L) .

By Corollary 25, the (X1, . . . ,XM ) corresponding to this i will be distributed exactly as
DL′−y−t,si where L′ − y − t ⊆ L− t contains all vectors of length at most dist(t,L). So, it
suffices to argue that we will find a (1 + 2−n/ log2 n)-approximate shortest vector in L′−y− t.
By Corollary 21, the output distribution (X1, . . . , XM ) will be a mixture of independent
Gaussians over L′ − y − t with parameter si/2`/2 that dominates the distribution of

M ′ =

 M

(32κ)`
·

`−1∏
j=0

ρsi/2(j+1)/2(L′ − y − t)ρsi/2(j+1)/2(L)
ρsi/2j/2(L′ − y − t) ·maxc∈L′/(2L′) ρsi/2j/2(2L′ + c− y − t)

 ≥ 1

independent samples from DL′−y−t,si/2`/2 up to statistical distance exp(−Ω(κ)), where we
have applied Corollary 19.

Notice that si/2`/2 < exp(−Ω(n/ log2 n)) dist(t,L). The result then follows from Propos-
ition 15, which says that, except with probability exp(−Ω(n)) a sample from DL′−y−t,si/2`/2

will be a (1 + exp(−Ω(n/ log2 n)))-approximate shortest vector in L′ − y − t. J

4 It is immediate from the proof that this result can be extended to work for any approximation factor γ
with γ > 1 + exp(−o(n/ logn)), by taking ` = o(n/ logn) and M = 2n+o(n) to be slightly larger.
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