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Abstract
Given a non-negative n × m real matrix A, the matrix scaling problem is to determine if it is
possible to scale the rows and columns so that each row and each column sums to a specified
target value for it. The matrix scaling problem arises in many algorithmic applications, perhaps
most notably as a preconditioning step in solving linear system of equations. One of the most
natural and by now classical approach to matrix scaling is the Sinkhorn-Knopp algorithm (also
known as the RAS method) where one alternately scales either all rows or all columns to meet
the target values. In addition to being extremely simple and natural, another appeal of this
procedure is that it easily lends itself to parallelization. A central question is to understand the
rate of convergence of the Sinkhorn-Knopp algorithm.

Specifically, given a suitable error metric to measure deviations from target values, and an
error bound ε, how quickly does the Sinkhorn-Knopp algorithm converge to an error below ε?
While there are several non-trivial convergence results known about the Sinkhorn-Knopp al-
gorithm, perhaps somewhat surprisingly, even for natural error metrics such as `1-error or `2-error,
this is not entirely understood. In this paper, we present an elementary convergence analysis
for the Sinkhorn-Knopp algorithm that improves upon the previous best bound. In a nutshell,
our approach is to show (i) a simple bound on the number of iterations needed so that the
KL-divergence between the current row-sums and the target row-sums drops below a specified
threshold δ, and (ii) then show that for a suitable choice of δ, whenever KL-divergence is below δ,
then the `1-error or the `2-error is below ε. The well-known Pinsker’s inequality immediately al-
lows us to translate a bound on the KL divergence to a bound on `1-error. To bound the `2-error
in terms of the KL-divergence, we establish a new inequality, referred to as (KL vs `1/`2). This
new inequality is a strengthening of the Pinsker’s inequality that we believe is of independent in-
terest. Our analysis of `2-error significantly improves upon the best previous convergence bound
for `2-error.

The idea of studying Sinkhorn-Knopp convergence via KL-divergence is not new and has
indeed been previously explored. Our contribution is an elementary, self-contained presentation
of this approach and an interesting new inequality that yields a significantly stronger convergence
guarantee for the extensively studied `2-error.
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4:2 Error Analysis of the Sinkhorn-Knopp Algorithm for Matrix Scaling

1 Introduction

In the matrix scaling problem one is given an n×m non-negative matrix A, and positive
integer vectors r ∈ Zn>0 and c ∈ Zm>0 with the same `1 norm

∑n
i=1 ri =

∑m
j=1 cj = h. The

objective is to determine if there exist diagonal matrices R ∈ Rn×n and S ∈ Rm×m such that
the ith row of the matrix RAS sums to ri for all 1 ≤ i ≤ n and the jth column of RAS sums
to cj for all 1 ≤ j ≤ m. Of special importance is the case when n = m and r ≡ c ≡ 1n, the
n-dimensional all-ones vector – the (1,1)-matrix scaling problem wishes to scale the rows
and columns of A to make it doubly stochastic. This problem arises in many different areas
ranging from transportation planning [12, 26] to quantum mechanics [32, 1]; we refer the
reader to a recent comprehensive survey by Idel [15] for more examples.

One of the most natural algorithms for the matrix scaling problem is the following
Sinkhorn-Knopp algorithm [33, 34], which is known by many names including the RAS
method [4] and the Iterative Proportional Fitting Procedure [30]. The algorithm starts off
by multiplicatively scaling all the columns by the columns-sum times cj to get a matrix A(0)

with column-sums c. Subsequently, for t ≥ 0, it obtains the B(t) by scaling each row of A(t)

by the respective row-sum times ri, and obtain A(t+1) by scaling each column of B(t) by the
respective column sums time cj . More precisely,

A
(0)
ij := Aij∑n

i=1Aij
· cj ∀t ≥ 0, B

(t)
ij :=

A
(t)
ij∑m

j=1A
(t)
ij

· ri, A
(t+1)
ij :=

B
(t)
ij∑n

i=1B
(t)
ij

· cj

The above algorithm is simple and easy to implement and each iteration takes O(nnz(A)),
the number of non-zero entries of A. Furthermore, it has been known for almost five
decades [33, 34, 13, 35] that if A is (r, c)-scalable then the above algorithm asymptotically1
converges to a right solution. More precisely, given ε > 0, there is some finite t by which one
obtains a matrix which is “ε-close to having row- and column-sums r and c”.

However, the rate of convergence of this simple algorithm is still not fully understood.
Since the rate depends on how we measure “ε-closeness”, we look at two natural error
definitions. For any t, let r(t) := A(t)1m denote the vector of row-sums of A(t). Similarly, we
define c(t) := B(t)>1n to be the vector of the column-sums of B(t). Note that

∑n
i=1 r(t)

i =∑m
j=1 c(t)

j = h for all t. The error of the matrix At (the error of matrix Bt similarly defined)
is

`1-error : error1(At) := ||r(t) − r||1 `2-error : error2(At) := ||r(t) − r||2

In this note, we give simple convergence analysis for both error norms. Our result is the
following.

1 Computationally, this asymptotic viewpoint is unavoidable in the sense that there are simple examples
for which the unique matrix scaling matrices need to have irrational entries. For instance, consider
the following example from Rothblum and Schneider [29]. The matrix is

[1 1
1 2

]
with r ≡ c ≡ [1, 1]>.

The unique R and S matrices are
[

(
√

2 + 1)−1 0
0 (

√
2 + 2)−1

]
and

[√
2 0

0 1

]
, respectively, giving

RAS =
[

2−
√

2
√

2− 1√
2− 1 2−

√
2

]
.



D. Chakrabarty and S. Khanna 4:3

I Theorem 1. Given a matrix A ∈ Rn×m≥0 which is (r, c)-scalable, and any ε > 0, the
Sinkhorn-Knopp algorithm
1. in time t = O

(
h2 ln(nρ/ν)

ε2

)
returns a matrix At or Bt with `1-error ≤ ε.

2. in time t = O
(
ρh ln (nρ/ν) ·

( 1
ε + 1

ε2

))
returns a matrix At or Bt with `2-error ≤ ε.

Here h =
∑n
i=1 ri =

∑m
j=1 cj, ρ = max(maxi ri,maxj cj), and ν = mini,j:Aij>0 Aij

maxi,j Aij .

For the special case of n = m and r ≡ c ≡ 1n, we get the following as a corollary.

I Corollary 2. Given a matrix A ∈ Zn×n≥0 which is (1,1)-scalable, and any ε > 0, the
Sinkhorn-Knopp algorithm
1. in time t = O

(
n2 lnn
ε2

)
returns a matrix At or Bt with `1-error ≤ ε.

2. in time t = O
(
n lnn ·

( 1
ε + 1

ε2

))
returns a matrix At or Bt with `2-error ≤ ε.

I Remark. To our knowledge, the `1-error hasn’t been explicitly studied in the literature,
although for small ε ∈ (0, 1) the same can be deduced from previous papers on matrix
scaling [20, 14, 19, 16]. One of our main motivations to look at `1-error arose from the
connections to perfect matchings in bipartite graphs as observed by Linial, Samorodnitsky
and Wigderson [20]. For the `2 error, which is the better studied notion in the matrix
scaling literature, the best analysis is due to Kalantari et al [18, 19]. They give a Õ(ρh2/ε2)
upper bound on the number of iterations for the general problem, and for the special
case when m = n and the square matrix has positive permanent (see [18]), they give a
Õ(ρ(h2 − nh+ n)/ε2) upper bound. Thus, for (1,1)-scaling, they get the same result as in
Corollary 2. We get a quadratic improvement on h in the general case, and we think our
proof is more explicit and simpler.
I Remark. Both parts of Theorem 1 and Corollary 2 are interesting in certain regimes of
error. When the error ε is “small” (say, ≤ 1) so that 1/ε2 ≥ 1/ε, then statement 2 of
Corollary 2 implies statement 1 by Cauchy-Schwarz. However, this breaks down when ε

is “large” (say ε = δn for some constant δ > 0). In that case, statement 1 implies that in
O(lnn/δ2) iterations, the `1-error is ≤ δn, but Statement 2 only implies that in O(lnn/δ2)
iterations, the `2 norm is ≤ δn. This “large `1-error regime” is of particular interest for an
application to approximate matchings in bipartite graphs discussed below.

Applications to Parallel Algorithms for Bipartite Perfect Matching. As a corollary, we get
the following application, first pointed by Linial et al [20], to the existence of perfect matchings
in bipartite graphs. Let A be the adjacency matrix of a bipartite graph G = (L ∪R,E) with
Aij = 1 iff (i, j) ∈ E. If G has a perfect matching, then clearly there is a doubly stochastic
matrix X in the support of A. This suggests the algorithm of running the Sinkhorn-Knopp
algorithm to A, and the following claim suggests when to stop. Note that each iteration can
be run in O(1) parallel time with m-processors.

I Lemma 3. If we find a column (or row) stochastic matrix Y in the support of A such that
error1(Y ) ≤ ε, then G has a matching of size ≥ n(1− ε).

Proof. Suppose Y is column stochastic. Given S ⊆ L, consider
∑
i∈S,j∈ΓS Yij = |S| +∑

i∈S

(∑n
j=1 Yij − 1

)
≥ |S| −

∑n
i=1

∣∣∣∑n
j=1 Yij − 1

∣∣∣ ≥ |S| − n · error(Y ) ≥ |S| − nε. On
the other hand,

∑
i∈S,j∈ΓS Yij ≤

∑
j∈ΓS

∑n
i=1 Yij = |ΓS|. Therefore, for every S ⊆ L,

|ΓS| ≥ |S| − nε. The claim follows by approximate Hall’s theorem. J

I Corollary 4 (Fast Parallel Approximate Matchings). Given a bipartite graph G of max-degree
∆ and an ε ∈ (0, 1), O(ln ∆/ε2)-iterations of Sinkhorn-Knopp algorithm suffice to distinguish
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4:4 Error Analysis of the Sinkhorn-Knopp Algorithm for Matrix Scaling

between the case when G has a perfect matching and the case when the largest matching in G
has size at most n(1− ε).

Thus the approximate perfect matching problem in bipartite graphs is in NC for ε as
small as polylogarithmic in n. This is not a new result and can indeed be obtained from the
works on parallel algorithms for packing-covering LPs [21, 36, 3, 23], but the Sinkhorn-Knopp
algorithm is arguably simpler.

1.1 Perspective
As mentioned above, the matrix scaling problem and in particular the Sinkhorn-Knopp
algorithm has been extensively studied over the past 50 years. We refer the reader to Idel’s
survey [15] and the references within for a broader perspective; in this subsection we mention
the most relevant works.

We have already discussed the previously best known, in their dependence on h, analysis
for the Sinkhorn-Knopp algorithm in Remark 1. For the special case of strictly positive
matrices, better rates are known. Kalantari and Khachiyan [16] showed that for positive
matrices and the (1,1)-scaling problem, the Sinkhorn-Knopp algorithm obtains `2 error ≤ ε
in O(

√
n ln(1/ν)/ε)-iterations; this result was extended to the general matrix scaling problem

by Kalantari et al [19]. In a different track, Franklin and Lorenz [13] show that in fact the
dependence on ε can be made logarithmic, and thus the algorithm has “linear convergence”,
however their analysis2 has a polynomial dependence of (1/ν). All these results use the
positivity crucially and seem to break down even with one 0 entry.

The Sinkhorn-Knopp algorithm has polynomial dependence on the error parameter and
therefore is a “pseudopolynomial” time approximation. We conclude by briefly describing
bounds obtained by other algorithms for the matrix scaling problem whose dependence on
ε is logarithmic rather than polynomial. Kalantari and Khachiyan [17] describe a method
based on the ellipsoid algorithm which runs in time O(n4 ln(n/ε) ln(1/ν)). Nemirovskii
and Rothblum [25] describe a method with running time O(n4 ln(n/ε) ln ln(1/ν)). The first
strongly polynomial time approximation scheme (with no dependence on ν) was due to Linial,
Samoridnitsky, and Wigderson [20] who gave a Õ(n7 ln(h/ε)) time algorithm. Rote and
Zachariasen [28] reduced the matrix scaling problem to flow problems to give a O(n4 ln(h/ε))
time algorithms for the matrix scaling problem. To compare, we should recall that Theorem 1
shows that our algorithm runs in time O(nnz(A)h2/ε2) time.

Very recently, two independent works obtain vastly improved running times for matrix
scaling. Cohen et al [9] give Õ(nnz(A)3/2) time algorithm, while Allen-Zhu et al [2] give
a Õ(n7/3 + nnz(A) · (n + n1/3h1/2)) time algorithm; the tildes in both the above running
times hide the logarithmic dependence on ε and ν. Both these algorithms look at the matrix
scaling problem as a convex optimization problem and perform second order methods.

2 Entropy Minimization Viewpoint of the Sinkhorn-Knopp Algorithm

There have been many approaches (see Idel [15], Section 3 for a discussion) towards analyzing
the Sinkhorn-Knopp algorithm including convex optimization and log-barrier methods [16,
19, 22, 5], non-linear Perron-Frobenius theory [24, 35, 13, 8, 16], topological methods [27, 6],
connections to the permanent [20, 18], and the entropy minimization method [7, 10, 11, 14]
which is what we use for our analysis.

2 [13] never make the base of the logarithm explicit, but their proof shows it can be as large as 1− 1/ν2.
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We briefly describe the entropy minimization viewpoint. Given two non-negative matrices
M and N let us define the Kullback-Leibler divergence3 between M and N as follows

D(M,N) := 1
h

∑
1≤i≤n

∑
1≤j≤m

Mij ln
(
Mij

Nij

)
(1)

with the convention that the summand is zero if both Mij and Nij are 0, and is∞ if Mij > 0
and Nij = 0. Let Φr be the set of n×m matrices whose row-sums are r and let Φc be the
set of n×m matrices whose column sums are c. Given matrix A suppose we wish to find
the matrix A∗ = arg minB∈Φr∩Φc D(B,A). One algorithm for this is to use the method of
alternate projections with respect to the KL-divergence [7] (also known as I-projections [10])
which alternately finds the matrices in Φr and Φc closest in the KL-divergence sense to the
current matrix at hand, and then sets the minimizer to be the current matrix. It is not too
hard to see (see Idel [15], Observation 3.17 for a proof) that the above alternate projection
algorithm is precisely the Sinkhorn-Knopp algorithm. Therefore, at least in this sense, the
right metric to measure the distance to optimality is not the `1 or the `2 error as described
in the previous section, but the rather the KL-divergence between the normalized vectors as
described below.

Let π(t)
r := r(t)/h be the n-dimensional probability vector whose ith entry is r(t)

i /h;
similarly define the m-dimensional vector π(t)

c . Let πr denote the n-dimensional probability
vector with the ith entry being ri/h; similarly define πc. Recall that the KL-divergence
between two probability distributions p, q is defined as DKL(p||q) :=

∑n
i=1 pi ln(qi/pi). The

following theorem gives the convergence time for the KL-divergence.

I Theorem 5. If the matrix A ∈ Rn×m≥0 is (r, c)-scalable, then for any δ > 0 there is a
t ≤ T = d

(
ln(1+2nρ/ν)

δ

)
e with either DKL(πr||π(t)

r ) ≤ δ or DKL(πc||π(t)
c ) ≤ δ..

Proof. Let Z := RAS be a matrix with row-sums r and column-sums c for diagonal matrices
R,S. Recall A0 is the matrix obtained by column-scaling A. Note that the minimum non-zero
entry of A0 is ≥ ν/n.

I Lemma 6. D(Z,A0) ≤ ln(1 + 2nρ/ν) and D(Z,At) ≥ 0 for all t.

Proof. By definition,

D(Z,A(t)) = 1
h

m∑
j=1

n∑
i=1

Zij ln
(
Zij

A
(t)
ij

)
= 1
h

m∑
j=1

cj
n∑
i=1

Zij
cj

ln
(
Zij

A
(t)
ij

)

For a fixed j, the vectors
(
Z1j
cj ,

Z2j
cj , . . . ,

Znj
cj

)
and

(
A

(t)
1j

cj ,
A

(t)
2j

cj , . . . ,
A

(t)
nj

cj

)
are probability

vectors, and therefore the above is a sum of cj-weighted KL-divergences which is always
non-negative. For the upper bound, one can use the fact (Inequality 27, [31]) that for any
two distributions p and q, D(p||q) ≤ ln(1 + ||p−q||22

qmin
) ≤ ln(1 + 2

qmin
) where qmin is the smallest

non-zero entry of q. For our purpose, we note that the minimum non-zero probability of the
A

(0)
j distribution being ≥ ν/nρ. Therefore, the second summand is at most ln(1 + 2nρ/ν)

giving us D(Z,A(0)) ≤ 1
h

∑m
j=1 cj · ln(1 + 2nρ/ν) = ln(1 + 2nρ/ν). J

3 The KL-divergence is normally stated between two distributions and doesn’t have the 1/h factor. Also
the logarithms are usually base 2.
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4:6 Error Analysis of the Sinkhorn-Knopp Algorithm for Matrix Scaling

I Lemma 7.

D(Z,A(t))−D(Z,B(t)) = DKL(πr||π(t)
r ) and D(Z,B(t))−D(Z,A(t+1)) = DKL(πc||π(t)

c )

Proof. The LHS of the first equality is simply

1
h

m∑
j=1

n∑
i=1

Zij ln
(
B

(t)
ij

A
(t)
ij

)
= 1

h

m∑
j=1

n∑
i=1

Zij ln
(

ri
r(t)
i

)

= 1
h

n∑
i=1

ln
(

ri
r(t)
i

)
m∑
j=1

Zij

=
n∑
i=1

(ri
h

)
· ln
(

ri/h
r(t)
i /h

)

since
∑m
j=1 Zij = ri. The last summand is precisely DKL(πr||π(t)

r ). The other equation
follows analogously. J

The above two lemmas easily imply the theorem. If for all 0 ≤ t ≤ T , both DKL(πr||π(t)
r ) > δ

and DKL(πc||π(t)
c ) > δ, then substituting in Lemma 7 and summing we get D(Z,A(0)) −

D(Z,A(T+1)) > Tδ > ln(1 + 2nρ/ν) contradicting Lemma 6. J

Theorem 1 follows from Theorem 5 using connections between the KL-divergence and
the `1 and `2 norms. One is the following famous Pinsker’s inequality which allows us to
easily prove part 1 of Theorem 1. Given any two probability distributions p, q,

DKL(p||q) ≥ 1
2 · ||p− q||

2
1 (Pinsker)

Proof of Theorem 1, Part 1. Apply (Pinsker) on the vectors πr and π(t)
r to get

DKL(πr||π(t)
r ) ≥ 1

2h2 ||r
(t) − r||21

Set δ := ε2

2h2 and apply Theorem 5. In O
(
h2 ln(nρ/ν)

ε2

)
time we would get a matrix with

δ > DKL(πr||π(t)
r ) which from the above inequality would imply ||r(t) − r||1 ≤ ε. J

To prove Part 2, we need a way to relate the `2 norm and the KL-divergence. In order
to do so, we prove a different lower bound which implies Pinsker’s inequality (with a worse
constant), but is significantly stronger in certain regimes. To the best of our knowledge this
is a new bound which may be of independent interest in other domains. Below we state the
version which we need for the proof of Theorem 1, part 2. This is an instantiation of the
general inequality Lemma 9 whcih we prove in Section 3.

I Lemma 8. Given any pair of probability distributions p, q over a finite domain, define
A := {i : qi > 2pi} and B := {i : qi ≤ 2pi}. Then,

DKL(p||q) ≥ (1− ln 2) ·
(∑
i∈A
|qi − pi|+

∑
i∈B

(qi − pi)2

pi

)
(KL vs `1/`2)

Proof of Theorem 1, Part 2. We apply Lemma 8 on the vectors πr and π
(t)
r . Lemma 8

gives us
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DKL(πr||π(t)
r ) ≥ C ·

(
1
h

∑
i∈A
|r(t)
i − ri| + 1

h

∑
i∈B

(r(t)
i − ri)2

ri

)

≥ C

h

(∑
i∈A
|r(t)
i − ri| + 1

ρ

∑
i∈B

(r(t)
i − ri)2

)

where C = 1−ln 2. If the second summand in the parenthesis of the RHS is≥ 1
2 ||r

(t)−r||22, then
we get DKL(πr||π(t)

r ) ≥ C
2ρh ||r

(t) − r||22. Otherwise, we have DKL(πr||π(t)
r ) ≥ C√

2h ||r
(t) − r||2,

where we used the weak fact that the sum of some positive numbers is at least the square-root
of the sum of their squares. In any case, we get the following

DKL(πr||π(t)
r ) ≥ min

(
C

2ρh ||r
(t) − r||22,

C√
2h
||r(t) − r||2

)
(2)

To complete the proof of part 2 of Theorem 1, set δ := C

2ρh( 1
ε+ 1

ε2 ) and apply Theorem 5.

In O
(
ρh ln (nρ/ν) ·

( 1
ε + 1

ε2

))
time we would get a matrix with δ ≥ DKL(πr||π(t)

r ). If the
minimum of the RHS of (2) is the first term, then we get ||r(t) − r||22 ≤ ε2 implying the
`2-error is ≤ ε. If the minimum is the second term, then we get ||r(t) − r||2 ≤ ε√

2ρ < ε since
ρ ≥ 1. J

3 New Lower Bound on the KL-Divergence

We now establish a new lower bound on KL-divergence which yields (KL vs `1/`2) as a
corollary.

I Lemma 9. Let p and q be two distributions over a finite n-element universe. For any fixed
θ > 0, define the sets Aθ := {i ∈ [n] : qi ≥ (1 + θ)pi} and Bθ = [n] \ Aθ = {i ∈ [n] : qi ≤
(1 + θ)pi}. Then we have the following inequality

DKL(p||q) ≥
(

1− ln(1 + θ)
θ

)
·

(∑
i∈Aθ

|qi − pi|+
1
θ

∑
i∈Bθ

pi

(
qi − pi
pi

)2
)

(3)

When θ = 1, we get (KL vs `1/`2).

A Comparison of (Pinsker) and (KL vs `1/`2): To see why (KL vs `1/`2) generalizes
(Pinsker) with a weaker constant, note that

||p− q||21 =
(∑
i∈A
|qi − pi|+

∑
i∈B
|qi − pi|

)2

≤ 2
(∑
i∈A
|qi − pi|

)2

+ 2
(∑
i∈B

pi
|qi − pi|
pi

)2

The first parenthetical term above, since it is ≤ 1, is at most the first summation in the
parenthesis of (KL vs `1/`2). The second parenthetical term above, by Cauchy-Schwarz, is at
most the second summation in the parenthesis of (KL vs `1/`2). Thus (KL vs `1/`2) implies
DKL(p||q) ≥ (1−ln 2)

2 ||p− q||21. On the other hand, the RHS of (KL vs `1/`2) can be much
larger than that of (Pinsker). For instance, suppose pi = 1/n for all i, q1 = 1/n+ 1/

√
n, and

for i 6= 1, qi = 1/n− 1
(n−1)

√
n
. The RHS of (Pinsker) is Θ(1/n) while that of (KL vs `1/`2)

is Θ(1/
√
n) which is the correct order of magnitude for DKL(p||q).
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4:8 Error Analysis of the Sinkhorn-Knopp Algorithm for Matrix Scaling

Proof of Lemma 9: We need the following fact which follows from calculus; we provide a
proof later for completeness.

I Lemma 10. Given any θ > 0, define aθ := ln(1+θ)
θ and bθ := 1

θ

(
1− ln(1+θ)

θ

)
. Then,

For t ≥ θ, (1 + t) ≤ eaθt
For t ≤ θ, (1 + t) ≤ et−bθt2

Define ηi := qi−pi
pi

. Note that Aθ = {i : ηi > θ} and Bθ is the rest. We can write the
KL-divergence as follows

DKL(p||q) :=
n∑
i=1

pi ln(pi/qi) = −
n∑
i=1

pi ln(1 + ηi)

For i ∈ Aθ, since ηi > θ, we upper bound (1 + ηi) ≤ eaθηi using Fact 10. For i ∈ Bθ, that is
ηi ≤ θ, we upper bound (1 + ηi) ≤ eηi−bθη

2
i using Fact 10. Lastly, we note

∑
i piηi = 0 since

p, q both sum to 1, implying
∑
i∈Bθ piηi = −

∑
i∈Aθ piηi. Putting all this in the definition

above we get

DKL(p||q) ≥ −aθ ·
∑
i∈Aθ

piηi −
∑
i∈Bθ

piηi + bθ
∑
i∈Bθ

piη
2
i = (1− aθ)

∑
i∈Aθ

piηi + bθ
∑
i∈Bθ

piη
2
i

The proof of inequality (3) follows by noting that bθ = 1−aθ
θ . J

Proof of Lemma 10. The proof of both facts follow by proving non-negativity of the relevant
function in the relevant interval. Recall aθ = ln(1 + θ)/θ and bθ = 1

θ (1− aθ). We start with
the following three inequalities about the log-function.

For all z > 0, z + z2/2 > (1 + z) ln(1 + z) > z and ln(1 + z) > z − z2/2 (4)

The third inequality in (4) implies aθ > 1− θ/2 and thus, bθ < 1/2. The first inequality in
(4) implies aθ <

1+ θ
2

1+θ which in turn implies bθ > 1/2(1 + θ). For brevity, henceforth let us
lose the subscript on aθ and bθ.

Consider the function f(t) = eat − (1 + t). Note that f ′(t) = aeat − 1 which is increasing
in t since a > 0. So, for any t ≥ θ, we have f ′(t) ≥ aeaθ − 1 = (1+θ) ln(1+θ)

θ − 1 ≥ 0, by the
second inequality in (4). Therefore, f is increasing when t ≥ θ. The first part of Fact 10
follows since f(θ) = 0 by definition of a.

Consider the function g(t) = et(1−bt) − (1 + t). Note that g(0) = g(θ) = 0. We break the
argument in two parts: we argue that g(t) is strictly positive for all t ≤ 0, and that g(t) is
strictly positive for t ∈ (0, θ). This will prove the second part of Fact 10.

The first derivative is g′(t) = (1− 2bt)et(1−bt) − 1 and the second derivative is g′′(t) =
et(1−bt)

(
(1− 2bt)2 − 2b

)
. Since b < 1/2, we have 2b < 1, and thus for t ≤ 0, g′′(t) > 0.

Therefore, g′ is strictly increasing for t ≤ 0. However, g′(0) = 0, and so g′(t) < 0 for all t < 0.
This implies g is strictly decreasing in the interval t < 0. Noting g(0) = 0, we get g(t) > 0
for all t < 0. This completes the first part of the argument.

For the second part, we first note that g′(θ) < 0 since b > 1
2(1+θ) . That is, g is strictly

decreasing at θ. On the other hand g is increasing at θ. To see this, looking at g′ is not
enough since g′(0) = 0. However, g′′(0) > 0 since b < 1/2. This means that 0 is a strict
(local) minimum for g implying g is increasing at 0. In sum, g vanishes at 0 and θ, and is
increasing at 0 and decreasing at θ. This means that if g does vanish at some r ∈ (0, θ),
then it must vanish once again in [r, θ) for the it to be decreasing at θ. In particular, g′
must vanish three times in (0, θ) and thus four times in [0, θ) since g′(0) = 0. This in turn
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implies g′′ vanishes three times in [0, θ) which is a contradiction since g′′ is a quadratic in t
multiplied by a positive term.

We end by proving (4). This also follows the same general methodology. Define p(z) :=
(1 + z) ln(1 + z)− z and q(z) := p(z)− z2/2. Differentiating, we get p′(z) = ln(1 + z) > 0
for all z > 0, and q′(z) = ln(1 + z) − z < 0 for all z > 0. Thus, p is increasing, and q is
decreasing, in (0,∞). The first two inequalities of (4) follow since p(0) = q(0) = 0. To see
the third inequality, define r(z) = ln(1 + z)− z+ z2/2 and observe r′(z) = 1

1+z − 1 + z = z2

1+z
which is > 0 if z > 0. Thus r is strictly increasing, and the third inequality of (4) follows
since r(0) = 0. J
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