
Simple and Efficient Leader Election
Petra Berenbrink1, Dominik Kaaser2, Peter Kling3, and
Lena Otterbach4

1 Universität Hamburg, Germany
berenbrink@informatik.uni-hamburg.de

2 Universität Hamburg, Germany
dominik.kaaser@uni-hamburg.de

3 Universität Hamburg, Germany
peter.kling@uni-hamburg.de

4 Universität Hamburg, Germany
otterbach@informatik.uni-hamburg.de

Abstract
We provide a simple and efficient population protocol for leader election that uses O(logn) states
and elects exactly one leader in O

(
n · (logn)2) interactions with high probability and in expec-

tation. Our analysis is simple and based on fundamental stochastic arguments. Our protocol
combines the tournament based leader elimination by Alistarh and Gelashvili, ICALP’15, with
the synthetic coin introduced by Alistarh et al., SODA’17.

1998 ACM Subject Classification F.2 Analysis of Algorithms and Problem Complexity, G.3.16
Stochastic Processes

Keywords and phrases population protocols, leader election, distributed, randomized

Digital Object Identifier 10.4230/OASIcs.SOSA.2018.9

1 Introduction

We consider the leader election problem for population protocols introduced by [4], where
one seeks a simple, distributed protocol that establishes a leader in a system of n initially
identical agents. In this problem, in each round a pair of randomly chosen agents interact.
The interacting agents observe each other’s state and update their own state according to a
simple deterministic rule, which is identical for each agent. A protocol’s quality is measured
by the number of interactions until a unique leader is found and by the number of states per
agent required by the protocol. A key aspect of this model is that a unique leader must be
found eventually. In particular, the protocol may not fail even with negligible probability.

Related Work. We give an overview of recent results in population protocols, with a focus
on the leader election problem. We refer to [6] or the more recent [1] for a general survey on
population protocols.

[4] introduce the population protocol model. They present protocols that stably compute
any predicate definable via Pressburger arithmetic, which includes fundamental distributed
tasks like leader election or consensus. [5, 6] show that predicates stably computable by
population protocols are semi-linear. These early results restrict the number of states per
agent to a constant and focus on what can and cannot be computed (in contrast to what can
be computed efficiently). [8] prove that any population protocol that elects a leader with a
constant number of states requires an expected number of Ω

(
n2) interactions. Under some

natural protocol assumptions (met, as far as we know, by all known population protocols), [1]
© Petra Berenbrink, Dominik Kaaser, Peter Kling, and Lena Otterbach;
licensed under Creative Commons License CC-BY

1st Symposium on Simplicity in Algorithms (SOSA 2018).
Editor: Raimund Seidel; Article No. 9; pp. 9:1–9:11

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/154064057?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/OASIcs.SOSA.2018.9
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de


9:2 Simple and Efficient Leader Election

strengthen this lower bound by showing that population protocols using less than 1/2·log logn
states need an expected number of Ω

(
n2/ polylogn

)
interactions to elect a leader (their lower

bound holds also for a broader class of problems).
To beat this polynomial lower bound on the time to elect a leader, recent results consider

population protocols with polylogarithmically many states. [3] present a tournament based
protocol that elects a leader in O

(
n · (logn)3) expected interactions using O

(
(logn)3) states.

This protocol is quite intuitive and simple: Each leader candidate has a counter that is
increased whenever it interacts with another agent. When a leader candidate meets an agent
with a larger counter, it becomes a minion. Minions copy the largest counter seen so far.
The main idea of the analysis is to show that, after O

(
n · (logn)3) interactions, one of the

remaining leaders, say v, has a counter that exceeds any other leader’s counter by Θ(logn).
This head start allows v to broadcast its counter to all other remaining leaders before their
counters catch up.

[1] decrease the number of states to O
(
(logn)2) at the cost of an increased number of

O
(
n · (logn)5.3 · log logn

)
expected interactions and a much more involved protocol. A key

part of their protocol is the use of synthetic coins, which allow agents to access a random bit.
More precisely, each agent has a bit that is flipped at the end of each interaction. One can
show that, after roughly a linear number of interactions, about half of the agents have their
bit set. Thus, by accessing the bit of its interaction partner (which is chosen uniformly at
random), an agent has access to an almost uniformly random bit.

Three very recent, yet unpublished results [7, 2, 9] further improve upon these bounds. [7]
present a protocol that requires O

(
n · (logn)2) interactions in expectation and O

(
(logn)2)

states. [2] reduce the number of states to O(logn) while maintaining the number of required
interactions. Finally, [9] further reduce the number of states to O(log logn), matching the
lower bound mentioned above. All these protocols and analysis are rather involved. In
particular, [2, 9] are based on a phase clock to actively synchronize the behavior of the agents.

Our Contribution. We introduce a natural and simple leader election protocol that elects
a single leader in O

(
n · (logn)2) expected interactions and uses O(logn) states. Our analysis

is simple and based on fundamental stochastic arguments. It combines the tournament based
leader elimination from [3] with the synthetic coin introduced in [1]. Using the synthetic coin,
we initially mark n/ logn agents. Since an agent’s interaction partners are chosen uniformly
at random, this effectively gives each agent access to a (1/ logn)-coin. This allows agents
participating in the tournament to increase their counter only with a probability of 1/ logn.
As a result, we can show that an agent only needs a constant head start to broadcast its
counter to all other remaining leaders before their counters can catch up. Our analysis relies
on a simplified and slightly stronger analysis of the synthetic coin from [1].

Formally, we show the following theorem.

I Theorem 1. With high probability1 and in expectation, the protocol defined in Algorithm 1
elects exactly one leader in O

(
n · (logn)2) interactions. Furthermore, the protocol eventually

reaches and stays in a configuration where exactly one leader contender is left with probability 1.

2 Model and Protocol

We consider a population of n agents2, also referred to as nodes. A population protocol
specifies a set of possible states, the initial state of each agent, and an update rule. The

1 The expression with high probability refers to a probability of 1− n−Ω(1).
2 All our results assume n to be larger than a suitable constant.



P. Berenbrink, D. Kaaser, P. Kling, and L. Otterbach 9:3

(deterministic) update rule is defined from the perspective of a single agent that knows its
own state and the state of its communication partner. All agents start in the same initial
state and use the same update rule. In every round a pair of agents is activated uniformly
at random. In such an interaction the two activated nodes observe each other’s state and
apply the update rule. The goal is to reach a configuration where exactly one agent’s state
labels the agent as a (potential) leader and all other agents know that they are not a leader.
Additionally, we require that every following configuration also have exactly one leader.

Protocol
We start with an informal description of our protocol. Every node has a counter and uses it
to compete with other nodes. In the beginning some nodes will be marked. Leader candidates
only increment their counter if they interact with a marked node. To initially mark a small
fraction of nodes the protocol is split into two phases: the marking phase and the tournament
phase.

Marking Phase. In the first phase, Θ(n/ logn) nodes get marked, see Section 3. To derive
this, each node is equipped with an additional bit, the flip bit, that is flipped at the end of
each interaction. After its first 3 log logn activations, a node starts to study the flip bits
of its interaction partners. It marks itself if and only if all of its next log logn interaction
partners have their flip bits set. We refer to these at most log logn crucial interactions as a
node’s marking trials. After a node’s marking trials, it enters the tournament.

Tournament Phase. The second phase is responsible for electing a unique leader, see
Section 4. At the beginning of its tournament phase every node is a possible leader and
regards itself as a contender. Contenders count the number of their interactions with marked
nodes. Whenever a contender interacts with another agent having a larger counter, it sets its
role to minion. Minions carry the largest counter seen so far. Since the counter values never
decrease we always have at least one contender left (see Lemma 6). The single remaining
contender will be the unique leader.

Below, we summarize the parameters that constitute the state of a node v.
role r(v) ∈ { contender, minion }. Each node starts as a contender.
flip bit f(v) ∈ { 0, 1 }. Initially the flip bit is set to 0. The flip bit will be used to
approximate a random coin which is zero or one with probability 1/2.
marker m(v) ∈ { 0, 1 }. Initially the marker is set to 0 for unmarked. Nodes that mark
themselves after their marking trials set this marker to 1. The marked nodes will be used
in the tournament phase to approximate a random coin with a probability 1/ logn to be
one.
phase p(v) ∈ { marking, tournament }. Each node starts in the marking phase.
counter c(v) ∈ { 0, . . . ,O(logn) }. The counter, initialized to 0, is used in both phases:
In the marking phase to skip the first 3 log logn activations and then count the marking
trials. In the tournament phase, the counter is used to determine the winner of an
encounter.

In the following we assume c(v) to be a variable that may count up to O(logn). Hence, c(v)
can assume O(logn) different values. Each of the parameters role, flip bit, marker, and phase
only doubles the state space. Therefore, the total number of states per node is O(logn).

For the case that all nodes reach the maximal possible counter value before all but one
contender are eliminated, we let contenders with equal counter compete via their flip bits.

SOSA 2018



9:4 Simple and Efficient Leader Election

Algorithm leader-election(node v, node u)
marking phase

if phase p(v) = marking then
if counter c(v) ≥ 3 log logn and flip bit f(u) = 0 then

phase p(v)← tournament; /* leave phase unmarked */
else

increment counter c(v)← c(v) + 1;

if counter c(v) = 4 log logn then
marker m(v)← 1;
phase p(v)← tournament; /* leave phase marked */

tournament phase
if phase p(v) = tournament then

if role r(v) = contender then
if marker m(u) = 1 and counter c(v) ≤ U logn then

increment counter c(v)← c(v) + 1;

if c(v) < c(u) then
role r(v)← minion; /* lose the duel due to the counter */

if r(u) = contender and c(v) = c(u) and f(v) < f(u) then
role r(v)← minion; /* lose the duel due to the flip bit */

update counter c(v)← max { c(u), c(v) }; /* adopt the maximum counter */

flip the flip bit f(v) = 1− f(v);

Algorithm 1 The leader election algorithm from the perspective of a single node v upon an
interaction with communication partner u. Here, U is a large enough constant.

The complete update rule from the viewpoint of a node v interacting with a node u is formally
defined in Algorithm 1. To avoid concurrency issues, we assume that node v operates on
values of node u as they were before the interaction.

3 Analysis of the Marking Phase

In the first part of the analysis, our goal is to prove the following proposition, which states
that after the marking phase, roughly n/ logn nodes are marked. We use this in Section 4 to
prove our main result.

I Proposition 2. With high probability, after 4 lnn interactions Θ(n/ logn) nodes are marked
and all nodes are in the tournament phase.

The proof of Proposition 2 works as follows: A node marks itself if and only if all
communication partners of its log logn marking trials have their bit set. If the bit of an
interaction partner were set with probability 1/2, this would imply that v marks itself with
probability 1/2log logn = 1/ logn and the desired result would follow via Chernoff bounds.
The major difficulty is to show that, when a node starts its marking trials, the probability
that a flip bit is set is close to 1/2. We prove this in Section 3.1. Additionally, we have to
show that not too many nodes start their marking trials before the balancing of the flip
bits has finished. This is done in Section 3.2. The proof of Proposition 2 is finally given in
Section 3.3.



P. Berenbrink, D. Kaaser, P. Kling, and L. Otterbach 9:5

3.1 Concentration of the 1/2-Coin
As described in the overview, the major technical tool to prove Proposition 2 is the following
concentration result for the number of flip bits set:

I Lemma 3. Let a > 0 and consider an interaction t with n · ln(log logn)/2 ≤ t ≤ na. The
number of flip bits that equal zero at the beginning of interaction t lies with probability at
least 1− n−a in (1± 1/ log logn) · n/2.

The flip bit of a node is set if and only if the node attended an odd number of interactions.
Observe that the number of interactions a node attended can be modeled by a balls into
bins game: Nodes correspond to bins and activations to balls. For each interaction, we
throw two balls into two random bins. Nodes with flip bit equal zero correspond to bins
with an even load. Analyzing the number of such bins directly is difficult, since the bins’
loads are correlated. However, we can use the Poisson approximation technique (see, e.g.,
the textbook [11, Chap. 5.4]).

More formally, assume we throw m balls independently and uniformly at random into
n bins. Let Xi be the resulting load of bin i for i ∈ { 1, 2, . . . , n }. Additionally, let Yi for
i ∈ { 1, 2, . . . , n } denote independent Poisson random variables with parameter m/n. We
call (X1, . . . , Xn) the exact case and (Y1, . . . , Yn) the Poisson case. The following well-known
result relates these processes:

I Known Result 1 (Corollary 5.9, [11]). Any event that takes place with probability p in the
Poisson case takes place with probability at most pe

√
m in the exact case.

Recall that we are interested in the number of bins with even load. This can be easily
bounded in the Poisson case:

I Lemma 4. Let a > 0 and Y1, . . . , Yn be independent Poisson random variables, each with
parameter λ ≥ 2. Define α := min {λ, lnn/8 }. The number of variables that are even lies
with probability at least 1− n−a in (1± e−α) · n/2.

Proof. One easily verifies that the probability for Yi to be even is

Pr[Yi is even] = 1
2 ·
(
1 + e−2λ), (1)

see Appendix A. Let the indicator random variable Zi be 1 if and only if Yi is even and 0
otherwise. By construction Z1, . . . Zn are independent 0-1 random variables and Z =

∑n
i=1 Zi

is the number of variables that are even. By Equation (1), E[Z] = n ·
(
1 + e−2λ)/2. Set

δ := e−2α and note that, since λ ≥ max { 2, α }, we have
(
1 + e−2λ) · (1 + δ) ≤ (1 + e−α) and(

1 + e−2λ) · (1− δ) ≥ (1− e−α). Thus, standard Chernoff bounds (Lemma 11) yield

Pr
[
Z ≥ n

2 (1 + e−α)
]
≤ Pr[Z ≥ (1 + δ) · E[Z]] ≤ e−E[Z]δ2/3 ≤ n−a

2 and

Pr
[
Z ≤ n

2 (1− e−α)
]
≤ Pr[Z ≤ (1− δ) · E[Z]] ≤ e−E[Z]δ2/2 ≤ n−a

2 .

(2)

Combining both bounds gives the desired statement. J

Proof of Lemma 3. Fix an interaction t with n · ln(log logn)/2 ≤ t ≤ na and set α :=
min { 2t/n, lnn/8 }. Note that α ≥ ln(log logn). Let X denote the number of nodes that
have their flip bit equal 0. As mentioned above, X also equals the number of bins with an
even load when we throw 2t balls into n bins chosen independently and uniformly at random

SOSA 2018



9:6 Simple and Efficient Leader Election

in the exact case. Let Y be the number of bins with an even load in the Poisson case (that
is, each of the independent n Poisson random variables has parameter λ = 2t/n). By Known
Result 1, we know that for any set A ⊆ { 0, 1, . . . , n } Pr[X ∈ A] ≤ e

√
2t · Pr[Y ∈ A]. Let

A := [0, (1− e−α) · n/2) ∪ ((1 + e−α) · n/2, n]. By Lemma 4, e
√

2t · Pr[Y ∈ A] ≤ n−a. Using
that e−α ≤ 1/ log logn, we get the desired statement. J

3.2 Bounding the Number of Early Marking Trials
By Lemma 3 we know that if a node starts its marking trials after (global) interaction
n · ln(log logn)/2, the fraction of flip bits equal zero in the system is very close to 1/2. In
the following, we bound the number of nodes that start their marking trials earlier.

I Lemma 5. Let a > 0. With probability 1−n−a, at most n/ logn nodes start their marking
trials before the

(
n · ln(log logn)/2

)
-th (global) interaction.

Proof. Fix interaction T0 := n · ln(log logn)/2 and consider the number of nodes that start
their marking trials before T0. We analyze this number using the Poisson approximation
technique.

Performing T0 global interactions corresponds to throwing 2T0 balls. Hence, we consider
independent Poisson random variables Y1, . . . , Yn, each with parameter λ := 2T0/n =
ln(log logn). A node starts its marking trials once it got activated t := 3 log logn times. The
Chernoff bound for Poisson random variables (Lemma 12) gives

Pr[Yi ≥ t] ≤
e−λ(eλ)t

tt
= 1

log logn

(
e ln(log logn)

3 log logn

)3 log logn

≤ 1
log logn

(
1
2

)3 log logn
≤ 1

(logn)3 ,

(3)

where the second inequality follows from ln(x)/x ≤ 1/2 for any x > 0. Now consider
binary random variables Zi that are 1 if and only if Yi ≥ t and let Z :=

∑n
i=1 Zi. It is

E[Z] ≤ n/(logn)3 ≤ n/(2 logn). Lemma 11 implies for δ := 1

Pr
[
Z ≥ n

logn

]
≤ Pr[Z ≥ (1 + δ) · E[Z]] ≤ e−n/(3(logn)3) ≤ e−(a+2) lnn = n−(a+2). (4)

As in the proof of Lemma 3, we can now apply Known Result 1 to get the same guarantee for
the exact case with probability n−a. Therefore, with probability 1− n−a, at most n/ logn
nodes have been activated more than 3 log logn times before the T0-th interaction, finishing
the proof. J

3.3 Proof of Proposition 2
We show that, with high probability, after T := 4n lnn interactions all nodes are in their
tournament phase and at least n · (1− 1/ logn) of them have marking probability Θ(1/ logn).
We conclude that the expected number of marked nodes is Θ(n/ logn) and use Chernoff to
get the same result with high probability.

A node v enters the tournament phase at the latest when it was activated 4 log logn
times. Let N denote the number of interactions in which v was activated at the end of
interaction T . Then E[N ] = 2T/n = 8 lnn. Set δ := 1/

√
2 and note that 4 log logn ≤

2 lnn ≤ (1− 1√
2 )8 lnn = (1− δ) · E[N ]. Hence, Lemma 11 implies

Pr[N ≤ 4 log logn] ≤ e−E[N ]·δ2/2 = e−2 lnn = n−2. (5)



P. Berenbrink, D. Kaaser, P. Kling, and L. Otterbach 9:7

A union bound over all nodes yields that, with high probability, all nodes are in the
tournament phase after interaction T .

Lemma 3 implies that at the end of any interaction t with T ≥ t ≥ T0 := n · ln(log logn)/2
the number of flip bits set lies in n− (1± 1/ log logn) · n/2 with probability at least 1− n−3.
Thus, via a union bound over the T − T0 < 4n lnn many interactions in the interval [T0, T ],
with high probability the number of flip bits set lies in n− (1± 1/ log logn) · n/2 during the
whole interval [T0, T ]. We use E to denote this event. Now consider a node v that has all
of its marking trials during [T0, T ] and let Mv be the event that v leaves its marking phase
marked. Using that (1− 1/ log logn)log logn ≥ 1/(2e) and (1 + 1/ log logn)log logn ≤ e we get

1
2e logn ≤ Pr[Mv | E ] ≤ e

logn. (6)

By Lemma 5, with high probability there are no more than n/ logn nodes that start their
marking trials before interaction T0. Denote this high probability event with E ′. The two
worst case scenarios are that all or non of the early nodes get marked. Let M be the number
of marked nodes after T interactions. With the above argumentation we obtain

n

6 logn ≤
(
n− n

logn

)
· 1

2e logn ≤ E[M | E , E ′] ≤ n · e

logn + n

logn ≤
4n

logn. (7)

Applying Lemma 11 with δ = 1/4 and δ = 5/6, respectively, yields

Pr
[
M ≥ 5n

logn

∣∣∣∣ E , E ′] ≤ e− n
288 logn and Pr

[
M ≤ n

logn

∣∣∣∣ E , E ′] ≤ e− 25n
432 logn . (8)

Thus, using the law of total probability and the fact that the events E , E ′ happen with high
probability, we get that M ∈ Θ(n/ logn) with high probability, finishing the proof. J

4 Analysis of the Main Algorithm

In the following section we analyze the tournament phase of our protocol. First we show
that, at the beginning of any interaction, at least one node will have the contender role.

I Lemma 6. At the beginning of any interaction, there will be at least one contender.

Proof. Let M = max { c(v) } be the maximum counter value of all nodes. We observe that
from the definition of the protocol in Algorithm 1 it follows that a node’s counter cannot
decrease. We show by an induction over the number of interactions that there always exists
at least one contender which has the largest counter.

Initially, all nodes have the role contender and counter value 0. Therefore the base of the
induction holds. For the induction step consider an arbitrary but fixed interaction between v
and u. W.l.o.g. assume that c(v) ≥ c(u). We distinguish the following two cases, depending
on the status of v and u before the interaction.

Case 1: c(v) = M .
If node v is a contender, it can only become a minion upon interaction with another contender
u with c(u) = M and f(u) = 1 while f(v) = 0. In this case, however, u remains a contender
with maximal counter. It might also happen that the maximal counter value increases to
M + 1 while v still has c(v) = M . In that case, however, u will have c(u) = M + 1 and thus
u will be a contender with maximal counter value.

SOSA 2018



9:8 Simple and Efficient Leader Election

Case 2: c(v) < M .
Since both v and u do not have maximal counter value, the number of contenders having
maximal counters cannot decrease.

Together, these two cases yield the induction step and the lemma follows. J

It is easy to see that the maximum counter values are spread through the system like
messages in the case of push/pull broadcasting (see, e.g., [10]). The following observation is
an adaption of the results for randomized broadcasting algorithms to our setting.

For any interaction t let C(t) and C(t) denote the maximal and minimal counter value of
all nodes after interaction t.

I Observation 7. Fix an interaction t. With probability at least 1−n−3 the maximal counter
is broadcast to all nodes in 4n logn interactions: C(t+ 4n logn) ≥ C(t).

We use this observation to obtain the following corollary.

I Corollary 8. Fix an interaction t. Let Et be the event that C(t + 4n logn) < C(t). We

have Pr
[⋃Θ(n·(logn)2)

t=1 Et
]
≤ 1/n.

Proof. Note that for an interaction t the event Et is precisely the complementary event from
the one characterized in Observation 7. Therefore, Pr[Et] ≤ n−3. The corollary follows from
union bound over the Θ

(
n · (logn)2) interactions. J

From Observation 7 and Corollary 8 we obtain that whenever a contender increments its
counter, after at most 4n logn interactions, all nodes have at least the same value.

I Lemma 9. Let v1, v2 with v1 6= v2 be two contenders which are both in the tournament
phase. With constant probability pL9 = Θ(1) one of the two contenders becomes a minion
after 8n logn interactions.

Proof. W.l.o.g. assume that c(v1) ≥ c(v2). We split the 8n logn interactions into two parts
and show that with constant probability v1 increments its counter in the first part, while v2
does not increment its counter at all in both parts.

In each interaction, the probability that v1 is selected interacts with a marked node is
Θ(1/(n logn)). This follows directly from the number of marked nodes, see Proposition 2.
Let p1 be the probability that v interacts with a marked node in 4n logn interactions. For
the complementary event we get

p1 = 1− p1 =
(

1−Θ
(

1
n logn

))4n logn
= e−Θ(1)

and thus p1 = Θ(1).
Let p2 be the probability that v2 does not interact with a marked node and thus does

not increment its counter in all 8n logn interactions. The numbers of interactions of node v1
and node v2 are not independent, they are negatively correlated. To obtain a lower bound on
p2, we assume that in the worst case v1 does not interact at all. Under this assumption, the
probability that v2 is selected is 2/(n− 1) and thus the probability that v2 does not interact
with a marked node is at least

p2 ≥
(

1− 2
n− 1 ·Θ

(
1

logn

))8n logn
= Θ(1).



P. Berenbrink, D. Kaaser, P. Kling, and L. Otterbach 9:9

From Corollary 8 we obtain that in the second part of the 8n logn interactions v2 will see
a counter value which is as least as large as the counter value of v1 after the first part of the
interactions, with high probability. We use union bound on above probabilities and the result
from Corollary 8 and conclude that with constant probability pL9 ≥ p1 · p2 − 1/n = Θ(1) the
node v2 becomes a minion. J

Together with Lemma 6 and Corollary 8, the above lemma forms the basis for the proof
of our main theorem, Theorem 1. Our main result is restated as follows.

I Theorem 1. With high probability and in expectation, the protocol defined in Algorithm 1
elects exactly one leader in O

(
n · (logn)2) interactions. Furthermore, the protocol eventually

reaches and stays in a configuration where exactly one leader contender is left with probability 1.

Proof. Let v1 and v2 be an arbitrary but fixed pair of contenders. We denote the first
interaction when both v1 and v2 have entered the tournament phase as t0. From Proposition 2
we obtain that with high probability t0 = O(n logn). Starting with interaction t0, we consider
5/ log(1/(1 − pL9)) · logn = Θ(logn) so-called periods consisting of 8n logn interactions
each. More precisely, the i-th period consists of interactions in [ti−1, ti) for 1 ≤ i ≤
5/ log(1/(1− pL9)) · logn, where ti = t0 + i · 8n logn.

From Lemma 9 we know that with constant probability pL9 either v1 or v2 becomes a
minion in each period. Therefore, with constant probability 1− pL9 both nodes v1 and v2
remain contenders in one period. After 5/ log(1/(1 − pL9)) · logn = Θ(logn) periods, the
probability that v1 and v2 both remain contenders is at most 1/n5.

We take the union bound over all n2 pairs of nodes and obtain a probability of at least
1− 1/n3 that from each pair at least one node becomes a minion. From Lemma 6 we know
that we always have at least one contender. Obviously, in any pair of nodes this contender
cannot be the one to become a minion. Together, this implies that we have at least one
contender and after t0 + Θ(logn) · 8n logn = O

(
n · (logn)2) interactions we have exactly

one remaining contender, with high probability. All other nodes become minions with high
probability, which shows the first part of the theorem.

To argue that the claimed run time also holds in expectation, we observe that the
definition of the algorithm includes a backup protocol based on the flip bits. Observe that a
similar approach to use a backup protocol has also been described in [3] and in [7]. Intuitively,
whenever two contenders with the same counter value interact, there is a constant probability
that one of them becomes a minion due to the flip bits. This backup protocol reduces the
number of contenders to one in O

(
n2 logn

)
interactions in expectation. This follows from

the coupon collector’s problem. Since the probability that our main protocol fails and thus
the backup protocol is actually needed is at most O

(
1/n3), we obtain that our result also

holds in expectation.
Finally, to show that the protocol eventually reaches a state where exactly one contender –

the leader – is left, we observe the following. From any state of the system which is reachable
over a sequence of interactions from the initial configuration, it is straight forward to specify
a finite sequence of interactions such that all but one nodes become a minion. That means,
at any time we have a positive probability to reach a stable state within finitely many
interactions, and thus with probability 1 eventually only one contender will be left. J

SOSA 2018



9:10 Simple and Efficient Leader Election

References

1 Dan Alistarh, James Aspnes, David Eisenstat, Rati Gelashvili, and Ronald L. Rivest. Time-
Space Trade-offs in Population Protocols. In Proc. SODA, pages 2560–2579, 2017.

2 Dan Alistarh, James Aspnes, and Rati Gelashvili. Space-optimal majority in population
protocols. CoRR, abs/1704.04947, 2017.

3 Dan Alistarh and Rati Gelashvili. Polylogarithmic-Time Leader Election in Population
Protocols. In Proc. ICALP, pages 479–491, 2015.

4 Dana Angluin, James Aspnes, Zoë Diamadi, Michael J. Fischer, and René Peralta. Com-
putation in networks of passively mobile finite-state sensors. Distributed Computing,
18(4):235–253, 2006.

5 Dana Angluin, James Aspnes, and David Eisenstat. Stably Computable Predicates Are
Semilinear. In Proc. PODC, pages 292–299, New York, NY, USA, 2006.

6 Dana Angluin, James Aspnes, David Eisenstat, and Eric Ruppert. The computational
power of population protocols. Distributed Computing, 20(4):279–304, 2007.

7 Andreas Bilke, Colin Cooper, Robert Elsässer, and Tomasz Radzik. Population protocols
for leader election and exact majority with O(log2 n) states and O(log2 n) convergence time.
CoRR, abs/1705.01146, 2017.

8 David Doty and David Soloveichik. Stable leader election in population protocols requires
linear time. CoRR, abs/1502.04246, 2015.

9 Leszek Gasieniec and Grzegorz Stachowiak. Fast Space Optimal Leader Election in Popu-
lation Protocols. CoRR, abs/1704.07649, 2017.

10 Richard Karp, Christian Schindelhauer, Scott Shenker, and Berthold Vöcking. Randomized
Rumor Spreading. In Proc. FOCS, pages 565–574, 2000.

11 Michael Mitzenmacher and Eli Upfal. Probability and Computing: Randomized Algorithms
and Probabilistic Analysis. Cambridge University Press, 2005.

A Appendix

Let N be the natural numbers including zero.

I Definition 10 (Poisson Random Variable). A discrete Poisson random variable Y with
parameter λ is given by the following probability distribution on N: Pr[Y = k] = e−λλk/k!
for all k ∈ N.

I Lemma 11 (Chernoff Bounds [11] (Th. 4.4, Th. 4.5)). Let Z1, . . . , Zn be independent
Poisson trials such that Pr(Zi) = pi. Let Z =

∑n
i=1 Zi and µL ≤ E[Z] ≤ µU .3 Then,

Pr[Z ≥ (1 + δ)µU ] ≤ e−µUδ2/3 for 0 < δ ≤ 1 and
Pr[Z ≤ (1− δ)µL] ≤ e−µLδ2/2 for 0 < δ < 1.

I Lemma 12 (Chernoff for Poisson Variables [11] (Th. 5.4)). Let X be a Poisson random
variable with parameter λ.

If x > λ, then Pr(X ≥ x) ≤ e−λ(eλ)x
xx .

If x < λ, then Pr(X ≤ x) ≤ e−λ(eλ)x
xx .

3 While [11] states these bounds in terms of µ = E[Z], it is easy to see and also mentioned in [11] that
the Chernoff bounds hold also for suitable lower and upper bounds on E[Z].



P. Berenbrink, D. Kaaser, P. Kling, and L. Otterbach 9:11

Proof of Equation (1). Let Y be a Poisson random variable with parameter λ. Using the
Taylor series ex =

∑
k∈N

xk

k! , we obtain

Pr[Y is even] =
∑
k∈N

Pr[Y = 2k] =
∑
k∈N

e−λλ2k

(2k)!

= e−λ

2

(∑
k∈N

λ2k

(2k)! +
∑
k∈N

λ2k

(2k)!

)

= e−λ

2

(∑
k∈N

λ2k

(2k)! +
∑
k∈N

λ2k+1

(2k + 1)! +
∑
k∈N

λ2k

(2k)! −
∑
k∈N

λ2k+1

(2k + 1)!

)

= e−λ

2

(∑
k∈N

λk

(k)! +
∑
k∈N

(−λ)k

(k)!

)

= e−λ

2 (eλ + e−λ)

= 1
2(1 + e−2λ) . J

SOSA 2018


	Introduction
	Model and Protocol
	Analysis of the Marking Phase
	Concentration of the 1/2-Coin
	Bounding the Number of Early Marking Trials
	Proof of the Marking Proposition

	Analysis of the Main Algorithm
	Appendix

