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Abstract
We consider the restricted versions of Scheduling on Unrelated Machines and the Santa
Claus problem. In these problems we are given a set of jobs and a set of machines. Every job j
has a size pj and a set of allowed machines Γ(j), i.e., it can only be assigned to those machines.
In the first problem, the objective is to minimize the maximum load among all machines; in
the latter problem it is to maximize the minimum load. For these problems, the strongest LP
relaxation known is the configuration LP. The configuration LP has an exponential number of
variables and it cannot be solved exactly unless P = NP.

Our main result is a new LP relaxation for these problems. This LP has only O(n3) variables
and constraints. It is a further relaxation of the configuration LP, but it obeys the best bounds
known for its integrality gap (11/6 and 4).

For the configuration LP these bounds were obtained using two local search algorithm. These
algorithms, however, differ significantly in presentation. In this paper, we give a meta algorithm
based on the local search ideas. With an instantiation for each objective function, we prove the
bounds for the new compact LP relaxation (in particular, for the configuration LP). This way,
we bring out many analogies between the two proofs, which were not apparent before.
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1 Introduction

We consider the problem of allocating jobs J to machinesM. A popular variation is the
restricted case, where j ∈ J has a size pj and can only be assigned to Γ(j) ⊆ M. Two
natural objective functions are to minimize the maximum load or to maximize the minimum
load among all machines, where the load of a machine is defined as the sum of the sizes over
the jobs assigned to it. The first objective will be referred to as Makespan and the latter as
Max-min. These problems are special cases of Scheduling on Unrelated Machines and
the Santa Claus problem.

Recent breakthroughs in both problems can be attributed to the study of the exponential
size configuration LP which started with [4]. It was shown for the Max-Min problem that the
LP has an integrality gap of at most 4 [3], which was the first constant factor guarantee there.
Later, Svensson transferred these ideas to the Makespan problem and proved an upper bound
of 33/17 for the integrality gap in this case [11], thereby giving the first improvement over
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11:2 Compact LPs for Allocation Problems

the classical 2-approximation (see [9]). This has since been improved to 11/6 by us [7]. The
known lower bounds for the approximation ratio assuming P 6= NP are are 3/2 (Makespan) [9]
and 2 (Max-min) [5]. This matches the known instances with the highest integrality gap
for the configuration LP. Such instances can be derived by easy modification of the lower
bounds given in this paper later on. Note that all of the upper bounds mentioned above
are non-constructive, i.e., they do not give an efficient algorithm to compute the integral
solution of the respective quality. A significant amount of research has gone into making
these proofs constructive [10, 2, 8, 1], but this is not the focus of this paper.

In this paper, we show that these upper bounds can already be achieved by a weaker
LP relaxation, which has polynomial size. First, we show a necessary condition for the
existence of a fractional solution of a certain value. Then, we use this condition together
with a local search algorithm similar to those used to prove the bounds for the configuration
LP. This local search algorithm might not terminate in polynomial time; hence the result
is non-constructive. We present the local search algorithms and their analysis in a unified
way for both problems. In previous literature, many similarities between the problems were
hidden by the different presentations of the algorithms. The algorithm in this paper is given
in a natural way like in some physical system and uses much less technical definitions than in
the previous papers. Starting with an arbitrary allocation, jobs are repelled or attracted by
certain machines. This depends for example on whether a machine has too much or too little
load. Based on these rules, they are moved away from machines by which they are repelled
or towards machines by which they are attracted. The allocation eventually converges to
one that has the desired properties. This is also significant change in the technical aspects,
in particular compared to the previous algorithm for Max-min. There, jobs were always
considered in large sets and such a set can only be exchanged altogether for a disjoint set of
jobs. Our approach is more fine-grained by arguing over the jobs individually, which is also
how it was traditionally done in the Makespan case.

One advantage of the small linear program is that it is much simpler to solve. An optimal
solution can be computed directly and efficiently by an LP solver. The configuration LP on
the other hand cannot be solved exactly in polynomial time, unless P=NP (see Appendix A),
and even approximating it requires non-trivial techniques. A detailed description can be
found in [4].

Furthermore, this paper improves the understanding of the configuration LP by pointing
out which properties are necessary and which are not to obtain the currently known bounds
for the integrality gap. This points to aspects of the configuration LP that should be
investigated in order to reduce the bound on the integrality gap further. The compact
linear program we give in this paper works by enforcing some properties of the configuration
LP only on jobs greater than a certain threshold. It is intuitive that the integrality gap
approaches that of the configuration LP as this threshold tends to 0, but it is surprising that
we get the exact same bounds and this even with a rather large threshold.

It is also a direction of further research to investigate if efficient rounding procedures for
the weaker linear program exist, since now it is clear that it has the potential for them.

Notation

Throughout the paper we will encounter numerous occasions, where one inequality (e.g.,
a ≤ b) holds for Makespan objective and the opposite holds for Min-max (e.g., a ≥ b). To
save space, we will write a ≤ (≥) b in that case. The first symbol always refers to the
Makespan objective and the latter one to Max-min.



K. Jansen and L. Rohwedder 11:3

For a set of jobs A ⊆ J , we write p(A) in place of
∑
j∈A pj . For other variables indexed

by jobs, we may do the same. An allocation is a function σ : J →M, where σ(j) ∈ Γ(j) for
all j ∈ J . We write σ−1(i) for the set of all jobs j which have σ(j) = i.

1.1 Linear programming relaxations
All of the LPs presented below do not have an objective function. Instead, they are
parameterized by a value T ∈ [0, n ·maxj∈J pj ] and the optimum is the lowest T (Makespan)
or highest T (Max-min) for which the LP is feasible. If the LP can be solved in polynomial
time, such a T can be found in polynomial time using a binary search.

First, we define the allocation polytope, which captures every legal (fractional) allocation
of jobs.

I Definition 1 (Allocation polytope).∑
i∈Γ(j)

xi,j ≥ (≤) 1 ∀j ∈ J (1)

∑
i/∈Γ(j)

xi,j = 0 ∀j ∈ J (2)

xi,j ∈ [0, 1] ∀j ∈ J , i ∈M

Here the variable xi,j specifies if job j is assigned to machine i. Note that it would perhaps
be more intuitive to enforce equality in (1), but this would make certain upcoming arguments
more lengthy than necessary. In general, a solution that does not satisfy equality can be
converted without loss to one that does.

It remains to add constraints that guarantee every machine has a load of at most T
(Makespan) or at least T (Max-min). We give these constraints in an indirect form. This is
to improve comparability between these relaxations. In Section 2 we will give an explicit
version of LPr, which is the polynomial linear program this paper focuses on.

I Definition 2 (Assignment LP). The straight forward method is to ensure for all i ∈ M
that

∑
j∈J pjxi,j ≤ (≥) T holds. This can also be written as

(xi,j)j∈J ∈ {χ ∈ [0, 1]J : pTχ ≤ (≥) T} ∀i ∈M. (3)

This basic relaxation goes back to [9]. For Makespan it has an integrality gap of exactly 2;
for Max-min the integrality gap is unbounded.

I Definition 3 (Configuration LP). For the configuration LP it is required that the assignment
of jobs to a particular machine is a convex combination of so-called configurations (sets of
jobs that do not exceed T in size or have size of at least T ), i.e.,

(xi,j)j∈J ∈ conv{χ ∈ {0, 1}J : pTχ ≤ (≥) T} ∀i ∈M. (4)

Note that it is not necessary to require χj = 0 for all j ∈ J with i /∈ Γ(j) (which is typical for
the definition of the configurations), since this is already implied by the allocation polytope.
The common definition of the configuration LP uses an exponential number of variables.
Wiese and Verschae observed that the definition above is equivalent [12]. Clearly these
constraints imply those from the assignment LP. Hence, the configuration LP is the stronger
of the two.

SOSA 2018
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I Definition 4 (LPr). As a natural intermediate between assignment LP and configuration
LP, for a constant r ∈ N0 we propose the following constraint.

(xi,j)j∈J ∈ conv{χ ∈ [0, 1]J : pTχ ≤ (≥) T, χj ∈ {0, 1} if pj · r > T} ∀i ∈M. (5)

To our best knowledge, the cases where 0 < r <∞ have not been considered in literature.

1.2 Other related work

The Graph Balancing problem is the special case of Makespan minimization where
|Γ(j)| = 2 for all j ∈ J . For this problem a strong polynomial size LP relaxation is already
known. This is the assignment LP with the additional constraint that

∑
j∈J :pj>T/2 xi,j ≤ 1

for all i ∈M. It was shown to have an integrality gap of exactly 1.75 for Graph Balancing,
but for arbitrary restrictions it only gives 2 [6]. This LP can be written as the points in the
allocation polytope that satisfy

(xi,j)j∈J ∈ conv{χ ∈ [0,∞)J : pTχ ≤ T and χj ∈ {0, 1} if pj · 2 > T} ∀i ∈M.

In this form we see clearly the similarities to LP2. Interestingly, LP2 remains strong even for
arbitrary restrictions.

1.3 Our contribution

I Theorem 5. For r ≥ 2 there is a linear program with O(nr+1) variables and constraints
(Makespan) or O(nr+2) (Max-min) that is equivalent to LPr, where n = |J |+ |M|.

I Theorem 6. LP2 for Makespan has an integrality gap between 10/6 and 11/6.

I Theorem 7. LP4 for Max-min has an integrality gap between 2.5 and 4.

With some optimization in the Max-min case, we can further reduce the size of LP4 (see
Appendix B).

I Corollary 8. For Makespan (Max-min) objective there is a linear programming relaxation
with O(n3) variables and constraints that approximates the problem with a ratio of 11/6
(respectively, 4).

Notable is that the lower bounds are higher than those known for the configuration LP. There,
the worst instances known give an integrality gap of 2 (Max-min) and 9/6 (Makespan). This
means for LP2 / LP4 we are closer to a full understanding. It also shows that, assuming that
the integrality gap of the configuration LP is indeed the respective lower bound, proving
it will require utilizing constraints that are not already implied by LP2 (Makespan) or LP4
(Max-min).

I Corollary 9. There exists an 11/6-estimation (4-estimation) algorithm for the Makespan
objective (respectively, the Max-min objective).

The estimation algorithm is based on computing the optimum of the relaxation. This
improves on the 11/6 + ε (4 + ε) rate previously known. The error of ε in the previous result
comes from the fact that the configuration LP can only be solved approximately.
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2 Compact linear program

In this section, we present a polynomial size linear program, which is feasible if and only if
LPr is feasible. Note that in order to meet the claimed size, we need to eliminate unnecessary
variables, which is discussed in 2.1.

For simplicity of notation, define big jobs JB := {j ∈ J : r · pj > T} and small jobs
JS := J \ JB . In the first part, we write an LP for the big jobs and only then deal with the
small ones. We write the set of big configurations as CB(T ) = {χ ∈ {0, 1}JB}.

The convexity constraint for LPr implies that (xi,j)j∈JB
∈ conv(CB(T )) for every i ∈M.

In other words, there exist ai,χ ≥ 0 (i ∈M, χ ∈ CB(T )) such that
∑
χ∈CB(T ) ai,χ = 1 (∗) for

every i ∈ M and xi,j =
∑
χ∈CB(T ) χjai,χ for every i ∈ M, j ∈ J . With this idea in mind,

we construct an LP by using variables ai,χ, the constraint (∗), and the allocation LP where
we substitute every occurrence of xi,j for

∑
χ∈CB(T ) χjai,χ.∑

χ∈CB(T )

ai,χ = 1 ∀i ∈M (6)

∑
i∈Γ(j)

∑
χ∈CB(T )

χjai,χ ≥ (≤) 1 ∀j ∈ JB (7)

∑
i/∈Γ(j)

∑
χ∈CB(T )

χjai,χ = 0 ∀j ∈ JB (8)

ai,χ ≥ 0

In the following, we will show how to cope with small jobs. For every j ∈ JS , i ∈M, and
χ ∈ CB(T ) we use a variable bj,i,χ that describes how much of j is used on machine i together
with χ. Here bj,i,χ = ai,χ means it is fully used and bj,i,χ = 0 means it is not used at all.

∑
i∈Γ(j)

∑
χ∈CB(T )

bj,i,χ ≥ (≤) 1 ∀j ∈ JS (9)

∑
i/∈Γ(j)

∑
χ∈CB(T )

bj,i,χ = 0 ∀j ∈ JS (10)

∑
j∈JS

pjbj,i,χ ≤ (≥) (T −
∑
j∈JB

pjχj)ai,χ ∀i ∈M, χ ∈ CB(T ) (11)

0 ≤ bj,i,χ ≤ ai,χ

2.1 Restricting the variables
We denote by supp(χ) the non-zero components of χ ∈ CB(T ). Observe that in the makespan
case, a configuration χ ∈ CB(T ) with |supp(χ)| ≥ r cannot be used, i.e., ai,χ = 0 must
hold for a feasible solution. Otherwise, the right hand side of (11) is negative. Hence,
we can throw away such variables and the number of remaining configurations is at most∑r−1

k=0
(
n
k

)
= O(nr−1). It is easy to see that O(nr+1) variables and constraints are left.

For Max-min, we notice that when a configuration χ ∈ CB(T ) has |supp(χ)| ≥ r, then
(11) is trivially satisfied. If a configuration χ ∈ CB(T ) with |supp(χ)| > r is used, then we
can shift its value to any χ′ ≤ χ (component-wise) where |supp(χ)| = r. Hence, if there
is a feasible solution, then there is also one that uses only configurations χ ∈ CB(T ) with
|supp(χ)| ≤ r. This gives a total of O(nr) relevant configurations and thus O(nr+2) variables
and constraints.

SOSA 2018
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2.2 Equivalence to LPr

I Lemma 10. If the compact linear program is feasible, then LPr is feasible.

Proof. Consider a feasible solution a, b. Recall, we have that each machine is assigned a
combination of configurations in CB(T ). We will extend these configurations by adding
small jobs to them. For this purpose, define for every i ∈ M and χ ∈ CB(T ) a vector
f(i, χ) ∈ [0, 1]J by

f(i, χ)j :=


χj if j ∈ JB ,
bj,i,χ/ai,χ if j ∈ JS and ai,χ > 0,
0 otherwise.

Note that since bj,i,χ ≤ ai,χ, we have f(i, χ)j ∈ [0, 1]. We define the solution x for LPr on
every machine as a convex combination of these vectors, more formally

xi,j :=
∑

χ∈Cr(T )

ai,χ · f(i, χ)j .

It follow directly from the constraints in the compact linear program that x is in the allocation
polytope. Let us verify that x satisfies the convexity constraint for i. Since

∑
χ∈Cr(T ) ai,χ = 1,

it is sufficient to show that for every i ∈M, χ ∈ CB(T ) with ai,χ > 0,

f(i, χ) ∈ {χ ∈ [0, 1]J : pTχ ≤ (≥) T and χj ∈ {0, 1} if pj · r > T}.

By definition we have f(i, χ)j ∈ {0, 1} if pj · r > T (i.e., j ∈ JB) and using constraint (11)
we find,

pT f(i, χ) =
∑
j∈JB

pjχj+
∑
j∈JS

pjbj,i,χ/ai,χ ≤ (≥)
∑
j∈JB

pjχj+(T−
∑
j∈JB

pjχj)ai,χ/ai,χ = T.J

I Lemma 11. If LPr is feasible, then the compact linear program is feasible.

Proof. Let x be a solution for LPr and define

K = {χ ∈ [0, 1]J : pTχ ≤ (≥) T, χj ∈ {0, 1} if pj · r > T}.

Let i ∈ M. Then by the convexity constraint, there exist (λχ)χ∈K non-negative with∑
χ∈K λχ = 1 and xi,j =

∑
χ∈K λχχj for all j ∈ J .

Let ψ ∈ CB(T ) and let K(ψ) ⊆ K denote those χ ∈ K which have χj = ψj for all j ∈ JB .
We define the variables for i and ψ as ai,ψ =

∑
χ∈K(ψ) λχ and bi,j,ψ =

∑
χ∈K(ψ) λχχj for all

j ∈ JS . Note that∑
ψ∈CB(T )

bi,j,ψ =
∑

ψ∈CB(T )

∑
χ∈K(ψ)

λχχj =
∑
χ∈K

λχχj = xi,j .

With that in mind, the constraints except for (11) are straight-forward. Moreover, we show
said constraint as follows.∑

j∈JB

pjψj + 1
ai,ψ

∑
j∈JS

pjbj,i,ψ =
∑
j∈JB

pjψj + 1
ai,ψ

∑
j∈JS

[pj
∑

χ∈K(ψ)

λχχj ]

=
∑

χ∈K(ψ)

[ λχ
ai,ψ︸ ︷︷ ︸

=1

∑
j∈JB

pj χj︸︷︷︸
=ψj

] +
∑

χ∈K(ψ)

[ λχ
ai,ψ

∑
j∈JS

pjχj ]

=
∑

χ∈K(ψ)

λχ
ai,ψ

pTχ ≤ (≥) T. J
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k−1
k

pj · 1
2 ·

k
k−1

k times once k − 1 times

Figure 1 Fractional and integral solution for lower bound (Makespan)

3 Lower bound (Makespan)

Here, we give a lower bound of 5/3 for LP3 (in particular, for the weaker LP2) in the
Makespan case. A similar construction for the Max-min case is given in the appendix.

Let k be an even number and consider an instance with k machines, i.e., k/2 pairs of
machines, and 3k+1 jobs. For each of the k/2 pairs (i1, i2) let there be 6 jobs j with pj = 1/3
and Γ(j) = {i1, i2}. Furthermore let there be one job jB with pjB

= 1 and Γ(jB) =M, i.e.,
it can be assigned anywhere.

Assume toward contradiction that there is a schedule with makespan strictly less than
5/3. jB has to be assigned somewhere and we denote this machine by i. There can be at
most one job of size 1/3 that is assigned to i as well. Hence, 5 jobs of size 1/3 must be
assigned to the other machine in this pair; thus the load on that machine is at least 5/3. A
contradiction.

Next, we show that LP2 is feasible for T = k/(k − 1). For every i ∈M let xi,jB
= 1/k,

i.e., the big job is distributed evenly across all machines. For every other job j, split it across
the two machines it is allowed on. More formally, let xi1,j = xi2,j = 1/2 with {i1, i2} = Γ(j).
Clearly x is in the allocation polytope. Let i ∈M. We need to verify that

(xi,j)j∈J ∈ conv{χ ∈ [0, 1]J : pTχ ≤ k/(k − 1) and χj ∈ {0, 1} if pj · 3 > k/(k − 1)}.

We define one vector for the big job and one for each machine:

χ
(jB)
j :=

{
1 if j = jB ,

0 otherwise,
and χ(i)

j :=
{

1
2 ·

k
k−1 if pj = 1/3 and i ∈ Γ(j),

0 otherwise.

Note that we have pTχ(jB) = pjB
= 1 ≤ k

k−1 = T as well as pTχ(i) = 6 · 13 ·
1
2 ·

k
k−1 = k

k−1 = T .
The integrality constraint is satisfied for jB and since 1/3 · 3 = 1 ≤ k/(k − 1), it is not
necessary for the small jobs. Also, it holds that (xi,j)j∈J = 1/k · χ(jB) + (k − 1)/k · χ(i), as
shown below.

xi,j =


1/k · 1 + (1− 1/k) · 0 = 1/k · χ(jB)

j + (k − 1)/k · χ(i)
j if j = jB ,

1/k · 0 + k−1
k ·

1
2 ·

k
k−1 = 1/k · χ(jB)

j + (k − 1)/k · χ(i)
j if pj = 1/3 and i ∈ Γ(j),

1/k · 0 + (1− 1/k) · 0 = 1/k · χ(jB)
j + (k − 1)/k · χ(i)

j otherwise.

For this instance, we get a gap that approaches 5/3 as k tends to infinity. This construction
does not work for LP4 and higher, since in those cases integrality constraints are enforced

SOSA 2018
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for the jobs of size 1/3 as well. However, similar constructions work when using 10 jobs of
size 1/5, 14 jobs of size 1/7, etc. The lower bound becomes weaker the smaller the size is
chosen, but it always stays strictly above 3/2, the best lower bound for the configuration LP.

4 Proof of integrality gap

The proof for the integrality gap is by using a potentially exponential time approximation
algorithm. The algorithm takes as an input T and returns a solution of value αT , where α
is the bound on the integrality gap, or proves that LP2 (Makespan) or LP4 (Max-min) is
infeasible w.r.t. T .

In 4.1, we prove a criterion for the infeasibility of LPr. In previous literature, for the
configuration LP a similar criterion was derived from its dual. In fact, if r tends to infinity
(i.e., pj · r > T for all j ∈ J ), our criterion is equivalent to that one.

In the proofs for the configuration LP, our criterion can replace the previous one in a
straight-forward way and give the integrality gap for LP2 (Makespan) or LP4 (Max-min).

4.1 Criterion for infeasibility
The criterion is derived from the LPr in another equivalent representation and by using
the duality theorem (e.g., unbounded dual implies infeasible primal). For this purpose, we
construct a representation of LPr, where we do not care about its size, but the goal is to
obtain a rather simple dual.

I Lemma 12. LPr is infeasible w.r.t. T if there are y ∈ RM≥0 and z ∈ RJ≥0 with
∑
j∈J zj >

(<)
∑
i∈M yi such that for every i ∈M, χ ∈ [0, 1]J with

1. pTχ ≤ (≥) T ,
2. χj ∈ {0, 1} for every j ∈ J with pj · r > T , and
3. χj = 0 for every j ∈ J with i /∈ Γ(j),
it holds that zTχ ≤ (≥) yi.

For this lemma even equivalence holds. To conserve space we will only show this direction.

Proof of Lemma 12. Recall for the compact linear program, the big jobs were assigned to
machines in configurations. We want to include the (fractional) allocation of small jobs in
those configurations as well. The natural approach is to define

C(T ) := {χ ∈ [0, 1]J : pTχ ≤ (≥) T, χj ∈ {0, 1} if pj · r > T}.

Then a representation of LPr is the following.

min(max) 0 (12)∑
χ∈C(T )

aχ,i = 1 ∀i ∈M (13)

∑
i∈Γ(j)

∑
χ∈C(T )

χj · aχ,i ≥ (≤) 1 ∀j ∈ J (14)

∑
i/∈Γ(j)

∑
χ∈C(T )

χj · aχ,i = 0 ∀j ∈ J (15)

aχ,i ≥ 0
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There is, however, an issue with this definition. Since C(T ) can have infinitely many elements,
the dimension of the LP is potentially infinite. This means, we cannot simply apply results
from LP duality. Thus, we will first show that a finite number of variables is suffices.

Recall that the constraint for LPr is (xi,j)j∈J ∈ conv(C(T )). We will show that
conv(C(T )) = conv(V (T )) for some finite V (T ) ⊆ C(T ). This means, we can substitute
C(T ) for V (T ).

Observe that C(T ) is a union of polytopes, where each polytope corresponds to one
integral allocation of the big jobs. More formally, let χB ∈ {0, 1}JB . Then the set of vectors
in C(T ) where the values for big jobs equal χB are exactly

{χ ∈ [0, 1]J : pTχ ≤ (≥) T and (χj)j∈JB
= χB}.

For each of these χB , this is clearly a polytope, which can be written as the convex hull of
finitely many basic solutions. Let V (T ) be the set of all basic solutions for all allocations χB
of big jobs. Then (xi,j)j∈J ∈ conv(C(T )) is equivalent to (xi,j)j∈J ∈ conv(V (T ))

We substitute C(T ) for V (T ) in the LP above and, for an easier dual, we multiply (13)
by −1. Then the dual is the following:

max(min)
∑
j∈J

zj −
∑
i∈M

yi∑
j∈J :i∈Γ(j)

χj · zj +
∑

j∈J :i/∈Γ(j)

χj · zj ≤ (≥) yi ∀i ∈M, χ ∈ V (T )

zj ≥ 0
zj , yi ∈ R

Now consider the values z, y from Lemma 12 and set zj to a negative (Makespan) or positive
(Max-min) number of very large magnitude for all j ∈ J . Then this is a feasible solution
for the dual: Let i ∈ M and χ ∈ V (T ). If χj = 0 for all j ∈ J with i /∈ Γ(j), then the
constraint is satisfied by definition of z and y. Otherwise, the constraint holds when zj is
chosen sufficiently small (large).

The solution has a positive (negative) objective value and we can scale it by any constant
and construct a new feasible solution. This way we can obtain any positive (negative) objective
value, i.e., the dual is unbounded. By duality this implies the primal is infeasible. J

4.2 Local search algorithm
I Definition 13 (Good and bad machines). Given an allocation σ : J → M, we call a
machine i bad, if

∑
j∈σ−1(i) pj > 11/6 · T (Makespan) or

∑
j∈σ−1(i) pj < 1/4 · T (Max-min).

A machine is good, if it is not bad.

The local search algorithm starts with an arbitrary allocation and moves jobs until all
machines are good, or it can prove that LP2 (Makespan) or LP4 (Max-min) is infeasible
w.r.t. T . During this process, a machine that is already good will never be made bad.

The central data structure of the algorithm is an ordered list of moves L = (L1, L2, . . . , L`).
Here, every component Lk = (j, i), j ∈ J and i ∈ Γ(j), stands for a move the algorithm
wants to perform. It will not perform the move, if this would create a bad machine, i.e.,
p(σ−1(i)) + pj > 11/6 · T (Makespan) or p(σ−1(σ(j)))− pj < 1/4 · T (Max-min). If it does
not create a bad machine, we say that the move (j, i) is valid. For every 0 ≤ k ≤ ` define
L≤k := (L1, . . . , Lk), the first k elements of L (with L≤0 being the empty list).
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Algorithm 1 Local search meta-algorithm
1. Let σ be an arbitrary allocation;
2. `← 0; // length of the list of moves L
3. while there is a bad machine do

a. if there exists a valid move (j, i) ∈ L then
i. Let 0 ≤ k ≤ ` be minimal such that
(Makespan) j is repelled by σ(j) w.r.t. L≤k;
(Max-min) j is attracted by i w.r.t. L≤k;

ii. σ(j)← i;
iii. L← L≤k; `← k; // Forget moves Lk+1, . . . , L`

b. else
i. Choose a move (j, i) /∈ L, j ∈ J and i ∈ Γ(j), with pj minimal and
(Makespan) j is repelled by σ(j) and not repelled by i w.r.t. L;
(Max-min) j is not attracted by σ(j) and attracted by i w.r.t. L;

ii. L`+1 ← (j, i); ` = `+ 1; // Append (j, i) to L

Depending on the current schedule σ and list of moves L, we define for every machine i
which jobs are repelled or not repelled (Makespan). In the Max-min case we use the term
attracted instead of not repelled; not attracted instead of repelled. This is only to make
the definitions easier to read. The definition of repelled/attracted jobs differs in the two
algorithms and is given in Section 4.2.1. The algorithm will only add a new move (j, i) to
the current list L, if j is repelled (not attracted) by its current machine and not repelled
(attracted) by the target i w.r.t. L.

4.2.1 Repelled and attracted jobs
Here, we will start with the Max-min case, since it is the simpler one.

Max-min

Depending on the current schedule σ and the current set of moves L = L≤`, we define which
jobs are attracted by which machines. We call a job j ∈ J big, if pj > 1/4 · T and small
otherwise. The first two rules are that bad machines attract all jobs and that rules are
propagated from prefixes of the list.
(initialization) If ` = 0, every bad machine i attracts every job j.
(monotonicity) If ` > 0 and i attracts j w.r.t. L≤`−1, then i attracts j w.r.t. L≤`.
For the remaining rules, assume ` > 0, and let (j`, i`) := L` be the last move added. We will
define which new rules this move adds to the existing ones.

We can assume that all moves in L≤`−1 are not valid, since otherwise the algorithm
would execute them instead of adding a new one. Since i` tries to steal j` from σ(j`), but
the move is not valid, the machine σ(j`) should attract jobs in order to make (j`, i`) valid.
More precisely,
(small-all) if j` is small, σ(j`) attracts all jobs and
(big-big) if j` is big, σ(j`) attracts all big jobs.

This misses one important case. Suppose that j` is big. Intuitively, σ(j`), should also
collect small jobs to make the move (j`, i`) valid. However, the straight-forward way (σ(j)
attracts all small jobs as well) does not work out in the analysis. Hence, a more sophisticated
strategy is required.
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For i ∈M define Si(L) to be all small jobs j which have either σ(j) = i or which have
i ∈ Γ(j) and are not attracted by their current machine, σ(j), w.r.t. the rules above. The
intuition behind Si(L) is the following. In the best case, i could collect all jobs from Si(L).
If p(Si(L)) < 1/4 · T , then we cannot expect i to satisfy its demand only using small jobs.
On the other hand, if it gets a big job, then this job alone satisfies its demand. Hence, i
should not attract small jobs. More formally,
(big-all) if j` is big and p(Sσ(j`)(L)) ≥ 1/4 · T , then σ(j`) attracts all jobs.

Makespan

Here, we define big jobs to be those j ∈ J that have pj > 1/2 · T and small jobs all others.
(initialization) If ` = 0, every bad machine i repels every job j.
(monotonicity) If ` > 0 and i repels j w.r.t. L≤`−1, then i repels j w.r.t. L≤`.
Again, the remaining rules regard ` > 0 and we define (j`, i`) := L`, i.e., the last move added.
In order to make space for j`, the machine i` should repel jobs.
(small-all) If j` is small, i` repels all jobs.
This still leaves one case to resolve. If j` is big, which jobs does i` repel? It helps to imagine
that the algorithm is a lazy one: It repels jobs only if it is really necessary.

For i ∈ M define Si(L) to be those small jobs j which have σ(j) = i and which are
repelled by all other potential machines, i.e., Γ(j) \ {i}, w.r.t. the rules above. The intuition
behind Si(L) is that we do not expect that i can get rid of any of the jobs in Si(L).

Next, define a threshold t(L, (j`, i`)) as the minimum t ≥ 0 such that Si and all big jobs
below this threshold are already too large to add j`:

p({j ∈ σ−1(i`) : j ∈ Si`(L) or 1/2 < pj ≤ t}) + pj`
> 11/6 · T,

or t(L, (j`, i`)) =∞ if no such t exists. In order to make (j`, i`) valid, it is necessary (although
not always sufficient) to remove one of the big jobs with size at most t(L, (j`, i`)). Hence, we
define,
(big-all) if j` is big and t(L, (j`, i`)) =∞, then i` repels all jobs and
(big-big) if j` is big and t(L, (j`, i`)) < ∞, then i` repels Si`(L) and all jobs j with

1/2 < pj ≤ t(L, (j`, i`)).
Note that repelling Si`(L) seems unnecessary, since those jobs do not have any machine to
go to. However, this definition simplifies the analysis. It is also notable that the special case
where t(L, (j`, i`)) = 0 is equivalent to p(Si`(L)) + pj`

> 11/6 · T and here the algorithm
gives up making (j`, i`) valid. Finally, we want to highlight the following counter-intuitive
(but intentional) aspect of the algorithm. It might happen that some job of size greater
than t(L, (j`, i`)) is moved to i`, only to be removed again later on, when t(L, (j`, i`)) has
increased.

4.3 Analysis (Max-min)
For completeness, we give the analysis for the Makespan case in the appendix. It is not
included here so as to avoid repetitive arguments.

To verify the correctness of the algorithm, it has to be shown that (1) it terminates and
(2) in each iteration of the main loop, there is either a valid move in L or some move that
can be added to L.

I Theorem 14. The algorithm terminates after finitely many iterations of the main loop.
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Proof. As before, let ` denote the current length of L. We define a potential function

Φ(L) = (b, s0, s1, s2, . . . , s`,∞),

where b is the number of bad machines and sk is the number of pairs (i, j) ∈M×J where
i attracts j w.r.t. L≤k and σ(j) 6= i. Intuitively, the algorithm makes progress when this
number decreases.

Note that the length of Φ(L) is bounded by |M| · |J |+ 2 and every component can only
have |M| · |J |+ 1 many different values. Thus, the range of the potential function is finite.

We will show that the vector decreases lexicographically after every iteration of the main
loop; hence the running time is bounded by the number of such vectors times the maximum
number of operations in one iteration and, in particular, is finite. For the lexicographic
decrease consider two cases. Either a new move is added, which decreases the potential
function by replacing the last component with some finite value, or a move is performed. If
a move turns a bad machine good, b decreases and so does the lexicographic value of Φ(L).
Otherwise, let `′ ≤ ` be the length of the list after a move (j, i) is performed. Recall the
algorithm prevents jobs attracted by their current machine from being moved, i.e., j is not
attracted by its previous machine w.r.t. L≤`′ . Moreover, observe that the attracted jobs
w.r.t. L≤0, . . . , L≤`′ do not change. This can be seen from the definition of attracted jobs.
Therefore s0, . . . , s`′ do not increase. Finally, since j is attracted by i w.r.t. L≤`′ and after
the move σ(j) = i holds, the value of s`′ has decreased. J

I Theorem 15. If LP4 is feasible w.r.t. T , the algorithm always has an operation it can
perform.

Proof. As in the algorithm, call a job j small, if pj < 1/4 · T = 1/r · T and big otherwise.
Suppose toward contradiction, there are bad machines, no move in L is valid, and no move
can be added to L. We will construct values (zj)j∈J , (yi)i∈M with the properties as in
Lemma 12 and thereby show that LP4 is infeasible w.r.t. T .

Define yi = 3/4 for every i ∈ M where i is bad or (j′, i′) ∈ L for some j′ ∈ J with
σ(j′) = i. For all other machines i define yi = 0. Furthermore, define zj = 3/4 if j is big and
attracted by σ(j); define zj = pj/T if j is small and attracted by σ(j); and zj = 0 if j is not
attracted by σ(j). We proceed to show that these values indeed satisfy the properties as in
Lemma 12.

I Fact 16. Let j be a job attracted by some machine i ∈ Γ(j) (not necessarily σ(j)). Then
zj = 3/4 if j is big and zj = pj/T , otherwise.

We need to show that j is attracted by σ(j). If σ(j) = i, then this holds trivially. If σ(j) 6= i,
then either j is attracted by σ(j) or (j, i) ∈ L, since no moves can be added. In the latter
case σ(j) attracts at least all big jobs if j is big and all jobs if j is small. In either case σ(j)
attracts j and therefore Fact 16 holds.

Let i ∈ M and χ ∈ [0, 1]J with pTχ ≥ T , χj ∈ {0, 1} for every big job, and χj = 0 if
i /∈ Γ(j). We must show that zTχ ≥ yi.

If yi = 0 then zTχ ≥ yi, since zTχ is non-negative. Hence, assume w.l.o.g. that yi = 3/4.
By definition of attracted jobs, this means i attracts at least all big jobs. Moreover, the
inequality holds trivially if χj = 1 for some big job j, since zj = 3/4 (Fact 16). Because
for big jobs j we have χj ∈ {0, 1} and the case χj = 1 is trivial, the only interesting case is
where χj = 0 for all big jobs j. We note that this is the only argument in which we use the
integrality of some component in χ.

Define Si(L≤k) for all 0 ≤ k ≤ ` as in the algorithm. Because yi = 3/4, we know that
there is a (jk, ik) = Lk (k ≤ `) such that σ(jk) = i. Then there are two cases.
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1. Case: i attracts all jobs. Since χj = 0 is assumed for all big jobs j and i attracts all
jobs, by Fact 16 we get zTχ = pTχ/T ≥ 1 > yi.

2. Case: i attracts only big jobs. Then jk must be big and p(Si(L≤k)) < 1/4 · T (rule
big-big). Note that zj = pj/T for every small job j /∈ Si(L≤`)) with i ∈ Γ(j), since by
definition j is attracted by σ(j) w.r.t. L≤k (in particular, w.r.t. L≤`). Hence,

zTχ ≥
∑

j∈J\Si(L)

zjχj =
∑

j∈J\Si(L)

pjχj/T ≥ (pTχ−p(Si(L)))/T > (T−1/4 ·T )/T = yi.

It remains to show that
∑
j∈J zj <

∑
i∈M yi. We show that, with amortization, good

machines satisfy z(σ−1(i)) ≤ yi and for bad machines strict inequality holds.
Let i be a bad machine. A bad machine cannot have a big job assigned to it. Moreover,

all jobs (in particular those in σ−1(i)) are attracted by i. Hence,

z(σ−1(i)) = p(σ−1(i))/T < 1/4 < yi.

Let i be a good machine. If yi = 0, then i attracts no jobs and therefore z(σ−1(i)) = 0. For
the remaining part, assume that yi = 3/4, that is to say, there exists a move (jk, ik) = Lk
(k ≤ `) such that σ(jk) = i.

Case (big-big): i attracts only big jobs. Then jk must be big and since (jk, ik) is not valid,
it must be the only big job on i. Thus,

z(σ−1(i)) = zjB
= 3/4 = yi.

Case (big-all): i attracts all jobs and jk is big. Since (jk, ik) is not valid, we have
p(σ−1(i) \ {jk}) < 1/4 · T . In particular, σ−1(i) \ {jk} does not contain another big job.
Thus,

z(σ−1(i)) = zjk
+ z(σ−1(i) \ {jk}) = zjB

+ p(σ−1(i) \ {jk})/T < 3/4 + 1/4 = yi + 1/4.

Case (small-all): i attracts all jobs and jk is small. Again, (jk, ik) is not valid. In partic-
ular, σ−1(i) cannot contain a big job. Hence,

z(σ−1(i)) = p(σ−1(i))/T = (p(σ−1(i))− pjk
)/T + pjk

/T < 1/4 + 1/4 = yi − 1/4.

It is easy to see that cases (big-all) and (small-all) are disjoint: Once a machine attracts all
jobs, no new move will be added for a job assigned to it.

I Fact 17. There are at least as many machines of case (small-all) as there are of case
(big-all).

The proof of Fact 17 is postponed to the end. With Fact 17, we can amortize those two cases
and get∑

j∈J
zj =

∑
i∈M

z(σ−1(i)) <
∑
i∈M

yi. J

Proof of Fact 17. Let Lb1 , Lb2 , . . . , Lbh
be the moves that correspond to case (big-all) ma-

chines, i.e., for each (jk, ik) = Lbk
(k ≤ h), σ(jk) attracts all jobs and jk is big.

We argue that there are Ls1 , Ls2 , . . . , Lsh
such that b1 < s1 < b2 < s2 < . . . bh < sh,

where for each (jk, ik) = Lsk
(k ≤ h), jk is small and therefore σ(jk) is a case (small-all)

machine.
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Let k ≤ h. A critical argument is that the algorithm prefers moves of small jobs over
those of big jobs. In particular, when Lbk+1 is added, there does not exist a small job move
that it can add instead. However, we have that p(Sσ(jk)(L≤bk

)) ≥ 1/4 · T and since (jk, ik)
is and was not valid, the load of small jobs on σ(jk) is strictly less than 1/4 · T . Hence, there
exists a small job j in Sσ(jk)(L≤bk

) which is not assigned to σ(jk). If no small move was
added after Lbk

and before Lbk+1 , then (j, σ(jk)) would have been preferred over Lbk+1 . J
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Proof. We give the proof w.r.t. the Makespan objective. For Max-min the proof is analogous.
Consider the NP-hard Partition problem: Given a set of natural numbers a1, . . . , an, decide
if there exists A ⊆ {a1, . . . , an} with

∑
j∈A aj = 1/2 ·

∑n
j=1 aj .

We construct the following instance for Makespan minimization and show that solving
the configuration LP it is equivalent to the problem above.

Let there be two machines i1, i2 and for each aj a job j with Γ(j) = {i1, i2} and
pj = aj . There exists such a subset if and only if the optimum of the configuration LP is
1/2 ·

∑n
j=1 aj . Recall that the configuration LP for makespan T assigns to each machine a

convex combination of configurations, i.e., sets of jobs that do not exceed T in size. If there
exists a solution for the Partition problem, then the optimum of the configuration LP is
1/2 ·

∑n
j=1 aj . We will assign one configuration with the solution of the Partition problem

to one machine and one configuration with all remaining jobs to the other. If the optimum
of the configuration LP is 1/2 ·

∑n
j=1 aj , then take the biggest configuration that is used. It

must have a size of 1/2 ·
∑n
j=1 aj , or else the optimum would be lower. This configuration is

a solution for the Partition problem. J

B Reducing the size of LP4 (Max-min)

We have shown that LP4 is strong for the Max-min case. In the Makespan case, already LP2
gives the best bounds, which is much smaller than LP4. In order to achieve a similar size, we
will show that after a simple preprocessing step of the Max-min instance, the linear program
can be reduced to O(n3) variables and constraints.

Let I be an instance of Max-min with job sizes pj . Construct a new instance IT by
changing the size of each job j ∈ J to

pTj :=
{
T if pj > T/4,
pj otherwise.

Recall that in the LP, the configurations for big jobs JB (that have size > T/4) are defined
as CB(T ) := {χ ∈ {0, 1}JB}.

The argument for restricting the support of these configurations was that we do not need
a configuration χ if there is a χ′ ≤ χ (component-wise) with |supp(χ′)| < |supp(χ)| and
pTχ′ ≥ T . It is easy to see that after rounding the sizes, the relevant configuration have at
most one non-zero component. Hence, there are only O(n) many, which gives a total size of
O(n3) for the compact LP. Now we need to show that after rounding the sizes, we still get a
ratio of 4. In other words,

1
4OPT(LP4(IT )) ≤ OPT(I) ≤ OPT(LP4(IT )).

Since the sizes have only increased, the relaxation can only have gotten weaker, i.e.,
OPT(LP4(IT )) ≥ OPT(LP4(I)) ≥ OPT(I).

Let T > 4 · OPT(I). We need to show that LP4(IT ) is infeasible w.r.t. T . Notice
how OPT(IT ) = OPT(I): Given the optimal allocation for IT , the machine that has the
minimum load cannot have any jobs j with pj ≥ T/4 > OPT(I). Otherwise this allocation
would yield a higher value for I than OPT(I). Hence, on the machine with minimum load
the jobs have the same size in I and IT . This means the solution has the same value for I.
Since LP4 has an integrality gap of at most 4, we get

1
4OPT(LP4(IT )) ≤ OPT(IT ) = OPT(I).

In other words, the highest value for which LP4(IT ) is feasible is 4 ·OPT(IT ) < T .
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k times k − 1 times once

Figure 2 Fractional and integral solution for lower bound (Max-min)

C Lower bound (Max-min)

Here, we give a lower bound of 2.5 for LP4 (in particular, LP3, LP2) for Max-min.
Let k be an even number and consider an instance with k machines, i.e., k/2 pairs of

machines, and 6k−1 jobs. For each of the k/2 pairs (i1, i2) let there be 5 jobs j with pj = 1/5
and Γ(j) = {i1, i2}. Furthermore let there be k/2− 1 jobs j with pj = 1 and Γ(j) =M, i.e.,
they can be assigned anywhere.

Assume toward contradiction that there is a schedule with makespan strictly more than
2/5. There must be at least one pair of machines (i1, i2) that do not have a job of size 1
assigned to them. Since there are only 5 jobs of size 1/5 that are allowed on i1 and i2, one
of the two machines has at most two. A contradiction.

Next, we show that LP4 is feasible for T = (k − 1)/k. For every i ∈ M and every
job jB of size 1, let xi,jB

= 1/k, i.e., the big job is distributed evenly across all machines.
For every other job j, split it across the two machines it is allowed on. More formally, let
xi1,j = xi2,j = 1/2 with {i1, i2} = Γ(j). Clearly x is in the allocation polytope. Let i ∈M.
We need to verify that

(xi,j)j∈J ∈ conv{χ ∈ [0, 1]J : pTχ ≥ (k − 1)/k and χj ∈ {0, 1} if pj · 4 > (k − 1)/k}.

We define one vector for every jB ∈ J with pjB
= 1 and one vector for the small jobs, which

depends on the machine it is used for.

χ
(jB)
j :=

{
1 if j = jB ,

0 otherwise,
and χ(i)

j :=
{
k−1
k if pj = 1/5 and i ∈ Γ(j),

0 otherwise.

Note that we have pTχ(jB) = pjB
= 1 ≥ k−1

k = T as well as pTχ(i) = 5 · 1
5 ·

k−1
k = k−1

k = T .
The integrality constraint is satisfied for all jobs of size 1 and since 1/5 · 4 ≤ (k − 1)/k, for
sufficiently large k, it is not necessary for the small jobs. Also, it holds that (xi,j)j∈J =∑
jB∈J :pjB

=1 1/k · χ(jB) + 1/2 · k/(k − 1) · χ(i), as shown below.
Let jB be a job of size 1. Then all vectors but χ(jB) have 0 for jB , hence xi,jB

= 1/k ·χ(jB)
jB

.
Next, let j be a job of size 1/5. Then xi,j = 1/2 = 1/2 · k/(k − 1) · χ(i)

j if i ∈ Γ(j) and
xi,j = 0 = 1/2 · k/(k − 1) · χ(i)

j , otherwise.
For this instance, we get a gap that approaches 5/2 as k tends to infinity. Similar

constructions work when using 14 jobs of size 1/7, 18 jobs of size 1/9, etc. The lower bound
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becomes weaker the smaller the size is chosen, but it always stays strictly above 4, the best
lower bound known for the configuration LP.

D Analysis (Makespan)

I Theorem 19. The algorithm terminates after finitely many iterations of the main loop.

Proof. Let ` be the length of L. We define a potential function

Φ(L) = (g, s0, s1, s2, . . . , s`,−1),

where g is the number of good machines and sk is the number of pairs (i, j) ∈M×J where
i repels j w.r.t. L≤k and σ(j) 6= i. Note that the length of Φ(L) is bounded by |M| · |J |+ 2
and every component is an integer between −1 and |J | · |M|. Thus, the range of the potential
function is finite.

We will show that the vector increases lexicographically after every iteration of the main
loop; hence the running time is bounded by the number of such vectors times the maximum
number of operations in an iteration and is in particular finite. For the lexicographic increase,
consider two cases. Either a new move is added, which increases the potential function by
replacing the last component with some non-negative value, or a move is performed.

If the move turns a bad machine good, g increases and thereby Φ(L) increases lexicograph-
ically as well. Otherwise, let `′ ≤ ` be the length of the list after a move (j, i) is performed.
Recall the algorithm prevents jobs repelled by a machine from being moved there, i.e., j is
not repelled by i machine w.r.t. L≤`′ . Moreover, the set of repelled jobs by some machine
w.r.t. L≤0, . . . , L≤`′ can only grow. This can be observed from the definition of repelled jobs.
It follows that s0, . . . , s`′ do not decrease. Finally, since j is repelled by its previous machine
i′ w.r.t. L≤`′ and after the move σ(j) 6= i′ holds, the value of s`′ has increased. J

I Theorem 20. If LP2 is feasible, the algorithm always has an operation to perform.

Proof. As in the algorithm, call a job j small if pj < 1/2 · T = 1/r · T and big otherwise.
Suppose toward contradiction, there are bad machines, no move in L is valid, and no move
can be added to L. We will construct values (zj)j∈J , (yi)i∈M with the properties as in
Lemma 12 and thereby show that LP2 is infeasible.

For every j ∈ J let zj = min{pj/T, 5/6} if j is repelled by σ(j) and zj = 0 otherwise.
Let yi := 1 if i ∈M repels all jobs and yi = z(σ−1(i)) otherwise.

I Fact 21. Let j be a small job not repelled by i ∈ Γ(j). Then zj = 0.

If i = σ(j), this is by definition. In the other case, assume toward contradiction zj 6= 0, i.e. j
is repelled by σ(j). (j, i) cannot be in L or else i would repel small jobs. Since (j, i) also
cannot be added to L, i must repel j. A contradiction.

Let i ∈ M and χ ∈ [0, 1]J with pTχ ≤ T , χj ∈ {0, 1} for every big job, and χj = 0 if
i /∈ Γ(j). We must show that zTχ ≤ yi.

If yi = 1 it holds because of zTχ ≤ pTχ/T ≤ 1. We assume w.l.o.g. that i does not repel
all jobs and thus yi = z(σ−1(i)). In particular, i does not repel small jobs that are on other
machines. If χj = 0 or zj = 0 for all big jobs j, then with Fact 21 we get zTχ ≤ z(σ−1(i)).
Also, there can be at most one big job jB with χjB

= 1, since it has pjB
> 1/2 · T and thus

pTχ would be greater than T , otherwise.
We recap: The only interesting case is when yi = z(σ−1(i)), there is one big job jB with

χjB
zjB

= min{pjB
/T, 5/6}, and all other big jobs j′B have χj′

B
zj′

B
= 0.
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1. Case: jB is repelled by i. This must be because there is some move (jk, ik) = Lk such
that t(L≤k, (jk, ik)) ≥ pjB

(big-big). Recall that t(L≤k, (jk, ik)) is the minimum t with

p({j ∈ σ−1(i) : j ∈ Si(L≤k) or 1/2 < pj ≤ t}) + pjk
> 11/6.

In particular, there must be a big job j′B ∈ σ−1(i) with t(L≤k, (jk, ik)) = pj′
B
≥ pjB

and
j′B is also repelled by i (big-big). Using Fact 21 we get

zTχ =
∑
j∈J

zjχj ≤ z(Si(L)) + zjB
≤ z(Si(L)) + zj′

B
≤ z(σ−1(i)) = yi.

2. Case: jB is not repelled by i. Then (jB , i) must already be in L, i.e., Lk = (jB , i) for
some k ≤ `, and since i does not repel all jobs, rule (big-big) must apply for this move.
Let R = {j ∈ σ−1(i) : j ∈ Si(L≤k) or 1/2 < pj ≤ t(L≤k, (jB , i))}. Then

p(R) + pjB
> 11/6 · T ≥ pTχ+ 5/6 · T.

Furthermore, all jobs in R are also repelled by i. If zj′
B

= 5/6 for some j′B ∈ R, like in
the previous case we get zTχ ≤ z(Si(L)) + zjB

≤ z(Si(L)) + zj′
B
≤ z(σ−1(i)). Otherwise,

we have zj′ = pj′/T for all j′ ∈ R. Thus,

zTχ = zjB
+

∑
j∈J\{jB}

zjχj ≤ zjB
+

∑
j∈J\{jB}

pjχj/T = zjB
+ (pTχ− pjB

)/T

< zjB
+ (p(R) − 5/6 · T )/T ≤ p(R)/T ≤ z(σ−1(i)).

It remains to show that
∑
j∈J zj >

∑
i∈M yi. We prove that, with amortization, good

machines satisfy z(σ−1(i)) ≥ yi and on bad machines strict inequality holds.
Let i be a bad machine. Then i repels all jobs (in particular those in σ−1(i)). Hence,

z(σ−1(i)) ≥ 5/6 · p(σ−1(i))/T > 55/36 > yi.

For good machines that do not repel all jobs, equality holds by definition. We will partition
those good machines that do repel all jobs into those i ∈M which have (j, i) ∈ L for a small
job j (case small-all) and those that do not (case big-all).

I Fact 22. There are at least as many machines of case (small-all) as there are of case
(big-all).

The proof of Fact 22 is postponed until after the main proof. Let i be a machine of case
(big-all). Then there is a big job jB with (jB , i) ∈ L and this move is not valid. Either there
is a job j ∈ σ−1(i) with zj = 5/6 or zj = pj/T for all j ∈ σ−1(i). Thus,

z(σ−1(i)) ≥ min{5/6, p(σ−1(i))/T}
≥ min{5/6, 11/6− pjB

/T}
≥ 5/6 = yi − 1/6.

Next, let i be a machine of case (small-all). Then there is a move (jS , i) ∈ L with jS small.
Of course, this move is not valid. In the following, we distinguish between the cases where
σ−1(i) has no job j with zj = 5/6, one such job, or at least two. Note that these jobs have
pj ≤ T .

z(σ−1(i)) ≥ min{p(σ−1(i))/T, (p(σ−1(i))− T )/T + 5/6, 10/6}
≥ min{11/6− pjS

/T − 1/6, 10/6}
≥ 7/6 = yi + 1/6.
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Because of Fact 22, we can amortize case (small-all) and case (big-all) and get∑
j∈J

zj =
∑
i∈M

z(σ−1(i)) >
∑
i∈M

yi. J

Proof of Fact 22. Let Lb1 , Lb2 , . . . , Lbh
be the moves that correspond to case (big-all) ma-

chines, i.e., for each (jk, ik) = Lbk
(k ≤ h), ik repels all jobs and jk is big.

We argue that there are Ls1 , Ls2 , . . . , Lsh
such that b1 < s1 < b2 < s2 < . . . bh < sh,

where for each (jk, ik) = Lsk
(k ≤ h), jk is small and therefore ik is a case (small-all) machine.

Let k ≤ h. A critical argument is that the algorithm prefers moves of small jobs over
those of big jobs. In particular, when Lbk+1 is added, there does not exist a small job move
that it can add instead. Either Lbk

has already been subject to rule (big-all) when it was
added or it turned to this after a repelled job was removed. Either way, at this time it was
the last move in L and we had that

p({j ∈ σ−1(ik) : pj > 1/2}) + p(Sik (L≤bk
)) + pjk

≤ 11/6 · T < p(σ−1(ik)) + pjk
,

where the first inequality comes from rule (big-all) and the second one from the fact that
(jk, ik) is and was not valid. Hence, there must be a small job j in σ−1(i) which is not in
Sik (L≤bk

). By definition of Sik (L≤bk
), j has a machine i ∈ Γ(j) by which it was not repelled.

Therefore there has been a small job move that could be added. This means Lbk+1 was only
added after a small job move has been. J
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