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Deep box-type beams, consisting of framing members and sheathings, are sensitive to shear deformations and
hence appropriate refined theories or complicated magnification factors are needed to be used to obtain accurate
results. For sheathings or webs between the framing members that are weak in shear, additional shear de-
formations occur corresponding to the relative axial displacement between the framing members. These sand-
wich-type or partial interaction-type of in-plane shear behaviour between the framing members, needs to be
taken into account, especially when the web shear stiffness is very low. The composite box-type beam treated
here is composed of three framing members with sheathings on both sides. To incorporate effects of the
sheathings shear deformations between the framing members on the deflection, the sheathings, here called web
interlayers, are modelled as shear media with equivalent slip moduli corresponding to a partially interacting
composite beam model. Governing equilibrium equations of the model are obtained using the minimum total
potential energy principle and solved explicitly. The obtained results are compared with those based on different
conventional beam theories and 3-D finite element (FE) simulations. It is shown that the model is capable of
predicting accurately the deflection for a wide range of geometry and property parameters. It is demonstrated
that the deflection of such deep box-type beams can be expressed as the summation of three different effects,
namely bending deformations, conventional shear deformations in the framing members and sheathings, and
additional in-plane shear deformations or shear slips of the weak web causing relative axial displacements
between the framing members.

1. Introduction

Timber structures are of increasing interest for the construction of
multi-storey buildings. A Scandinavian glulam manufacturer, Moelven
Töreboda AB, has developed a prefabricated beam-and-post system
named “Trä8” for the market of non-residential multi-storey timber
buildings. The system is based on the rectangular modules, with max-
imum spans of 8m (hence the name Trä8 = timber8), for details, see
[1–3]. The Trä8 system is composed of several elements and compo-
nents which are mostly produced off-site. They are assembled after
delivery to the building site. The main elements of the system are
continuous columns, beams, prefabricated stabilising wall elements,
prefabricated floor cassettes and roof elements (Fig. 1) [1–3].

The stabilising wall element of the Trä8-system is a continuous,
prefabricated, proprietary vertical element with a composite box-type
of timber cross-section which is installed together with ordinary glulam
columns and beams (post-and-beam system), and prefabricated floor

and roof elements. The stabilising walls are preferably placed along the
facade of the building (see Fig. 1).

The beams of Trä8 are connected to the continuous columns in a
theoretically pinned manner and these ordinary columns are also
pinned connected to the foundation. However, the stabilising wall
element is theoretically clamped to the substrate. This clamping of the
stabilising element to the foundation can be designed as shown in Fig. 2
[2,3].

The composite stabilising wall element is considered as a vertical
cantilever beam clamped to the substrate and subjected to a horizontal
point load from the wind (Fig. 3a). This stabilising element is a deep
box-type beam comprised of glued-laminated timber for the three
framing members and laminated veneer lumber (LVL) for the sheathing
on both sides (Fig. 3b). The sheathing is glued and screwed to the
framing members using phenol–resorcinol adhesive to make perfect
bounding between them. The screws both connect the sheathing to the
skeleton and apply the pressure during bonding. The screws also
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provide additional safety in case of failure of the glue. Accurate pre-
diction of the transverse deflection including shear effects in the plane
of this structural element is of importance to ensure limited deforma-
tions in the serviceability limit state and for its optimal design.

The deflection is due to bending and shear. Accurate prediction of
the shear deformations of the stabilising wall element, as a deep com-
posite box-type beam, was investigated by Girhammar and Atashipour
in a previous study [1]. In that study, a formula for the shear correction
factor was derived for this kind of box-type cross-section with abrupt
geometrical and property variations. The web was modelled in the same
way as the framing members. This model works well for ordinary
practical ranges of geometrical and property parameters, but not for
situations when the web is very weak in shear. As pointed out by Gir-
hammar and Atashipour [1], a relative displacement along the x-axis
between the framing members due to the weak shear webs could be
observed on the contour plot from a 3-D finite element analysis. A
corresponding plot is re-illustrated from [1] and shown in Fig. 4, for the
Trä8 stabilising wall element as a cantilever deep beam subjected to a
point load from wind. The point load is uniformly distributed over the
whole cross-section at one end and, at the other end, the beam is
clamped by setting the 3-D displacement components to zero. The de-
flection in the transverse direction (i.e. along z-axis according to
Fig. 3a) at the upper and lower surfaces and at the centre of the cross-
section is shown in the figure. It is observed that there is a relative
horizontal displacement between the upper and lower flanges due to
the weak shear web which results in an increase in the deflection.

This behaviour is similar to the behaviour of a sandwich-type of
beam. There is equivalence with respect to the fundamental behaviour
and governing differential equations between shear connections (lap

joints mechanically or adhesively jointed), see e.g. the fundamental
works [4–9], sandwich constructions (sandwich beams and columns
with cores of low shear rigidity), see e.g. the fundamental works
[10–12], and composite structures with interlayer slip, see e.g. the
works [13–16]. The equivalent slip modulus for the sheathing depends
on its shear modulus, thickness and height.

In the present study, the shear effect of the web between the framing
members is modelled as an interlayer with a shear stiffness corre-
sponding to a slip modulus in a partially interacting composite beam
and the relative displacement between the framing members

Fig. 1. Trä8 main components, including stabilising wall elements, in a multi-storey
timber building [1–3].

Fig. 2. Anchorage device with glued-in rods for fixing the stabilising element to the foundation [2,3].

Fig. 3. (a) Trä8 stabilising wall element, where the coordinate system is defined (for
convenience, the element is rotated); (b) Perspective of the cross-section in a deformed
state due to “shear slip” between the framing members. The digits 1 and 2 refer to the
upper/lower and intermediate framing members, respectively including the sheathing on
each side. = − = +−h h h h h h( )/2, ( )/20 1 sh 1 2 2 .
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corresponds to slip. This model for the shear deflections is valid also for
very low shear stiffness values of the web. Moreover, this model is also
capable of including the possible relative displacement between the
framing members due to “axial” shear displacements in addition to the
transverse shear displacement, cf. [12], where a simply supported
sandwich beam with a couple applied at one end is discussed. However,
this type of deformation of the core or web is always zero if the beam is
loaded in a symmetrical manner, or when the relative “axial” dis-
placement of the faces or framing members is prevented [12], for ex-
ample at a clamped end.

The minimum total potential energy principle in conjunction with
an equivalent partial composite interaction theory with Timoshenko
assumptions is used to obtain the governing equilibrium equations and
the pertaining boundary conditions for the static deflection of a canti-
levered box-type beam subjected to a point load at its tip. The model
then corresponds to three separated framing layers and two web in-
terlayers with shear slips. Next, a powerful mathematical procedure is
employed to recast the coupled set of governing equations into an un-
coupled form. The new uncoupled equations are solved explicitly
without any approximation and the boundary conditions are exactly
satisfied. The obtained closed-form formula can accurately predict the
deflections. In order to illustrate the different contributions, the pro-
portion from the bending deformation, the conventional shear de-
formation in the framing and sheathing, and the web “shear slip” to the
total deflection are shown separately.

2. Analysis of the problem

A stabilising wall element composed of three framing members and
sheathings on each side is considered. The sheathings are glued to both
sides of the framing members to make a perfectly bonded deep box-type
beam. This structural element is clamped to the substrate and is at its
end subjected to a transverse point load from wind in the x-z plane
(Fig. 3a). The sheathings between the framing members, the shear web
interlayers, are much weaker in shear than the framing members and
will here be treated as weak shear webs between the framing members
in something of a corresponding way as the weak shear core in a
sandwich-type of beam (Fig. 3b). Results of an accurate 3-D finite ele-
ment simulation of the problem confirm this type of shear behaviour or,
in other words, the relative displacement between the framing members
due to this weakness of the sheathings in shear corresponds to “slip” in
a partially interacting composite beam (cf. Figs. 3b and 4). This relative
displacement considerably affects the deflection of the stabilising wall
element and therefore is of great importance to be studied for a reliable
design based on serviceability limit states.

2.1. Previous engineering method for shear deformation analysis [1]

Girhammar and Atashipour [1] studied shear deflections of the
same kind of stabilising wall panel using different types of shear de-
formation models. Linear elastic conditions were assumed as well as full
interaction between the framing and sheathing components in the
composite section. They employed an energy-based engineering
method to present an explicit formula for predicting the shear correc-
tion factor (Ks) for deep composite beams having a symmetric box-type
of cross-section (or similar cross-sections with abrupt variations of
geometry and properties). The model was based on using an equivalent
shear angle for the whole cross-section which obviously is not the real
behaviour according to Fig. 4.

The expression for the maximum shear deflection for the cantilever
in Fig. 3a was given in [1] as

=w
K

H L
GA

1
max,shear

s

w

0 (1)

The shear deflection equation was first presented by Bresse [17] for
isotropic cantilever beam without the concept of the shear correction
factor (i.e. =K 1s ), and later by Timoshenko [18] with the correction
factor =K 2/3s . In Eq. (1), Hw is the applied point load, L the length of
the cantilever, and the total shear stiffness of the different cross-sec-
tional parts, GA0, is given by

∑=GA G Ai i0 (2)

where Gi and Ai are the shear modulus and the corresponding area of
the ith material, respectively. This stiffness value can also be written as,

=GA G A0 eq,tot tot, where Atot is the total area of the cross-section and
Geq,tot is the equivalent shear stiffness for the whole cross-section. The
expression for the derived shear correction factor (Ks) was given as
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where ∞EI is the total bending stiffness (including the sheathings) of the
whole cross-section (corresponding to a fully composite cross-section
with no interlayer slips), and ES z( ) is the first moment of the axial
stiffness of the sheared area at the z-level, i.e.
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and d z( ) is the total equivalent width of the cross-section at the z-level,
and the equivalent shear modulus at the z-level, G z( )eq , is expressed as

Fig. 4. Relative displacement between the framing mem-
bers in a 3-D ABAQUS simulation of bending of a clamped
stabilising wall element due to weak shear web (the figure is
reproduced from [1]). For details of the material properties
and geometries, cf. Fig. A.1 in Appendix A.
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where Gn, dn are the shear modulus and the corresponding width, re-
spectively, of the nth material at z-level. This modulus is obtained by
introducing a shear angle at the z-level assumed constant over the
whole width of the cross-section as =γ x z τ x z G z( , ) ( , )/ ( )eq for
− ⩽ ⩽d y d/2 /2, where τ x z( , ) is the equivalent shear stress assumed
uniformly distributed over the width d(z) at the z-level (independent of
y). The shear modulus for a constant composite cross-section varies in
general with respect to both y- and z-axis, i.e. G y z( , ), but to be con-
sistent with the assumption above an equivalent shear modulus valid
for the whole width of the cross-section at each z-level is needed, i.e.

= =G y z G y z G z( , ) [ ( )]( ) ( )eq . Thus, this modulus is a kind of average
shear modulus along the width of the cross-section, varying in general
in the z-direction (a remark that this parameter has to be evaluated at
the z-level should have been given more explicitly in paper [1]). The
equivalent shear modulus is evaluated as the shear stiffness over the
corresponding area at a certain z-level, i.e. for an area strip in the y-
direction of unit depth in the z-direction ( =A yd d ·1z ).

This evaluation procedure for the cross-section of the Trä8 wall
element is illustrated in Appendix A, where various notations and
parameter values are shown. In Girhammar and Atashipour [1], an
explicit formula for the shear correction factor for the Trä8 cross-sec-
tion is also given.

Examining the parameter, G z( )eq , it becomes obvious that it equals
Gsh at the level of the sheathing (sh) or web (w) between the framing
members according to Eq. (A.8) in Appendix A. If this value tends to
zero for very thin shear webs or for very low shear rigidities, the shear
correction factor also tends to zero and, therefore, the shear deflections
tends to infinity. Mechanically, this means that the interaction between
the framing members is decreasing and they will increase in sliding
relative one another. Evidently, the finite real deflection value of the
structure is corresponding to a case with non-composite interaction
between the sub-elements. Therefore, another type of model is needed
for small shear stiffness values of the webs.

2.2. Establishing a new model: basics and assumptions

To obtain the governing equilibrium equations and boundary con-
ditions for an element corresponding to the cantilevered stabilising wall
element subjected to a point load, the total potential energy of the
system is formulated taking the bending and shear deformations (ac-
cording to the Timoshenko model) into account together with the ad-
ditional shear weak behaviour of the webs. A basic uniform shear model
is assumed, i.e. each framing member and sheathing is supposed to
deform equally in shear (cf. [15]). The additional shear deformation of
each web is modelled as an interlayer having a corresponding slip
modulus. However, the axial and bending stiffness of each web is also
taking into account. The normal force in the web affects not only the
axial stiffness, but also the bending stiffness according to Steiner’s
theorem. The total potential energy can then be written as

∫
=
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where ui and −ush,i j are respectively the axial displacement of the ith
framing member and the i-jth sheathing interlayer, w is the transverse
deflection, φ the rotation function for the in-plane deformations in the
framing members, Hw the point load from wind, L the length of the

element, k the slip modulus of the interlayer webs, t and b the thickness
of the sheathing and width of the glulam framing member, and h0 and
hsh are the distance between the centroid of the intermediate framing
member to the centroid of the upper/lower framing member and the
centroid of the interlayer web (empty box), respectively (see Fig. 3).
Also, h1 and h2 are respectively the depth of upper/lower and inter-
mediate framing member, −h1 2 is the depth of the interlayer web and h0
is the total depth of the stabilising wall element. The additional shear
deformation of the interlayer web, or so-called shear slip, is indicated
by the angle ϕΔ sh on Fig. 3b. Ks the shear correction factor (with this
model there is no need for the complicated shear correction factor de-
rived in [1] since all sub-elements are considered separately and are of
rectangular type). The stiffness parameters for the framing layers
(framing member including pertaining sheathing on both sides) and the
web interlayer (the two sheets) are given by
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where Ef and Esh are Young’s modulus of glulam framing and LVL
sheathing layers, respectively. Also, Gf and Gsh are respectively the
shear modulus of the glulam framing and LVL sheathing layers.

Here, we define the axial displacements of the sheathing interlayers
or webs, −ush,i j, in terms of those of the upper/lower framing members
to reduce the number of the unknown functions and simplify the model
and analysis. To this end, we set (see Fig. 5):

=
=

−

−

u η u
u η u

sh,1 2 1

sh,2 3 3 (8)

where η is a proportional factor. Eq. (8) is based on the fact that the
axial displacement of any sheathing interlayer is proportional to that of
the neighbour framing member. Obviously, this assumption is valid for
linear elastic range of deformations.

To determine the proportional factor η based on the assumption of
Eq. (8), the state of axial deformation of different framing layers and
the interlayer sheathings of the previously described beam structure
with a symmetric cross-section is shown in Fig. 5. In this figure, a
straight dash line in red shows the location of axial deformation vectors
in absence of the additional shear slip due to the weak shear web. In
fact, the additional shear deformations in the web interlayers cause a
relaxation in the axial deformations and reduce them. The corre-
sponding location of the axial deformation vectors is determined in
Fig. 5 by some continuous segment lines in blue having different slopes.
To be able to present an approximate simple engineering formula for
the coefficient, η, a straight dash line in black is depicted approximately
passing through the end points of the axial deformation vectors. From
the geometry of the vectors in Fig. 5, one can be obtained

= ≅− −u
u
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u

h
h
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sh,2 3

3

sh
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where = +−h h h( )/2sh 1 2 2 is the distance between the centroid of the
corresponding interlayer web to the centroid of the intermediate
framing member (see Fig. 3b). From comparing Eqs. (8) and (9) it
follows that

≅η h
h

sh

0 (10)

Here, we emphasise that the obtained equation for the proportional
coefficient η is not exact. But they represent sufficiently accurate en-
gineering formulas. It will be shown in Section 2.4 that Eq. (10) results
in a correct definition of the bending stiffness corresponding to a full-
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composite interaction composite cross-section.
After inserting definition of axial displacements of the sheathing

web from Eq. (8) into Eq. (6), Eq. (6) can be rewritten in a more con-
densed form:
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= = + −EA EA EA η EAsh3, 1,sh 1
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and EI0 is the sum of the bending stiffness of each layer and interlayer
(corresponding to a non-composite cross-section), and GA0 is the total
shear stiffness, and are defined as
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Thus, the shearing effects of the sheathings are divided into two
separate categories: (1) the same conventional shear deformations for
all different parts of sheathings (including the parts glued to the
framing members and the interlayer ones) as those of the framing
members; and (2) the additional shear deformations of the webs mod-
elled as interlayer slips due to the relative axial displacements between
the framing layers.

It should be noted that, based on the assumptions of Eq. (12), the
total axial stiffness will be changed to a reduced version as follows

∑= + = +−
=

EA EA EA η EA EA2 2
i

i0,red 1,sh 2
2

sh,1 2
1

3

(14)

2.3. Governing equations of the model

Using the minimum total potential energy principle ( =δU 0), the
system of governing differential equations are obtained as
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Also, the boundary conditions are determined as follows
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The set of Eqs. (15) and (16) are totally a tenth-order differential
equation system and the corresponding boundary conditions at each
end.

2.4. A simplified representation of the governing equations

An exact equivalent representation of the governing Eq. (15) can be
obtained, from doing some mathematical manipulations, as follows
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where EA0,red is defined by Eq. (14), and ∞EI is the total bending
stiffness of the beam corresponding to the full-composite interaction
and, using the definition of the coefficient η from Eq. (10), is obtained
as

= + = + +∞EI EI h EA EI h EA h EA2 2 20 0
2

1,sh 0 0
2

1 sh
2

sh (18)

It should also be pointed out that the superscript ‘(i)’ over each

Fig. 5. Illustration of the axial deformations of the stabilising wall element with a symmetrical cross-section.
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function represents the i-th order derivatives of that function with re-
spect to the variable x ; this notation is applied for the fourth order
derivatives and higher, for convenience.

It is noticeable that the original set of tenth-order differential gov-
erning Eqs. (15) has been lowered to the eighth-order in the new re-
presentation as Eqs. (17). It would be as a result of inserting two of the
boundary conditions into the governing equations, which are “the zero
axial force”, and “the transverse shear load Hw from wind” at the end of
the cantilever beam. Details on derivation of the new form of the
governing equations are given in Appendix B.

2.5. Solution of the governing equations

The complete solution of the governing equations, presented in
previous subsection, after satisfaction of the remaining boundary con-
ditions, can be represented as
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where

= ∞λ k
EA

EI
EI1,sh 0 (20)

Details of the exact closed-form solution procedure are given in
Appendix C. It is worth noting that, as it is expected from a physical
point of view, the axial displacement of the intermediate framing
member, in absence of the external normal force, is zero due to the
symmetry in both geometry and constituent materials of the stabilising
wall element with respect to its middle plane ( =u 02 ). Also, as ex-
pected, the absolute values of the axial displacements of the upper and
lower framing members are identical. i.e., = −u u3 1. However, they
would not be as evident from a mathematical point of view, cf. Eqs. (15)
and (17). The mathematical prove of the above-described situation is
also given in Appendix C.

2.6. Calculation of the web interlayer shear stiffness

Here, a formula is obtained for the shear slip modulus corre-
sponding to the additional relative shear slip at the sheathing web in-
terlayer. To this end, consider a panel of unit length consisting of
sheathing webs bounded to the framing layers at its neighbour, sub-
jected to pure shear τ0 as shown in Fig. 6.

The framing layers and the sheathing interlayers are of thickness
+b t2 and t2 , respectively, and their equivalent shear modulus can,

according to Eqs. (A.7) and (A.8) in Appendix A, be represented as

=
=

+
+G

G G

bG tG
b teq,f

2
2

eq,sh sh

f sh

(21)

Considering identical shear load between the framing and web with
different thicknesses, one can write:

=
+

τ
τ

t
b t

2
2

0
(22)

where the geometric dimensions b and t are defined in Fig. 3b. In Eq.
(22), τ is the pure shear stress at sheathing webs. The conventional
shear strain of the framing members and the total shear strain of the
interlayer web can be expressed as

=

=

γ

γ

τ
G

τ
G

0
0

eq,f

eq,sh (23)

Substituting Eqs. (21) and (22) into Eq. (23) will result in the ad-
ditional shear strain in the sheathing webs as follows

= − =
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γ γ γ bG
G bG tG

τΔ
( 2 )0

f

sh f sh (24)

The additional slip between the framing members due to the weak
shear web can be represented as

=u h γΔ Δslip w (25)

Therefore, the slip modulus for the unit horizontal length of the web
is obtained as

⎜ ⎟= = ⎛
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(26)

Implementation of the obtained slip modulus in conjunction with
the solution presented in previous section gives accurate results for
weak sheathing web box-type composite beams.

3. Reliable formulation for the beam deformations

Using Eqs. (19) and (20) the maximum displacements of the par-
tially composite interacted beam are obtained as follows
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(27.2)

where the coefficient parameter λ is given in Eq. (20). Also, the
equivalent slip modulus k of the web interlayers is defined in Eq. (26).
Indeed, Eq. (27.1) together with Eq. (26) gives a realistic prediction of
deflection of such deep box-type beams without needing to unusual
magnification/shear correction factors. The described concept in this
paper can be used for any different types of deep beams having special
cross-section shapes, especially those having weak shear webs. The first
and second terms of Eq. (27.1) represent deflections due to the bending
deformations and conventional in-plane shear deformations within the
framing and sheathing layers, respectively, whereas the third term ex-
hibits the additional shear deformations in the sheathing webs. There-
fore, structural engineers can simply use Eq. (27.1) for a reliable de-
flection prediction of such types of beams without the need of using an
unusual proprietary shear correction/magnification factor. It will be
shown in the next section that the third term of Eq. (27.1) will cause a
very small overestimation of the deformation of the beam which will

Fig. 6. A two dimensional model of the sheathing web bounded to framing layers at the
neighbour under pure shear.
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put the engineers’ calculation on the safe side based on the service-
ability limit state design.

To examine the correctness of the achieved deflection by Eq. (27.1),
two known extreme cases are considered, namely, full-composite and
non-composite beams.

3.1. Lower bound: full-composite interaction between the framing members

It is expected to obtain the solution of a composite cantilever beam
with three perfectly bounded layers based on the Timoshenko theory
when the shear stiffness between the layers approaches infinity. To
evaluate it, the following limitations are calculated

= +
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3
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1 3
0 w

2
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Clearly, Eqs. (28) are exactly the same as the static solution for a
three-layer perfectly bonded composite cantilever beam subjected to a
shear point load (Hw).

3.2. Upper bound: non-composite interaction between the framing members

In the case of non-composite interaction, the shear slip modulus
between the layers of composite beam (k) should approach zero. i.e.,
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→
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EI K

H L
GA

lim
3

1
k 0

w
3

0 s

w
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= =
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1
0
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In this case, as expected, the axial displacement components
u u u[ , , ]1 2 3 of the beam become zero. Also, the deflection formula is
converted to that for the deflection of three separate parallel beams
together with sheathings based on Timoshenko theory.

4. Numerical results and discussion

Based on the previously described analysis and solutions, some
numerical results and a discussion are conducted. For generality of the
numerical results and convenience, the following dimensionless para-
meters are introduced:

= = = = =
= = =

h h h h h h t t b L L h E E E
G G G ψ E G w E b H w

/ , / , / , / , / ,
/ , / , ( / )

1 1 2 2 sh f

sh f f f max f w max (30)

Eq. (30) provides a complete set of the dimensionless parameters. It
is noticeable that, for the numerical results, the mechanical and geo-
metric values of the Trä8 stabilising wall element are utilized as the
reference values:

= =
= =

= = = =
= = =

E E
G G
t b h h
h h L

12600 MPa, 10500 MPa
720 MPa, 600 MPa

27 mm, 160 mm, 360 mm,
225 mm, 2400 mm, 6000 mm

f sh

f sh

1 3

2

Unless mentioned otherwise, the above reference values are used for
the presented numerical results.

It was shown in the previous section that, for a deep box-type beam
with weak shear webs, three distinguished phenomena play role in
determining the deflection: (1) normal bending deformations; (2) con-
ventional transverse shear deformations in the framing layers and the
interlayer sheathings; and (3) the additional in-plane shear deforma-
tions in sheathing web modelled as interlayer slip. Therefore, apart
from presenting some graphs for the variation of the deflection versus
some effective geometric and material properties, some figures are
presented to investigate the influence on each type of deformations on
the deflection for each effective geometric and material parameter. In

all figures, the results of the conventional theories of Euler-Bernouli,
Timoshenko and Reddy-Bickford (with the shear variation corre-
sponding to a rectangular cross-section) are provided as well as the
corresponding results based on an engineering method presented in
Girhammar and Atashipour [1]. Also, several accurate 3-D finite ele-
ment simulations have been performed for all cases using ANSYS soft-
ware to examine the accuracy of different approaches, comparatively.
The FE models are meshed using the solid element type “Brick 20node
186”. The nodes at the interfaces are tied to apply perfect bonding
condition between the sheathings and glulam framing members. Full
displacement constraints are imposed on all the nodes of one end sur-
face. The transverse tip load is applied through a uniformly distributed
shear load over the cross-section at the other beam end.

Fig. 7a, b shows variation of the dimensionless deflection para-
meter, and the effect of the different triple types of the deformations
versus the dimensionless length of the beam element based on different
approaches together with the method presented in this paper. It should
be pointed out that the dimensionless deflection in this figure has been
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Fig. 7. Variations of (a) dimensionless deflection parameter (w L/max 3), and (b) the dif-
ferent triple deformation types, vs. the length-to depth ratio ( =L L h/ ).
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divided by L3 to make the bending deformations (equivalent to the
Euler-Bernoulli results) independent of the dimensionless length. It can
be seen from Fig. 7a that the results of the present approach and the
engineering method of Girhammar and Atashipour [1] are in good
agreement with those based on the accurate 3-D simulations. Although,
the theories of Reddy-Bickford and Timoshenko with constant shear
correction factor (the abbreviation “constant SC” is used in figures)
include the shear deformations, they do not model the dominant ad-
ditional shear deformations in the sheathings (acting as web). There-
fore, they highly underestimate the deflection whereas the Euler-Ber-
noulli results are very weak for such deep box-type beams. To
demonstrate the effect of the different triple types of the deformations,
Fig. 7b is depicted based on the present method. It is seen that the effect
of bending deformations will be more dominant by increasing the
length-to-depth ratio of the beam. For short beams with the length-to-
depth ratio less than about 2.5 to 3, the influence of both the shear
deformations in the beam and the additional shear deformations at the
sheathing interlayers are more dominant than the bending deforma-
tions.

Variations of the dimensionless deflection together with variations
of the different triple deflection types versus the geometric parameter
h h/1 are illustrated in Fig. 8a and b, respectively. It should be pointed
out that the beginning point of each curve in Fig. 8a, b shows a beam
cross-section without the upper/lower framing members (i.e. =h 01 )
whereas the end point of the curves represents a beam with full solid
cross-section (without the sheathing webs and the slip). Therefore, as it
is expected, the interlayer slip effect vanishes at the end points of both
Fig. 8a, b. It can be seen from Fig. 8a that the results of the present
method are in good agreement with those of engineering approach in
Girhammar and Atashipour [1] and the 3-D FE results. Also, it is seen
that the results of all shear deformable models (i.e. all methods ex-
cluding the Euler-Bernoulli theory) approximately approach each other
when the beam cross-section becomes fully solid; because, the effect of
the interlayer shear slip disappears in this case. Also, it is seen that the
effect of bending deformations on the deflection greatly increases by
decreasing the height of the upper-lower framing layers (i.e. increasing
the height of the web). Obviously, this is due to the fact that the upper/
lower framing members have considerable influence on the bending
stiffness of the beam.

Similar to Fig. 8a and b, some curves are provided in Fig. 9a and b
for the geometric parameter h h/2 to study the influence of the height of
the intermediate framing layers on the maximum deflection of the
beam. Comparing the results of different methods with those of the 3-D
solutions reveals that the present method gives acceptable predictions
for the static elastic analysis of such deep box-type beams with weak
shear webs. However, the results of the earlier engineering method [1]
seem to be more accurate than those based on the present method for
the timber range of geometry and property parameters whereas other
conventional beam theories (for rectangular-type of cross-sections) are
not reliable. It can be seen form Fig. 9a that the maximum deflection
slightly decreases when the height of the intermediate framing layer
increases. It is noted that the end points of the curves in Fig. 9a, b are
corresponding to a fully solid cross-section case without any interlayer
webs. Therefore, the effect of the relative displacement at interlayers
due to web shear deformations on the maximum deflection tends to
zero by increasing the height of the intermediate framing member to its
maximum size, as shown in Fig. 9b. Also, it can be observed that the
effects of both bending deformations and the conventional shear de-
formations in the beam on the deflection slightly decrease by increasing
the height of the intermediate framing member.

Fig. 10a shows variations of dimensionless deflection versus the
mechanical parameter, E E/sh f . Also, variations of different triple de-
flection types are illustrated in Fig. 10b. It can be observed that the
results of the present method are in good agreement with those of the
earlier engineering method [1] and the 3-D FE simulation results.
However, the present method overestimates the deflection of the

structure. Obviously, the results of other conventional theories are in-
accurate for such box-type beam with weak shear webs. It is seen from
Fig. 10b that the Young’s modulus ratio, E E/sh f , does not affect the
shear deformations in the framing members and it has a weak effect on
the deflection due to the relative displacement of the frames at the
interlayers.

Fig. 11a and b provide the effect of shear modulus ratio, G G/sh f , on
the maximum dimensionless deflection and the triple deflection types,
respectively. Comparison of the curves of Fig. 11a reveals a very good
agreement between the results of the present method and those of the
former study [1] and the 3-D FE simulations. It can be seen from
Fig. 11b that increasing the shear modulus ratio will result in a decrease
in the maximum deflection of the structure. Although the conventional
theories of Reddy-Bickford and Timoshenko with constant SC factor
predicts the similar trend behaviour, their error increases by decreasing
the shear modulus ratio. Clearly, this parameter does not affect the
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bending deformations (i.e. the Euler-Bernoulli theory). Also, the curves
of Fig. 11b reveals that the influence of the shear modulus ratio on the
deflection due to the relative displacement of framing at the interlayers
is more dominant than that on the shear deformations in the framing
layers.

It is worth noting that the established model in this paper minorly
overpredicts the deflection compared to the results of 3-D FE simula-
tions, as it can be seen from Figs. 7–11. This may be due to the fact that
a reduced version of the total axial stiffness is incorporated in the de-
veloped model. Such approximate assumption is essential to avoid in-
efficient mathematically-complicated formulation. Obviously, this as-
sumption would be reasonable for the box beams especially those with
thin/weak webs. On the other hand, the minor overprediction of de-
formations put the engineers’ calculation on the safe side based on the
serviceability limit state design.

In order to study the effect of mechanical properties of the web on

the interaction of the structural element layers, Fig. 12 is presented for
variations of the dimensionless deflection versus the dimensionless
modulus ratio =G E , based on different methods. This parameter

=G E expresses the fact that the shear and elasticity moduli vary si-
multaneously. This figure is given in a semi-logarithmic scale to in-
vestigate the effect of two extreme cases corresponding to rigid
sheathings and removed sheathings. As mentioned earlier the max-
imum deflection according to the box-type model [1] tends to infinity
for small values of the web shear stiffness, while the present equivalent
slip-type or sandwich-type of model gives finite asymptotic values for
both high and low extreme values. The latter model agrees well with
the 3-D finite element results, especially for small stiffness values.

In a regular sandwich construction, the faces are interacting with
one another (the so called sandwich effect) through the core (glued to
the faces) even if the stiffness tends to zero (the flexural rigidity of the
sandwich consists mainly of the stiffness of the faces associated with the
bending about the centroidal axis of the entire sandwich). The

h2

w
m
ax

0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

50

100

150

200

250

300

3-D FEM (center)
Present method
Earlier engineering method [1]
Reddy-Bickford (conventional)
Timoshenko (constant SC)
Euler-Bernoulli

(a) 

h2

w
i

0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

25

50

75

100

125

150

WBending
WConventional shear
WAdditional interlayer shear

(b) 
Fig. 9. Variations of (a) dimensionless deflection, and (b) the different triple deformation
types, vs. the geometric parameter =h h h/2 2 .

E

w
m
ax

0.5 1 1.5 2 2.5 3
0

50

100

150

200

250

300

3-D FEM (center)
Present method
Earlier engineering method [1]
Reddy-Bickford (conventional)
Timoshenko (constant SC)
Euler-Bernoulli

(a) 

w
i

0.5 1 1.5 2 2.5 3
0

25

50

75

100

125

150

WBending
WConventional shear
WAdditional interlayer shear

(b) 
E

Fig. 10. Variations of (a) dimensionless deflection, and (b) the different triple deforma-
tion types, vs. the material parameter =E E E/sh f .

9



parameters for sandwich beams are usually in the order of 0.001 < G2/
G1= E2/E1 < 0.02. It is to be expected that the agreement between
results of the equivalent slip-type model and the 3-D finite element
analysis would be also very good for thin faces as is usually used in
sandwich beams (the ratio is of the order of 0.02 < hface/hcore < 0.1).

For wooden box-type of beams the practical parameter range is of
the order of 0.1 < G2/G1= E2/E1 < 3. A detailed graph in that range
is shown in Fig. 12. The practical example of Trä8 (G2/G1= E2/
E1= 0.833) falls within this range. In that range the present slip-type
model, like the box-type model, gives close results compared to the 3-D
finite element analysis (Fig. 13). Also, the results of Euler-Bernoulli,
Timoshenko theory with constant correction factor for a rectangular
cross-section and Reddy-Bickford models (corresponding to a rectan-
gular cross-section) are illustrated for comparison reasons. It can be
seen that the predicted results by these conventional theories are very
far from the 3-D results and they are as expected not suitable for the
elements like the Trä8 stabilising wall element.

5. Conclusions

In the present study, a new simple model was established for the
static deformation of deep composite box-type beams; especially for the
structures with weak sheathing webs. The minimum total potential
energy principle was utilized to obtain the governing equilibrium
equations and boundary conditions. Thin sheathings between the
framing members were considered as webs in shear and an equivalent
slip due to their weakness were incorporated into the governing
equations. It was shown that three phenomena play important role in
determining the deflection of such deep box-type beams: (1) bending
deformations; (2) conventional shear deformations in the framing
layers and the sheathings; and (3) the additional shear deformations
between the framing layers due to the weakness of the sheathing
modelled as shear slip. It was shown that for such deep box beams,
neglecting the slip effects causes large errors in the prediction of the
deflection for weak shear webs. It was proven that, unlike the predicted
deflection according to the box-type model [1] which tends to infinity
for small values of the web shear stiffness, the present modified model
can accurately predict the deformations for any arbitrary ranges of
geometrical and material property parameters including the property
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ranges for “wooden box-type beams”. It was also demonstrated that
addition of such a third term, based on the concept introduced in this
paper, to the conventional beam deflection formulae would result in
accurate deflection prediction for beams with abrupt geometrical var-
iations in cross-section, like box beams, without need of using a parti-
cular magnification/shear correction factor.
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Appendix A. Illustration of the shear correction factor evaluation for the Trä8 wall panel

The cross-section of the Trä8 wall panel, the notations and the parameter values are shown in Fig. A.1.
To evaluate Eq. (3), the integration is divided into three parts of the height of the cross-section as shown in Fig. A.2. Due to the symmetry, only

half of the cross-section is considered.

∫ ∫ ∫= ⎧
⎨⎩

+ + ⎫
⎬⎭∞

−

−
K GA

EI
ES z
G d

z ES z
G d

z ES z
G d

z1/ 2 [ ( )] d [ ( )] d [ ( )] d
h

h

h h

h h

h
s

0
2 0

/2 I
2

eq,I I /2

/2 II
2

eq,II II /2

/2 III
2

eq,III III

2

2

1

1 (A.1)

where

= + + = + +GA G bh G bh G th GA GA GA2 2 2 20 f 1 f 2 sh 1 2 sh,1-2 (A.2)

Fig. A1. The symmetric cross-section of the Trä8 wall
panel comprised of two materials: (a) framing members
(subscript ‘f’) and (b) sheathing (subscript ‘sh’).

Fig. A2. The different parts or levels of the symmetric cross-
section for determining the shear correction factor.
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It is observed from Eqs. (A.7)–(A.10) that the equivalent shear stiffness per unit length in the z-direction is given by = ∑G d G dn n n n neq, at
respective z-level. Using these expressions in Eq. (A.1) and integrating finally gives the shear correction factor as =K1/ 2.17s , when the parameters in
Fig. A.1 for the Trä8 element is used.

Appendix B. Derivation of the new representation of the governing equations

The order of the differential equation can be lowered if the boundary conditions for the normal force are used. To this end, we add the three first
of Eq. (15) and obtain

″ + ″ + ″ =EA u EA u EA u 01,sh 1 2 2 1,sh 3 (B.1)

Integrating Eq. (B.1) one time results in the definition of the total normal force that must set to zero since the stabilising wall element is only
subjected to a transverse shear force from wind; therefore,

= ′ + ′ + ′ = =N EA u EA u EA u c 0total 1,sh 1 2 2 1,sh 3 1 (B.2)

Also, the Shear force boundary condition (i.e. the last of Eq. (16) at =x L) is valid through the entire structure and can be substituted into the
fourth of Eq. (15). Consequently, this equation is simplified as

″ + − − =EI φ h k u u h φ H( 2 )0 0 3 1 0 w (B.3)

Also, by integrating the last of Eq. (15) and satisfying the transverse shear force boundary condition we have

′ + = =K GA w φ c H( )s 0 2 w (B.4)

Now, the original set of governing Eqs. (15) can be replaced by a reduced set of eighth-order differential equations in the form

″ + − − =
″ + − + =

′ + ′ + ′ =
″ + − − =

′ + =

EA u k u u h φ
EA u k u u u
EA u EA u EA u
EI φ h k u u h φ H
K GA w φ H

( ) 0
( 2 ) 0

0
( 2 )

( )

1,sh 1 2 1 0

2 2 3 2 1

1,sh 1 2 2 1,sh 3

0 0 3 1 0 w

s 0 w (B.5)

The set of Eq. (B.5) can be recast into a set of uncoupled equations. To this end, we utilize the first and second of Eq. (B.5), and express u2 and u3 in
terms of u1, φ and their derivatives as follows

= − ″ + +

= − ″ + − ″ +

u u u h φ

u u u u h φ h φ2

EA
k

EA EA
k

EA
k

EA
k

2 1 1 0

3
( )( )

1
(4)

1 1 0 0

1,sh

2 1,sh
2

0,red 2
(B.6)

where EA0,red is defined by Eq. (14). Substituting Eq. (B.6) into the third and fourth of Eq. (B.5) results in a set of two equations in terms of u1 and φ
only:

⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

− ⎛
⎝

+ ⎞
⎠

‴ + ⎛
⎝

⎞
⎠

′− ‴ + ⎛
⎝

⎞
⎠

′ =
EA

k
u

EA
k

EA
EA

u
EA

EA
u h

EA
k

φ h
EA

EA
φ2 1 01,sh

2

1
(5) 1,sh 1,sh

2
1

0,red

2
1 0

1,sh
0

0,red

2 (B.7)

⎜ ⎟ ⎜ ⎟− ⎛
⎝

⎞
⎠

″ + ⎛
⎝

− ⎞
⎠

″ =h
EA

k
u h

EA
EA

u EI
EA

h φ H
EA

( )
0

1,sh
1
(4)

0
0,red

2
1

0

2
0
2 w

2 (B.8)
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Now, we differentiate Eq. (B.8) one time, and eliminate EA k u( / )2
1
(5) from Eq. (B.7), which results in the following equation:

⎜ ⎟ ⎜ ⎟ ⎜ ⎟− ‴ + ⎛
⎝

⎞
⎠

′− ⎛
⎝

⎞
⎠

‴ + ⎛
⎝

⎞
⎠

′ =h
EA

k
u h

EA
EA

u EA
k

EI
EA

φ h
EA

EA
φ 00

1,sh
1 0

0,red

2
1

1 0

2
0
2 0,red

2 (B.9)

Differentiating Eq. (B.9) one time and subtracting the results from Eq. (B.8) yields an uncoupled equation in terms of φ only as follows

− ″ = −∞φ k
EA

EI
EI

φ
EI

k
EA

H1(4)

1,sh 0 0 1,sh
w

(B.10)

where ∞EI is the total bending stiffness of the beam corresponding to the full-composite interaction and, using the definition of the coefficient η from
Eq. (10), is obtained as

= + = + +∞EI EI h EA EI h EA h EA2 2 20 0
2

1,sh 0 0
2

1 sh
2

sh (B.11)

Eq. (B.10) can be rewritten in terms of the transverse deflection. To this end we differentiate the fifth of Eq. (B.5) and obtain:

′ = − ″φ w (B.12)

By inserting Eq. (B.12) into Eq. (B.10) we get

− ‴ =∞w k
EA

EI
EI

w
EI

k
EA

H1(5)

1,sh 0 0 1,sh
w

(B.13)

Also, we rewrite Eq. (B.9) in the following form

⎜ ⎟ ⎜ ⎟‴− ⎛
⎝

⎞
⎠

′ = − ⎛
⎝

⎞
⎠

″u k
EA

EA
EA

u
h

EI
EA

w h k
EA

EA
EA

w1
1

1,sh

0,red

2
1

0

0

2

(4)
0

1,sh

0,red

2 (B.14)

Apparently, Eqs. (B.13) and (B.14) are exactly equivalent to the original set of eighth-order differential Eq. (B.5). It should be pointed out that Eq.
(B.13) is corresponding to a sixth-order differential equation presented in Girhammar et al. [19] for dynamic analysis of a partially interacting beam
composed of three symmetric coinciding layers in contrast to the present stabilising element in which there are sheathing webs between the framing
layers. The rotation function can also be determined using the last of Eq. (B.5) in terms of w only:

= − ′ +φ w
K

H
GA

1
s

w

0 (B.15)

Appendix C. Details on solution of the governing equations

Solution procedure of the new set of governing Eqs. (17) are described here. First, the uncoupled fifth-order equation in Eq. (17.1) should be
solved, independently. Second, the obtained solution should be substituted into the right-hand side of the third-order differential equation in Eq.
(17.1) and the resulting uncoupled inhomogeneous third-order equation can be solved independently for determining the displacement, u1. Third,
the unknown functions u2 and u3 can be determined by substituting the obtained solutions of φ and u1 into Eq. (17.2).

The complete solution of the first of Eq. (17.1), can be represented as

= +
= + + + +
= −

w w w
w x c c x c x c λx c λx
w x αH x

( ) cosh( ) sinh( )
( )

G P

G 3 4 5
2

6 7

P w
3 (C.1)

where

= =∞

∞
λ k

EA
EI
EI

α
EI

, 1
61,sh 0 (C.2)

where the subscripts ‘G’ and ‘P’ indicate the general and particular part of the solutions, respectively. Substituting Eq. (C.1) into the second of Eq.
(17.1) yields the following nonhomogeneous differential equation

‴− ′ = − + − + +u μ u c h μ λ βλ h μ c λx c λx h μ αH x2 ( )[ cosh( ) sinh( )] 61
2

1 5 0
2 2 2

0
2

6 7 0
2

w (C.3)

where

= =μ k
EA

EA
EA

β
h

EI
EA

, 1
1,sh

0,red

2 0

0

2 (C.4)

The complete solution of Eq. (C.3) is expressed in the form

= +
= + +

= + + −−
−

u u u
u x c c μx c μx

u x c h x c λx c λx h αH x

( ) cosh( ) sinh( )

( ) 2 [ sinh( ) cosh( )] 3λ βλ h μ
λ μ

1 1G 1P

1G 8 9 10

1P 5 0
( )

6 7 0 w
22 0 2

2 2 (C.5)

The rotation function, φ, is determined from substitution of Eq. (C.1) into the first of Eq. (17.2) as

= − − − + + +φ x c c x λ c λx c λx αH x
K

H
GA

( ) 2 [ sinh( ) cosh( )] 3 1
4 5 6 7 w

2

s

w

0 (C.6)

Now, we substitute the solutions (C.5) and (C.6) into the second and third of Eq. (17.2), and use the definition of the coefficients λ and μ from
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(C.2) and (C.4), and obtain

= − + + +

+ + + +

= − − + + +

+ + + + +

( )

( )

u h c ζ c λx c λx c

ζ c μx c μx h α H

u c h c h x ζ c λx c λx c

ζ c μx c μx α αx h H

[ sinh( ) cosh( )]

[ cosh( ) sinh( )] 6

2 2 [ sinh( ) cosh( )]

[ cosh( ) sinh( )] 12 3

EA
k K GA

EA
k K GA

2 0 4 1 6 7 8

2 9 10 0
1

w

3 4 0 5 0 3 6 7 8

4 9 10
2 2

0 w

1,sh

s 0

1,sh

s 0 (C.7)

where

= = − = =ζ ζ
EA
EA

ζ EI
h EA

λ ζ0,
2

,
2

, 11 2
1,sh

2
3

0

0 1,sh
4 (C.8)

The constant coefficients = …c i( 3,4,5, ,10)i are to be determined from the eight remaining boundary conditions which are expresses as

= = = = = =
= ′ = ′ = ′ =

x u u u φ w
x L u u φ

at 0: 0
at : 0

1 2 3

1 2 (C.9)

Satisfying the boundary conditions (C.9) will result in a set of eight algebraic equations. The solution of this set of equations, after simplification,
can be represented as

= − = −

= ⎡
⎣

+ ⎤
⎦

=

= −

= −

= =

∞

∞

∞

∞

∞

c c H

c H

c H

c H

c H

c c 0

h EA

kEI
λL

λ

h EA

kEI K GA

L
EI

h EA

kλEI
h EA EI

kEI

3 6
2( ) tanh( )

w

4
2( ) 1 1

w

5 2 w

7
2( )

w

8 w

9 10

0 1,sh 2

2

0 1,sh 2

2 s 0

0 1,sh 2

2

0 1,sh 0
2

(C.10)

It can be shown that the axial displacement of the intermediate framing member, in absence of the external normal force, is zero due to the
symmetry in both geometry and constituent materials of the stabilising wall element with respect to its middle plane. Also, as expected, it can be
shown by inserting Eq. (C.10) into Eqs. (C.5) and (C.7) that the absolute values of the axial displacements of the upper and lower framing members
are identical. i.e.,

= −
=

u u
u 0

1 3

2 (C.11)
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