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Uncovering mental representations of smiled
speech using reverse correlation
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Abstract: Which spectral cues underlie the perceptual processing of
smiles in speech? Here, the question was addressed using reverse-
correlation in the case of the isolated vowel [a]. Listeners were presented
with hundreds of pairs of utterances with randomly manipulated spec-
tral characteristics and were asked to indicate, in each pair, which was
the most smiling. The analyses revealed that they relied on robust spec-
tral representations that specifically encoded vowel’s formants. These
findings demonstrate the causal role played by formants in the percep-
tion of smile. Overall, this paper suggests a general method to estimate
the spectral bases of high-level (e.g., emotional/social/paralinguistic)
speech representations.
VC 2018 Acoustical Society of America
[DDO]
Date Received: July 28, 2017 Date Accepted: December 24, 2017

1. Introduction

Human social interaction relies, for the most part, on the ability to extract and decode
facial and vocal expressions, from which we can infer each other’s social traits and
emotional states (Willis and Todorov, 2006). Among such expressions, the smile—the
bilateral stretching of the lips by the zygomaticus major muscles—is remarkable for
being produced and recognised early in development (Oostenbroek et al., 2016) and
across cultures (Ekman et al., 1969). Smiling is not only perceived visually, but can
also be heard in spoken voice (or smiled speech, Tartter, 1980; Basso and Oullier,
2010). Although the acoustic consequences of smiling during speech production have
been studied from recorded speech corpora (Barthel and Qu�en�e, 2015; Podesva et al.,
2015), little is known about how the human auditory system processes such cues. Here,
we used a psychophysical reverse-correlation approach to explore what makes a voice
sound smiled on the basis of its spectral cues.

The general idea of reverse-correlation is to present a system (here, the human
observer) with a slightly perturbed stimulus over many trials. This perturbation is cre-
ated by directly adding white noise to a stimulus or by manipulating higher-level
dimensions using random deviations around baseline. Perturbed stimuli will, on differ-
ent trials, lead to different responses of the system, and the tools of reverse-correlation
can be used to infer the functional properties of the system from the pattern of stimu-
lus noise and their associated responses. The technique was first used by psychophysi-
cists to characterize human sensory processing (e.g., detection of tones in noise;
Ahumada and Lovel, 1971; discrimination of frequency distributions; Berg, 1989) but
it is also a powerful tool to characterize higher-level perceptual or cognitive processes,
for which it can uncover the “optimal stimulus” (or “mental representation”) that is
driving participant responses.

In vision, reverse-correlation was applied to derive observers’ mental represen-
tations of, e.g., what makes a face happy (Mangini and Biederman, 2004), how facial
expressions differ across cultures (Jack et al., 2012a) or even what makes Mona Lisa
seem to smile (Kontsevich and Tyler, 2004). A few recent studies have started to use
the approach for auditory tasks such as speech intelligibility (Varnet et al., 2016;
Venezia et al., 2016) or musical instrument recognition (Thoret et al., 2016). In partic-
ular, Brimijoin et al. (2013) have used reverse-correlation to uncover the internal repre-
sentations of a whispered vowel by presenting random-spectrum static noises to human
listeners. Their results showed that humans possess strikingly fine spectral mental

a)Author to whom correspondence should be addressed. Also at: Laboratoire des Systèmes Perceptifs (CNRS
UMR 8248) and D�epartement d’�etudes cognitives, Ecole Normale Sup�erieure, PSL Research University,
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representations of a vowel, with spectral weights aligned to the formant frequencies of
real whispered vowels.

In the present study, we used reverse correlation to characterize the perceptual
filters employed by humans to infer whether a person is smiling from the spectral char-
acteristics of the voice, in particular in the vowel [a] pronounced by a male speaker.
We also assessed the robustness of listeners’ perceptual decoding in the task by quanti-
fying their internal noise using a double-pass procedure.

2. Materials and methods

2.1 Ethics

The protocol of this experiment was approved with an IRB given by the “Institut
Europ�een d’Administration des Affaires” (INSEAD).

2.2 Subjects

Ten participants (5 women, 5 men; age 18–29 yrs) were recruited for the experiment.
None reported having hearing problems. In accordance with APA Ethical Guidelines,
participants gave their informed written consent prior to the experiment and were
debriefed about the true purpose of the research immediately after. Participants were
paid for their participation.

2.3 Stimuli

We recorded an utterance of the phoneme [a], pronounced with constant pitch
(�122 Hz) by a single male speaker with a neutral facial expression (Mm. 1), and
selected a 500-ms stationary part of the sound to create a stimulus with constant spec-
tral energy. We then produced many spectral variants of this baseline stimulus by
manipulating its spectral characteristics using a random frequency equalizer composed
of 25 linearly interpolated, log-separated frequency points spaced between 100 and
10 000 Hz, with gain values (in dB) drawn from Gaussian distributions [standard devia-
tion (SD)¼ 5 dB clipped at 62.5 SD].

Mm. 1. Audio file of the original /a/ vowel (pronounced with a neutral facial expression).
This is a file of type “wav” (44 Ko).

2.4 Apparatus

All stimuli were mono sound files generated at a sampling rate of 44.1 kHz with 16-bit
resolution using MATLAB. They were presented diotically through headphones
(Beyerdynamic DT 770 PRO, 80 ohms) at the same level for all participants (�70 dB
sound pressure level). Sound levels were measured using a Br€uel & Kjær 2238
Mediator sound-level meter placed at a distance of 4 cm from the right (left) earphone.
A DPA 4066 omni-directional microphone was used to record the voice of the male
speaker employed to create the stimuli.

2.5 Procedure

The experiment consisted of a single 1 h experimental session including 6 blocks of 100
trials. Using a 2I, 2AFC procedure, participants were presented pairs of randomly-
filtered voices (example: Mm. 2) and asked in each pair which of the two appeared to
have been produced with the greatest smile. Since there were no correct or incorrect
answers, participants did not receive trial-by-trial feedback. Trials presented in the first
5 blocks were all different, but the 100 trials of the sixth block were the same as those
presented in the fifth block (in the same order). This double-pass procedure was used
to evaluate the percentage of agreement and thus the level of internal noise for each
observer in the task. None of the observers noticed this repetition.

Mm. 2. Audio file of a trial presented in the experiment. This is a file of type “wav” (132 Ko).

2.6 Data analysis

One reverse-correlated frequency filter (a 25-points vector) was computed for each sub-
ject as the mean filter of the voices classified as smiling from which we subtracted the
mean filter of the remaining voices that were not chosen as smiling by the participant
(the data collected during the sixth block, i.e., the same trials as in the fifth block,
were not used to derive these filters).

Formant frequencies and bandwidths were computed using Praat (Boersma
and Petrus, 2002). The spectral envelopes were extracted using the true envelope imple-
mentation of IRCAM’s Super-VP tool (Villavicencio et al., 2006). Formant gains were
estimated as the values of the spectral envelope at the formant frequencies.
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3. Results

3.1 Perceptual filters and mental prototypes

The averaged reverse-correlated frequency filter underlying the evaluation of smile in
the [a] vowel used in the task is plotted in Fig. 1(a). This filter presents clear structures
aligned with the formant frequencies and bandwidths of the original phoneme and an
overall enhancement of the high frequencies compared to the low frequencies. Because
the reverse-correlation technique only allows the derivation of participants’ internal fil-
ters with amplitudes that are proportional to the SD of the external noise used in the
experiment, we derived prototype stimuli for smiling and non-smiling voices by apply-
ing the filters to the base stimulus with a gain of 650 [Fig. 1(b)], a value chosen to
qualitatively match averaged spectral-envelope differences of the stimuli presented in
the experiment. These prototypes have fair intra-individual consistency and appear to
implement distinctive operations on the formants: (i) formants 1 and 2 are represented
with increased frequency in the smiling prototype (in red, Mm. 3), compared to the
non-smiling prototype (in blue, Mm. 4) and (ii) formants 2, 3, and 4 are represented
with increased amplitude. Figure 1(c) presents the difference between the spectral
envelopes computed over these prototypes: it is virtually identical to the raw filter
plotted in Fig. 1(a), showing that the filter profiles represent the real physical changes
that occurred on spectral envelopes. Overall, as summarized in Fig. 1(d), the spectral
transformations needed to perceive the phoneme as smiling consist primarily of a fre-
quency increase of F1 and F2 and an amplification of F2, F3, and F4.

Mm. 3. Smiling audio prototype derived from the perceptual results. This is a file of type
“wav” (44 Ko).

Mm. 4. Non-smiling audio prototype derived from the perceptual results. This is a file of
type “wav” (44 Ko).

Fig. 1. (Color online) (a) Averaged filter underlying the judgment of the vocal smile, as derived with reverse-
correlation. Asterisks indicate significant differences from 0 (two-tailed; paired-sample t-tests, p< 0.05). Vertical
shaded areas indicate how the first four formants of the voice align with the structure of the filter. (b) When this
filter or its opposite is applied (here with a gain of 50) to the original voice, it reveals the internal auditory repre-
sentations of a smiling (Mm. 3) and a non-smiling voice (Mm. 4). Shaded lines represent the corresponding spec-
tral envelope for each participant’s internal filter. (c) Mean spectral envelope difference between smiling and
non-smiling sounds for a filter gain of 50. (d) Mean spectral envelope across participants for different filter
gains, highlighting the overall transformation over the spectral envelopes as one goes from mental representa-
tions of a strongly non-smiling voice, to that of a strongly smiling voice. Shaded areas represent 95% confidence
intervals computed with a bootstrap procedure.
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3.2 Observers’ consistency

The double-pass methodology was used to assess observers’ consistency from a mea-
sure of internal noise relative to the external noise added to the stimuli (i.e., the ran-
dom spectral changes): the last two blocks were identical so that all observers received
the same 100 trials twice. All but two participants (who had percentages of agreement
of 49% and 51%) performed well above chance level over these repeated blocks: when
these two participants were removed, the average percentage of the same responses
over these two blocks was 68.1% (SD¼ 5.8). We then estimated the amount of internal
noise for each of these remaining eight subjects using a simple signal detection theory
model with late additive noise1 (Burgess and Colborne, 1988; Neri, 2010). We found
an average internal noise level of 1.2 (SD¼ 0.9), as expressed in units of external noise
SD. There are no measures of internal noise in facial emotion or visual smiles reverse-
correlation studies we can compare our estimate with, but it is of note that previously
reported values in other high-level visual processing tasks are generally higher than our
estimate; a value of 2 is found for human biological motion discrimination (running vs
walking) (van Boxtel and Lu, 2015), an average value greater than 2 in the evaluation
of ensemble average size (Im and Halberda, 2013) and values between 1 and 4 for face
identification (Gold et al., 2004). Our value rather corresponds to what has been found
on average in many different low-level auditory and visual tasks (Neri, 2010), sugges-
ting that the high-level auditory filtering of smile in speech relies on a fairly stable
processing, i.e., that observers possess robust and stable auditory representations of
what makes a smiling voice.

4. Discussion and conclusion

This paper examines the spectral filtering that underlies the auditory processing of
smile in the human voice using behavioral reverse-correlation. We show that humans
rely on robust mental representations that allow them to tell whether a voice is smiling
or not, and that these internal representations can be assessed with high precision with
our method. We computed the filters in the [100–10 000 Hz] range, and found that the
spectral characteristics of a smiled [a] phoneme are mentally represented with increased
F1 and F2 frequency, increased F2, F3 and F4 amplitude, and an overall enhancement
of the high frequencies compared to the low frequencies. The structure of these filters
demonstrates a delicate ability of the auditory system to parse amplitude and fre-
quency changes by formant. Surprisingly, even though these acoustic transformations
are complex and non-linear across the spectrum, internal representations were fairly
consistent across participants, demonstrating that auditory consequences of articulatory
gestures associated to smiling are accurately available even to naive participants.
Indeed, listeners were able to robustly infer smile from subtle random changes in the
spectral cues of a token.2 The fact that the average level of internal noise was compa-
rable to the one measured in the low-level auditory and visual tasks and that the
underlying perceptual filters were finely tuned with formant modifications further sug-
gests that observers rely on deep, robust auditory representations of what is smiled,
and what is not.

Our results complement previous studies on vocal and synthetic productions.
Recent studies have shown that smiling during speech production has several acoustic
consequences. Increases in loudness, F0 and F2 (Barthel and Qu�en�e, 2015; Podesva
et al., 2015), as well as higher F1 and F2 dispersions (Drahota et al., 2008) were
reported. Interestingly, although F0 changes are often found when analysing smiling
vocal productions, these alterations do not seem to be necessary to recognize smiles in
speech, as smiles can also be recognised in nonsense syllables without training (Tartter,
1980) and in whispered voices (Tartter and Braun, 1994). For the particular [a] pho-
neme, Keough et al. (2015) have reported an increase of F1 and F2 during production,
which is in line with our findings. Other acoustical analyses of smiling vs neutral pro-
ductions of speech showed that, even if the acoustic consequence of a smiling gesture
on formants depends on the vowel (Barthel and Quen�e, 2015; Fagel, 2010; El Haddad
et al., 2015; Keough et al., 2015), these always exhibit an overall increase in frequency.
Thus, it can reasonably be assumed that the filters returned with our method for other
vowels and/or speakers3 would commonly implement changes on the formant structure
of the tokens, but these would be specific to the phoneme considered. If such is the
case, listeners’ ability to recognise smiled phonemes would be a remarkable mecha-
nism, as the acoustic consequences of smiling are non-linear across the spectrum and
across phonemes. Future studies should provide a complete picture of the perceptual
decoding of auditory smiles, e.g., by testing different phonemes from different speakers
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as well as transitions with consonants (CVs, VCs, or CVCs, e.g., using the paradigm
employed in Varnet et al., 2016).

All in all, the present results shed light onto remarkable abilities of the human
auditory system to use the voice’s acoustic features to infer an associated facial articu-
latory gesture, and are consistent with recent neuroimaging work showing that pho-
netic representations are encoded in the human auditory cortex (Mesgarani et al.,
2014). Whether the smile prototypes uncovered in this study are encoded in the audi-
tory system or stem from information incoming from motor areas (Hickok et al., 2011;
Pulverm€uller et al., 2006) is a question that remains to be elucidated.

Smiling is a highly important behaviour in the emotional expressive repertoire.
The present paradigm could be used to study other acoustical facets of smiled speech
[e.g., are different types of smiles related to different representations, as is the case in
vision? (Rychlowska et al., 2017)], but also to explore the bases of other social or artic-
ulatory traits, and investigate whether other vocal gestures of lesser emotional or adap-
tive relevance are processed through similarly robust and consistent perceptual filters.
The present paper suggests a general framework4 to estimate the spectral bases of any
high-level representation of speech, i.e., not only smiled speech, but any emotional/
social/paralinguistic aspect of speech timbre.
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