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We consider a new realization of magnetoelastic interactions in low-dimensional magnetic systems.
We show that low-dimensional spin systems are unstable with respect to the spontaneous appearance of
alternating distortions of the positions of the three-dimensional nonmagnetic atoms (ligands), that
surround the magnetic ions. Those distortions are supplemented by the spontaneous onset of alternating
effective g factors of the magnetic ions in the phase with short-range interactions. We discuss the
possibility of observing the effect in an uniform external magnetic field, which in the situation
considered produces both magnetization and staggered magnetization of the magnetic subsystem. The
connection of the proposed theory with recent experiments on effectively low-dimensional magnetic
systems (organic spin chains, heavy-fermion compounds, rare-earth molybdates) is discussed.

   PACS: 75.10.Jm, 71.70.Fk, 71.70.Ej

Interest in electron systems with substantial coup-
ling between the charge, spin, and orbital degrees
of freedom of the electronic and elastic subsystems
of a crystal has grown considerably during the last
decade. The prime examples of the manifestation of
such cooperative effects are the phenomena of col-
losal magnetoresistance of manganites, non-Fermi-
liquid behavior of some heavy-fermion compounds,
spin-Peierls and charge ordering behaviors in inor-
ganic systems and unconventional superconducti-
vity [1]. The Jahn-Teller effect [2] is probably the
oldest known manifestation of such a coupling.
Here the degeneracy of the orbital states of a
molecule is removed by the deformation of the
latter. The cooperative Jahn–Teller effect reveals
itself in a structural phase transition. It has been
observed in a number of compounds [3]. In the
spin-Peierls transition also the degeneracy of the
electronic (spin, not orbital) subsystem of a one-
dimensional (1D) spin chain is removed due to the
coupling with a longitudinal phonon of the 3D
crystal lattice. A spin gap is opened for the low-
lying spin excitation. On the other hand, the corre-
sponding phonon mode possesses softening (Kohn
anomaly). Some of magnetic compounds with the
essential coupling between spin, orbital, and elastic
subsystems manifest paramagnetic spin behavior

with two essentially inequivalent magnetic centers
at low temperatures (which are higher, though,
than the temperature of the phase transition to
magnetically ordered 3D state). Often the latter
has not been observed [4–9]. For higher tempera-
tures the inequivalence between the two magnetic
centers smears out. The presence of inequivalent
magnetic centers in low-dimensional quantum spin
systems is usually connected with slightly different
local surrounding of two types of magnetic ions and
involves either staggered g factors of the magnetic
ions [4] (another case pertains to two anisotropic g
tensors canted with respect to the principal axis [8]
or the Dzyaloshinskii–Moriya coupling in crystals
without mirror magnetic symmetry [10]. Low-lying
spin excitations are gapless for these low-dimen-
sional systems in the absence of an external mag-
netic field. However,in an external field the low-
temperature specific heat of some of those systems
reveals the emergence of a spin gap induced
by an external magnetic field [8,11,12]. To explain
that gapped behavior a 1D spin subsystem
with staggered effective g factors has been sta-
died [5,13,14]. The low-temperature, low-field
electron spin resonance (ESR) [4,6–9] exhibited
two inequivalent magnetic centers. On the other
hand, the higher-field ESR treatment reported only
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a single magnetic center [15]. Optical (Raman and
infrared) measurements [16] have revealed the
tendency for softening of some lattice modes. Ultra-
sonic measurements also revealed anomalous beha-
viors of the sound velocities for some phonon modes
in such crystals [17,18].

In this work we propose a mechanism for expla-
nation of the observed anomalous behavior of the
spin, orbital, and elastic subsystems of that group
of magnetic low-dimensional systems. Namely, we
point out that the dimerization of the effective g
factors in a quantum antiferromagnetic spin chain
can be caused by the coupling of the spin and
orbital subsystems to the elastic subsystem, fol-
lowed by a distortion of the local surrounding of the
magnetic ions. In paramagnets the value of the g
factor differs from 2. The difference stems from the
effect of the crystalline electric field of nonmag-
netic ligands due to the presence of a spin-orbit
interaction. The essence of our study is following.
Let the configuration of ligands, which surround
two neighboring magnetic ions along the chain
direction, possesses small shifts (distortions) of op-
posite signs (antiferrodistortions [8]). Such distor-
tions will immediately produce a change of the
crystalline electric fields of the ligands. Hence,
the orbital moment of the magnetic ions will be
alternately affected. Then the spin–orbit interaction
yields, first, two different values of the effective g
factors of the magnetic ions, and second, a stag-
gered Dzyaloshinskii—Moriya interaction (because
of the odd magnetic symmetry with respect to the
principal axis). The effect of the latter can be also
transferred to the effective staggered g factor by
means of an alternating rotation of spins. Hence,
the staggered distortion of the nonmagnetic sur-
roundings (ligands) of the magnetic ions produces
two inequivalent magnetic centers for the spin sub-
system. The elastic subsystem loses energy due to
the alternating distortions of ligands, while the
electron subsystem realizes an energy gain. The
steady-state configuration of the total crystal is
determined by the competition between those two
processes. From the magnetic standpoint that effect
is collective because the spins interact with each
other. On the other hand, the inequivalence of
magnetic centers can be seen only in nonzero mag-
netic field, so the effect is field-induced.

To fix the stage, consider the low-temperature
behavior of a quasi-low-dimensional magnetic crys-
tal. The spin–spin coupling along one direction of
this crystal is larger than the interactions along the
other crystallographic directions. Suppose this
quasi-1D spin subsystem can be described by a

Hamiltonian of a gapless spin-1/2 antiferromag-
netic (AF) chain. The fact that the low-lying exci-
tation of the 1D AF spin chain is gapless implies
that the system is critical, i.e., the ground-state
correlation functions decay in a power-law manner.
Suppose also that for the reasons explained above,
some components of the effective g factors of the
spins are alternating, i.e., g1,2 = g(1 ± δ), where
δ << 1 is proportional to the small alternating
distortions of the local environment. The parameter
δ is not fixed, but has to be determined from the
conditions of the steady state. It is equivalent to the
mean field approximation for phonons. It is justi-
fied for the 3D elastic subsystem. The 1D spin–spin
interactions will be taken into account nonper-
turbatively. In the case of alternating Dzyaloshin-
skii—Moriya interactions present in the spin chain
the alternating effective g factors are g1,2 = g ×
× cos ϑ(1 ± tan ϑ), where the angle ϑ originates
from, e.g., the alternating components of the crys-
talline electric field of the ligands [14]. For rare-
earth molybdates, where the g tensors for two cen-
ters are canted with respect to the main axis, this
means that g1,2 = g cos α cos θ (1 ± tan α tan θ) [8],
where α and θ are the angles determining the
canting of the g tensors and field direction, respec-
tively. The application of a field parallel to the
crystallographic axes does not change the distor-
tion. For rare-earth ions (with a Kramers- or non-
Kramers-doublet crystalline field ground state) for
sufficiently low temperatures T compared with the
crystalline-field splitting D, one can use the two
lowest levels of the ion as an effective spin-1/2
with magnetically anisotropic behavior. It turns out
that no change of the g factors can be produced by
distortions of ligands for the ground-state doublets.
They do not have orbital degrees of freedom and are
therefore unaffected by distortions. However, the
excited crystalline electric field states are effec-
tively included. This is why a distortion of the
ligands can produce a change of the g factors,
through the off-diagonal matrix elements of the
relevant electric-multipole operators. This means
that the conditions for the applicability of our
effective spin-1/2 description for rare-earth com-
pounds are: (i) T << D, i.e., there is no thermal
population of the crystalline electric field-excited
levels; (ii) off-diagonal matrix elements (between
the ground-state doublet and excited levels) of the
Zeeman term must be small compared with D;
(iii) the matrix elements between the ground-state
doublet and crystalline electric field-exited levels of
the operator describing the distortion must not be
too small compared to D (otherwise distortions
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would produce a negligible change of the ground-
state g factors); (iv) distortions of the ligands must
not affect the exchange constant J; see below (with
J << D).

The Hamiltonian can be written as

�
sp = J ∑ 

j

(S
j
 S

j+1 + (∆ − 1)Sj
zSj+1

z ) −

− µB H ∑ 
j

(g1 S2j
z  + g2 S2j+1

z ) , (1)

where 0 ≤ ∆ ≤ 1 is the parameter of the «easy-
plane» magnetic anisotropy, H is an external mag-
netic field, and µB is the Bohr magneton. It is easy
to show that because of nonzero δ the application of
an external field to this system yields two effects:
homogeneous magnetization (mz) and staggered
magnetization. The former changes the ground-state
filling of the Dirac sea (H plays the role of the
Fermi energy). For large enough values of the field
H the spin subsystem possesses trimerization (for
the Dirac sea of spinons being one-third filled),
quadrimerization (for one-fourth filling), etc. For
those values of the field 2nkF = π, with n being an
integer and 2kF = π(1 + 2mz), i.e., we expect the
series of transformations towards an inhomogeneous
(incommensurate) magnetic structure due to the
umklapp processes rather than the dimeriza-
tion [19]. We restrict ourselves to small enough
values of H here. The staggered magnetization is the
relevant perturbation from the renormalization
group (RG) viewpoint. It produces the gap for
low-lying magnetic excitations of the system (spi-
nons). We can calculate the response of our (criti-
cal) spin chain to the relevant perturbation (stag-
gered field). We perform such a calculation in a RG
framework. Our study shows that the exponents are
non-integer in general, in contrast to simple pertur-
bation or mean-field theories [8,16], which of
course are not legitimate for the low-dimensional
quantum spin systems. An application of scaling
relations provides a simple tool to understand some
essential aspects of the behavior of a critical chain
under a relevant perturbation. Recall that response
of the free energy fcl and the correlation function
ξcl of a classical critical d-dimensional system per-
turbed by a relevant operator  δ�  ′ with RG eigen-
value ν−1 > 0 is

∆fcl ∝ δdν ,  ξcl ∝ δ−ν . (2)

A quantum critical d-dimensional system (which in
our case is the spin 1D subsystem of the crystal)
formally behaves in the scaling regime equivalently

to a (d + z)-dimensional classical system, where z is
the dynamical critical exponent. Hence, the ground-
state energy and the gap of the low-lying spin
excitations of the d-dimensional quantum critical
system are formally proportional to the free ener-
gy and to the inverse correlation function of the
(d + z)-dimensional classical critical system, respec-
tively. The RG eigenvalue ν−1 is related to the
scaling dimension x of the particular operator by
x + ν−1 = d + z. For the (conformally invariant) AF
spin chain we have d = z = 1, i.e., ν = (2 − x)−1.
Hence the renormalization of the ground-state ener-
gy per site of the quantum critical chain and the
low-lying spin excitation gap (which is equal to
zero at the unperturbed point) to the staggered
magnetic field are

∆Eq
 ∝ − (gδµ

B
 H)2/(2−x

e
),  ∆ ∝ (gδµB H)1/(2−x

e
) ,
(3)

respectively, where xe is the minimal scaling expo-
nent for energy—energy correlations. Here we have
ignored logarithmic corrections. They are present
due to the marginal operators in the RG sense and
essential for the SU(2)-symmetric case. To find the
scaling dimension for our critical spin chain we use
the results of the conformal field theory (CFT).
According to the CFT approach [20] the
asymptotics of the correlation functions of pri-
mary fields in the ground state are known to
be 〈φ∆±(r, t)φ∆±(0, 0)〉 = exp (2iDPF r)(r − ivF t)−2∆+

×
× (r + ivF t)−2∆−

, where vF and PF are the Fermi
velocity and the Fermi momentum, respectively [a
(half-)integer D measures the momentum of the
primary field in units of the Fermi momentum]. The
scaling dimension and spin for each primary field
are determined by xφ = ∆+ + ∆− and sφ = ∆+ − ∆−.
The parameters ∆± can be calculated according to
the finite-size analysis of the low-energy physics of
the critical spin chain. Combining all the effects,
we can write for the ground-state energy of the spin
subsystem with nonzero δ

Esp = − vF
 




gδµ
B
 H

vF





2/(2−x
e
)

 , (4)

where for our AF spin chain vF = πJ/2 ×
× √1 − ∆2  cos−1 ∆ is the Fermi velocity of spinons
for H = 0. We point out that the scaling approach
is only valid in the vicinity of the critical point,
i.e., in principle the values of the magnetic field
and δ are small. Note that the Fermi velocity
monotonically decreases with the growth of H and
becomes zero at the spin-saturation point (for
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H ≥ Hc ∼ J∆/4gµB). The exponent is equal to
xe = π/2(π − cos−1

 ∆) for H = 0 (it increases monot-
onically with the increase of H and becomes 1 at
H = Hc) [21]. Obviously Esp < 0, and hence one
has an energy gain due to nonzero δ. On the other
hand, in the lowest order in δ the elastic subsystem
loses an energy proportional to Cδ2/2, where C is
the elastic constant. Whether the ground-state
steady-state configuration corresponds to zero or
nonzero δ depends on the scaling exponent xe . For
xe < 1 the ground-state steady-state configuration
of the spin and elastic subsystems corresponds to
nonzero δ, and hence, to two inequivalent spin
centers (with two different g factors) and to
the nonzero alternating distortions (antiferrodistor-
tions) of the local environment of the magnetic ions
(ligands). (Here we take into account that |δ| < 1.)
The steady-state δ is equal to

δ0 = 




vF

C





2−x
e

2(1−x
e
)
 




gµ
B
 H

vF





1

1−x
e
 . (5)

Clearly δ0 = 0 for H = 0 and for H ≥ Hc . This is
the main result of our report. For high temperatures
(much higher than J), the steady-state δ is zero,
naturally. Hence, there has to be a phase transition
between the low-temperature phase with nonzero
staggered magnetization, gapped low-lying spin ex-
citations, and nonzero alternating distortions of the
ligands, surrounding the magnetic ions, and the
high-temperature phase in which the staggered mag-
netization is zero, low-lying spin excitations are
gapless and there are no distortions of the ligands.
In fact we have considered the effect under a tacit
assumption that the initial frequencies ω0 of the
phonons which are coupled to the spin chain are
small ω0 << J (adiabatic approximation). It is in
principle possible to calculate the effect more pre-
cisely for any ω0 [22,23]: there the conditions for
the steady-state configuration of the total system
correspond to the cross section of the respective
phonon modes ω(q) (at q = 2kF) connected to the
alternating distortions (antiferrodistortions) of li-
gands with the magnetic modes [22,23].

Let us consider the interesting (RG-marginal
with xe = 1) limiting case, namely ∆ = 0. That case
corresponds to the XX spin-1/2 chain with alter-
nating g factors. The Hamiltonian of the latter can
be exactly mapped by means of the nonlocal Jor-
dan—Wigner transformation on the Hamiltonian
of the lattice noninteracting fermions [24]. The
ground-state energy of the spin subsystem and the
elastic subsystem can be written in the form

Egs
 = 

Cδ2

2
 − gµ

B
 H 




1 − 

λ
c

π




 −

− 
1

π
 ∫
0

λ
c

 dλ √(δgµ
B
 H)2 + [J cos (λ/2)]2  , (6)

where λc = cos−1 [2(1 − δ2)(gµB H/J)2 − 1]. Mini-
mizing the ground-state energy with respect to δ we
obtain two possible solutions. The first one, δ = 0,
corresponds to zero distortions. As to the second
one, it satisfies the equation

πC √J2 + (δgµ
B
 H)2

(2gµ
B
 H)2

 = F 




λ
c

2
, k




 , (7)

where F(λc /2, k) is the incomplete elliptic integral
of the first kind with k−1 = √1 + (δgµB H/J)2 . No-
tice that for H ≥ Hc = J/gµB √1 − δ2  one has λc = π,
and the integral is zero (hence for H ≥ Hc there is
only one δ0 = 0 solution in the ground state, as
should be the case). We emphasize again that we
are studying the effect of sufficiently weak mag-
netic fields, for which, on the one hand, the scaling
approach is valid, and, on the other hand, we
restrict consideration to the dimerization only, i.e.,
the field is not so strong as to produce a one-third
filling of the Dirac sea, etc., or a series of trans-
formations into inhomogeneous magnetic phases.
Equation (7) can be re-written in the form

√1 − (1 − δ2)(gµ
B
 H/J)2  = sn (u, k) , (8)

where u = πC √J2 + (δgµB H)2/(2gµB H)2 and
sn (u, k) is the Jacobi elliptic sine function. This
equation can be solved numerically. For k ∼ 1
(which corresponds to small δ), the asymptotic
behavior of the elliptic function is known to be
sn (u, k) ≈ tanh u + (1 − k2)(sinh u cosh u − u)/4 cosh2 u.
(For large k one has sn (u, k) ≈ sin u − k2 ×
×  cos u(u − sin u cos u)/4.) It is possible to write
an analytical asymptotical expression for the gro-
und-state steady-state nonzero δ0 as

δ0 ≈ (2J/gµ
B
 H) ×

× 







A tanh u0 − A2

2 − A tanh 2u0 − (Au0/cosh2 u0)








1/2

 ,   (9)

where A = √1 − (gµB H/J)2  and u0 = πCJ ×
× (2gµB H)−2. It is clear that nonzero δ0 can appear
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only for tanh u > A. For nonzero temperatures we
calculate the free energy of our system (assuming
that the Debye energy of the phonons is large, and,
therefore the elastic subsystem effectively remains
in the ground state)

F = 
Cδ2

2
 − 

T

π
 ∑ 

±
∫
0

π

 dλ ln 



2 cosh 





ε±(λ)
2T








 ,   (10)

where
ε±(λ) = gµB H ± √(δgµB H)2 + [J cos (λ/2)]2 . Then
the minimization of the free energy with respect to
δ yields

Cδ = 
1

2π
 ∑ 

±
∫
0

π

 dλ tanh 
ε±(λ)

2T
 
∂ε±(λ)

∂δ
 . (11)

For T >> J we can replace the hyperbolic tangent
by its argument, and one clearly sees that there
exists only one solution to Eq. (11): δ0 = 0. The
numerical analysis shows that δ0 ≠ 0 exists at low
temperatures. The critical temperature Tc of the
transition between the low-temperature (effectively
two-center) phase and the uniform high-tempera-
ture phase is obtained by setting δ0 = 0 for the
second order phase transition, or the free energies of
the phases with δ0 = 0 and δ0 ≠ 0 for the first-order
one. The critical temperature can be estimated
(with the main input to the integral given by the
divergent denominator, i.e., at the van Hove singu-
larities) as

Tc
 ∼ (J − gµ

B
 H)/ln (πCJ/2g2µ

B
2  H2) . (12)

The analysis shows that δ0 = 0 pertains to the mini-
mum of the free energy for T > Tc and to the
maximum for T < Tc . Hence the phase transition is
of the second order. We again emphasize that the
phase transformations studied here are magnetic
field-induced; they are absent without the latter.
We point out also that the order of the phase
transformation in the general case is connected with
the orientation of the direction of the magnetic field
with respect to the crystal axes and on the mutual
ratios of the exchange constant, anisotropy, mag-
netic field, and elastic constant.

It turns out that (alternating) distortions of the
ligands, which result in the inequivalence of the
effective g factors of neighboring spins in quasi-1D
chains, can be supplemented in the real compounds
by alternating distortions of the magnetic ions
themselves (which leads to the spin-Peierls insta-

bilities), as has been observed, e.g., in
CuGeO3 [25]. In such a situation the two effects
are additive in the formation of a spin gap for
low-lying spin excitations. The values of the effects
are naturally different. Although the effect studied
in this work manifests itself only in some domain of
values of the magnetic field, the spin-Peierls period
doubling is not caused by the magnetic field. The
critical temperature is determined from the condi-
tion of which of the instabilities becomes mani-
fested first.

We suppose that the cooperative effects similar
to the one studied in this paper have been observed
in some rare-earth molybdates. There at low-tem-
perature ESR studies that have observed two ine-
quivalent magnetic centers, (see, e.g., Refs. 6–9),
while for higher temperatures [7,8] or higher mag-
netic fields (higher frequencies) [15] only one mag-
netic center was seen. The low-temperature specific
heat exhibits features at temperatures higher than
the transition to the magnetically ordered phase
(which were hidden, though, due to the presence of
a Schottky anomaly) [8]. Ultrasonic measurements
have observed anomalies in the low-temperature
dependences of the velocities of sound for acous-
tic [17] and optical branches [18] of the phonon
spectra. Optical and magnetic investigations have
observed a cooperative effect (in nonzero magnetic
field), that was classified as being of the Jahn—Tel-
ler type [6,16,26]. Note that the transition to the
magnetically ordered state was observed at much
lower temperatures (see, e.g., Ref. 8, 18, 26), hence
the cooperative effect we have discussed is observed
in the paramagnetic (from the magnetic viewpoint)
phase. It turns out that magnetic and elastic charac-
teristics of some of those systems manifested the
mentioned features only for nonzero external mag-
netic fields, with the order of the transition (which
of the derivatives of the thermodynamic potential
possesses singular behavior) being determined by
the direction of the field, while for zero field for
some compounds there were no observations of the
Jahn—Teller-like cooperative effect [27].

Summarizing, we have studied a new realization
of magnetoelastic interactions in low-dimensional
magnetic systems. We have shown that low dimen-
sional spin systems are unstable with respect to the
spontaneous appearance of alternating distortions of
the positions of the three-dimensional nonmagnetic
atoms (ligands) that surround the magnetic ions.
Those distortions are supplemented by the sponta-
neous onset of alternating effective g factors of
magnetic ions in the phase with short-range interac-
tions. We have discussed the possibility of obser-
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ving the effect in a uniform external magnetic field,
which in the situation considered produces both
magnetization and staggered magnetization of the
magnetic subsystem. We suppose that the effects,
investigated theoretically in this work, have pro-
bably been observed in the low-temperature experi-
ments in some quasi-low-dimensional magnetic com-
pounds, in which the spin, charge, and orbital
characteristics of the electron subsystem are sub-
stantially coupled to the elastic subsystem.
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