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Measurement of the energy eigenvalues (spectrum) of a multi-qubit system has recently become possible by 
qubit tunneling spectroscopy (QTS). In the standard QTS experiments, an incoherent probe qubit is strongly 
coupled to one of the qubits of the system in such a way that its incoherent tunneling rate provides information 
about the energy eigenvalues of the original (source) system. In this paper, we generalize QTS by coupling the 
probe qubit to many source qubits. We show that by properly choosing the couplings, one can perform projective 
measurements of the source system energy eigenstates in an arbitrary basis, thus performing quantum eigenstate 
tomography. As a practical example of a limited tomography, we apply our scheme to probe the eigenstates of a 
kink in a frustrated transverse Ising chain. 

PACS: 03.67.–a Quantum information; 
03.67.Lx Quantum computation architectures and implementations; 
85.25.Am Superconducting device characterization, design, and modeling. 
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1. Introduction

Superconducting qubits are used as the basic building 
blocks for practical implementation of scalable quantum 
computers [1]. In particular, the existing annealing-based 
quantum processing units (QPU) [2] exploit flux qubits 
based on superconducting quantum devices (rf-SQUIDs) 
[3,4]. The qubits are controlled by a limited number of 
low-bandwidth external lines. This feature allows creating 
a quantum processor with more than 1000 qubits, while at 
the same time keeping a low level of noise in the system. 
Experimental technique, termed qubit tunneling spectros-
copy (QTS) [5], has been developed in order to measure 
quantum spectra of superconducting qubits (source qubits) 
using probe qubits undergoing incoherent tunneling transi-
tions. A similar idea of weakly coupling a probe qubit to 
the quantum system with the goal of observing its energy 
spectrum was proposed in Ref. 6. In Ref. 5, however, the 
coupling between the probe qubit and the source qubits is 
strong and the method was experimentally implemented 
with rf-SQUID flux qubits. Quantum spectra, characterized 
by line splittings of the order of few GHz, were measured 
using MHz-range control lines. The same technique was 
also employed to demonstrate quantum entanglement in 
systems of two and eight flux qubits embedded into an 
industrial-scale quantum annealing processor [7]. These 

experiments are performed with a unit cell having a linear 
size of the order of 0.3 mm. Quantum spectra taken in the 
process show very well resolved spectral lines, thus 
demonstrating a clear example of macroscopic quantum 
coherence [8] in a multi-qubit system. 

In QTS, information about quantum properties of the 
source qubits is extracted from the bias dependence of the 
incoherent tunneling rate, ( )Γ  , of the probe qubit. Here   is 
the external flux applied to the probe along z-axis. Positions 
of the maxima of ( )Γ   determine the energy levels of the 
source system, whereas its peak amplitude is proportional to 
the overlap between the eigenfunctions of the total (probe 
plus source) system before and after the tunneling [6,5]. 

In this paper, we generalize QTS technique to the case 
where the probe qubit is coupled to many source qubits in 
an arbitrary basis. We show that projective measurements 
of energy eigenstates of the source system in an arbitrary 
basis can be performed with this approach. Therefore, our 
measurement scheme is tomographically complete. As a 
practical example, we consider dynamics of a kink in a 
frustrated transverse Ising chain, in which the nearby 
qubits are coupled ferromagnetically and the first and the 
last qubits are biased in the opposite direction. The classi-
cal states with the lowest energy have a kink, which can be 
located between any nearby qubits. This kink behaves like 
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a free particle confined in a potential well. We provide 
numerical calculations of the incoherent tunneling rate of 
the system taking into account the low frequency environ-
ment. The maxima of the tunneling rate, plotted as a func-
tion of the bias applied to the probe, are shown to be pro-
portional to the modulus squared of the eigenfunctions. 

2. Qubit tunneling spectroscopy 

Following Ref. 5, here and in Appendix A we derive a 
set of formulas describing multi-qubit QTS experiments. 
The quantum system under study has N  coupled qubits, 
with Hamiltonian SH  written in terms of of Pauli matrices 
{ , , }yx z

i iiσ σ σ  where {1, , }i N∈  . We denote eigenstates 
and eigenvalues of this Hamiltonian by nΨ  and nE , re-
spectively, where {0,1, , (2 1)}Nn ∈ − . There is no need 
to specify Hamiltonian SH  of the quantum system at this 
stage, although later we will consider the transversal Ising 
chain as an example. In addition to the above source qubits 
operating in a fully quantum regime, we have one probe 
qubit characterized by a small tunneling amplitude p∆  
and by an external bias  . This qubit works in an incoher-
ent regime of macroscopic resonant tunneling (MRT) 
[9,10]. We write the total source-probe Hamiltonian as: 

 0 = ( /2)(1 )z x
S C p p pH H H+ + − σ − ∆ σ . (1) 

The probe qubit, which is described by the set of its Pauli 
matrices { , , },x y z

p p pσ σ σ  has two eigenstates, | p↑ 〉  and 
| ,p↓ 〉  of the matrix : | = | ,z z

p p p pσ σ ↑ 〉 ↑ 〉 | =z
p pσ ↓ 〉

| .p= − ↓ 〉   The coupling between the source qubits and the 
probe is provided by the term: z

p CH−σ . Once again, the 
details of CH  does not affect our general description. The 
second term in the Hamiltonian vanishes when probe qubit 
is in state | .p↑ 〉  Therefore, we can write 

 0 = | | | ,x
S p p S p p p pH H H↑ ↓⊗ ↑ 〉〈↑ + ⊗ ↓ 〉〈↓ −∆ σ  (2) 

where =S SH H↑  and = 2S S CH H H↓ + +  . We denote 
the eigenstates of these Hamiltonians by | n

↓Ψ 〉  and 
| :m

↓Ψ 〉  

   | = | ,S n n nH E↑ ↑ ↑Ψ 〉 Ψ 〉    | = ( ) | .S m m mH E↓ ↓ ↓ ↓Ψ 〉 + Ψ 〉  (3) 

Notice that | = |n n
↑Ψ 〉 Ψ 〉  and =n nE E↑ . 

In the limit of small p∆ , the eigenstates of 0H  are ap-
proximately | = | |n n p

↑ ↑ψ 〉 Ψ 〉 ⊗ ↑ 〉  and | = | | ,m m p
↓ ↓ψ 〉 Ψ 〉 ⊗ ↓ 〉  

where , {0,1, , (2 1)}Nn m ∈ − . When the probe qubit is in 
its “up” state, | p↑ 〉 , the eigenstates of the source qubits coin-
cide with the eigenstates of the original Hamiltonian SH . 
Notice that this is true even when coupling to the probe qubit 
is strong. In the opposite case, when the probe is in its 
“down” state, | ,p↓ 〉  the coupling to the probe should create a 
large bias for the source qubits in such a way that the new 
Hamiltonian, SH ↓ , has a well-defined ground state 0| ↓Ψ 〉  
isolated from the rest of the eigenstates by a large energy gap. 
The total system is then initialized in 0 0| = | | p

↓ ↓ψ 〉 Ψ 〉 ⊗ ↓ 〉  

and tunnels to one of the eigenstates | = | |n n p
↑ ↑ψ 〉 Ψ 〉 ⊗ ↑ 〉 , 

as the probe tunnels from | p↓ 〉  to | p↑ 〉 . The two sets of 
states of the total Hamiltonian 0H , with the probe qubit 
being in | p↓ 〉  or | p↑ 〉 , can be moved relative to each 
other by applying a probe bias  . The rate of macroscop-
ic tunneling between the initial and final states can show 
well-resolved peaks when the eigenenergies of these 
states are in resonance [10]. 

To have a full description of the dynamics we consider 
the system being exposed to an environment. As shown in 
Ref. 7, the width of the MRT peaks is predominantly de-
termined by the low frequency noise coupled to the probe 
qubit. As such, in our modeling we consider an environ-
ment only interacting with the probe qubit. The dissipative 
dynamics of the probe-source system is therefore described 
by the master Eq. (A.26) written in our case as (see Ap-
pendix A) 

 0 0 0 0= ,n n
n

P P P+ Γ Γ∑  (4) 

where 0P  and are the probabilities of being in state 0| ↓ψ 〉  
and | n

↑ψ 〉 , respectively, and 

 2 2
0 0( ) = | | |p n

n

↑ ↓Γ ε ∆ 〈Ψ Ψ 〉 ×∑   

 
2

0
2 2

( )2 exp ,
2

n pE E

W W

↑ ↓ − − +π  × −
 
 

 
 (5) 

 2 2
0 0( ) = | | |n p n

↑ ↓Γ ε ∆ 〈Ψ Ψ 〉 ×   

 
2

0
2 2

( )2 exp .
2

n pE E

W W

↑ ↓ − − −π  × −
 
 

 
 (6) 

The MRT width W  and the reorganization energy p  are 
related by fluctuation dissipation theorem (see Ref. 9 and 
Appendix A). At = 0t , we have = 0nP , and therefore the 
initial slope of probability decay is only given by 0Γ , 
which is measured in the MRT experiments. At the point 
of resonance, where 0= n pE E↑ ↓− +  , the peak value of 
the escape rate 0Γ  is proportional to the overlap of the 
initial and final wave functions, 

 peak 2
0| | | .n

↑ ↓Γ ∝ 〈Ψ Ψ 〉  (7) 

In QTS, the probe qubit bias,  , is swept within some 
range and 0 ( )Γ   is measured. The locations of the peaks 
of 0Γ  give information about the energy spectrum, nE , of 
the source system. 

3. Quantum eigenstate tomography 

For spectroscopy purposes, the details of CH  are un-
important as long as the ground state of SH ↓  is well sepa-
rated from excited states and has overlap with the 
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eigenstates of SH ↑  (= )SH  that we want to detect. Since 
the tunneling rate is proportional to 2

0| | |n
↑ ↓〈Ψ Ψ 〉 , if we 

can set 0| ↓Ψ 〉  as an arbitrary state, we can measure the 
projection of | n

↑Ψ 〉  on that state and therefore perform 
tomography on the source system's eigenstates, | nΨ 〉 . 
This can be done by choosing a specific form of CH . For 
example, assume that the probe qubit can be coupled to all 
source qubits along all three axes. We can therefore write 

 
=1

= ( )
N

y yx x z z
C pi i pi ipi i

i
H J J Jσ + σ + σ∑ . (8) 

The coupling constants , yx
pi piJ J  and z

piJ  create additional 
biases for the ith source qubit along x , y , and z  direc-
tions. These biases disappear in the case when the probe 
qubit is in | p↑ 〉  and, as before, =S SH H↑ . In the opposite 
direction of the probe, | ,p↓ 〉  strong coupling constants 
{ , , }yx z

pi pipiJ J J  can make CH  dominate in 0H , thus sup-
pressing the contribution of SH . The standard z–z couplers 
[3,4] between the probe and source qubits lead to the follow-
ing set of the constants: {0,0, }z

piJ . This set creates the z-di-
rected initial state 0 =1| = | ,N

i iz↓Ψ 〉 ⊗ 〉  defined in terms of the 
eigenstates | iz 〉  of the matrices .z

iσ  Again, here the probe 
qubit is in the | p↓ 〉  state. The up or down direction of the 
specific ith source qubit in the reference state 0| ↓Ψ 〉  de-
pends on the sign of the corresponding coupling coefficient 

.z
piJ  If instead of z–z couplers we have x–z couplers, i.e., 

0x
piJ ≠  and = = 0,y z

pipiJ J  then the reference state will 
be 0 =1| = | ,N

i ix↓Ψ 〉 ⊗ 〉  where ix  are the eigenfunctions of 
x
iσ . We can therefore project the eigenstates | nΨ 〉  onto 

the x-basis. Likewise, we can project | nΨ 〉  onto y-basis. 
Being able to do projective measurements in all basis 
makes our protocol tomographically complete. 

In practice, the coupling of the probe qubit to all source 
qubits in all bases could be challenging. However, with a 
limited number of couplers working in a single basis we 
can still do projective measurements in a very limited Hil-
bert subspace and obtain useful information. For example, 
in ferromagnetic systems, one can do projective measure-
ments of the eigenstates onto the lowest energy subspace 
{| , | }↑↑ ↑〉 ↓↓ ↓〉   with one coupler [7]. In the next 
section, we provide another example in which the coupling 
of the probe qubit to two source qubits is needed for pro-
jection onto the lowest energy subspace. 

4. Wave function of a kink in the frustrated Ising chain 

As an example of the source quantum system we con-
sider a frustrated Ising chain described by the following 
Hamiltonian SH , 

 
1 <

= ( ) .
N

z x z z
S i i i i ij i j

i i j
H h J

−
σ − ∆ σ + σ σ∑ ∑  (9) 

For this specific case the transverse field is determined by 
the set of tunneling amplitudes { }i∆ . The qubits are biased 

along z-direction with the strengths { }ih  and coupled with 
the constants { }ijJ . In principle, the qubits can be biased 
and coupled along any direction, x , y , or z . The chain 
has N  qubits, with a uniform ferromagnetic coupling be-
tween the nearby qubits, 1,= ,z

ij i jJ J ±− δ  where > 0.J  
Notice that hereafter we work in the z-basis since the probe 
qubit is coupled to z

iσ -matrices of the source qubits. This 
can be done by means of the standard magnetic couplers 
[3,4]. The frustration is created by two additional boundary 
qubits, which have fixed spin directions. In Fig. 1 we show 
configurations of seven source spins ( = 7)N  plus two 
boundary qubits. The left boundary qubit is always in the 
up-direction, and the right boundary qubit is always di-
rected downwards. These qubits are ferromagnetically 
coupled to the first and to the last qubits in the Ising chain, 
thus creating a bias 1 =h J−  applied to the first qubit and 
the bias =Nh J  applied to the last qubit in the chain. The 
other qubits have zero biases, = 0ih  at = 2, , 1.i N −  In 
the absence of the probe qubit the lowest energy of the N-
spin Ising chain is degenerate. All eigenstates of the source 
Hamiltonian SH  with the lowest energy have one kink 

Fig. 1. (Color online) Eight possible positions of a kink (shown 
as a blue star) in a chain with seven source qubits and two bound-
ary spins. A left boundary qubit is always up, and a right bounda-
ry qubit is always down. 
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located between the source qubits. A kink also can be lo-
cated between the first qubit in the chain and the left 
boundary qubit, and between the right boundary qubit and 
the last qubit in the chain. The possible locations of the 
kink, which is shown as a blue star, are presented in Fig. 1. 
It is known that the kink in the Ising chain behaves like a 
free quantum particle. The main goal of this part of the 
paper is to demonstrate that the QTS measurements allow 
us to visualize the quantum distributions of the kink in the 
frustrated Ising chain. 

In the process of QTS tomography the lowest 
eigenstates of the kink's Hamiltonian are projected on the 
basis set formed by vectors that have a definite kink loca-
tion. In particular, functions 1 1| , ,| ,N +ψ 〉 ψ 〉  where 

 1 1 2 1| = | , , , , ,N N−ψ 〉 ↓ ↓ ↓ ↓ 〉   

 2 1 2 1| = | , , , , , ,N N−ψ 〉 ↑ ↓ ↓ ↓ 〉    

 1 2 1| = | , , , , ,N N N−ψ 〉 ↑ ↑ ↑ ↓ 〉   

 1 1 2 1| = | , , , , ,N N N+ −ψ 〉 ↑ ↑ ↑ ↑ 〉  (10) 

corresponds to 1N +  positions of the kink in the frustrated 
Ising chain (see Fig. 1 for the case of seven source qubits, 

= 7)N . These functions form the quantum-mechanical 
basis. We notice that the basis | lψ 〉  is not complete since 
the high-energy states with many kinks are neglected here. 
Every state from the set 1 1{| , ,| }N +ψ 〉 ψ 〉  is characteri-
zed by a definite position of the kink. An arbitrary quan-
tum state, for example, the n-eigenstate of the source 
qubits, | | ,n n

↑Ψ 〉 ≡ Ψ 〉  can be represented as a superposi-
tion of the basis states | ,lψ 〉  

 
1

=1
| = | |

N

n l n l
l

+
↑ ↑Ψ 〉 〈ψ Ψ 〉 ψ 〉∑ . (11) 

The set of amplitudes, ( ) = |n
l nlC ↑〈ψ Ψ 〉 , taken as func-

tions of the quantum number l , describes a wave function 
of the nth energy state in a single-kink representation. The 
quantum number l  serves as a position of the kink in the 
frustrated Ising chain. Thus, the l-dependence of the kink 
amplitude ( )n

lC  is equivalent to the coordinate dependence 
of the wave function of the particle in the state correspond-
ing to the n-eigenstate of the source Hamiltonian SH . 
Here we have = 0,1, , (2 1).Nn −  

We notice that the escape rate 0 ( )Γ   (5) is proportional 
to the overlap squared, 2

0| | |n
↑ ↓〈Ψ Ψ 〉 , of the n-eigenstate 

| n
↑Ψ 〉  of the source Hamiltonian SH  and the ground state 
0| ↓Ψ 〉  of the biased source qubits. The ground state 0

↓Ψ  of 
the left manifold can be transformed into a specific basis 
state | lψ 〉 , so that 0| = | l

↓Ψ 〉 ψ 〉 , by choosing proper cou-
plings piJ  between the probe and the source qubits as it is 
shown in Fig. 1. For example, the first state 1| =ψ 〉

1| N= ↓ ↓ 〉  can be generated if the first qubit in the chain 

is coupled to the probe with a positive constant 
1 = > 0.p pJ J  Other source qubits are decoupled from the 

probe. The second basis state 2 1 2| = | Nψ 〉 ↑ ↓ ↓ 〉  is cre-
ated when the probe qubit is coupled to the first source qubit 
by negative coupling, 1 = ,p pJ J−  whereas its coupling to 
the second qubit is positive, 2 = > 0.p pJ J  To generate the 
state 1 2 1| = |l l l N−ψ 〉 ↑ ↑ ↑ ↓ ↓ 〉  , two nearby qubits 

1l −  and l  should be coupled to the probe with opposite 
coupling strengths, , 1 =p l pJ J− −  and , =p l pJ J . The last 
state, 1 1| = | ,N N+ψ 〉 ↑ ↑ 〉  is generated when the N-qubit 
is coupled to the probe with a negative coupling strength, 

=pN pJ J , and other source qubits do not interact with the 
probe. 

4.1. Quantum distribution of a kink 

In order to obtain the quantum distribution of the sys-
tem over all possible positions of the kink in the Ising 
chain we have to measure the l-dependence of the function 

( ) 2 2| |  = | | |n
l nlC 〈ψ Ψ 〉 . To do that, we choose a specific 

connection between the probe and source qubits related, 
for example, to the state | ,lψ 〉  with a subsequent meas-

Fig. 2. (Color online) A generation of basis states ψl of the left 
manifold by selective coupling of the probe qubit (shown as a 
hexagon) to the source qubits. A positive probe-source coupling 
Jpi is drawn in blue, a negative Jpi is shown in red. A blue star 
symbol is related to the kink location. 
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urement of the escape rate 0 ( )Γ   for all possible probe 
biases  . As the next step, we change the initial source-
probe connection and repeat the measurements. Finally, we 
obtain the rate 0 ( , )lΓ   as a function of the bias   and the 
kink position, which is characterized by the number l  of 
the single-kink basis state | lψ 〉 . In Fig. 3 we show the 
normalized function 0 ( , )lΓ   for the case of seven qubits 
in the chain ( = 7)N . Both figures are plotted at 

1 = = = 2GHz,N∆ ∆  = 2GHz,J  =pJ J , with a tem-
perature of = 12T  mK and a MRT linewidth of = 10W  
mK. Only four lowest energy levels of source qubits, with 

= 0,1,2,3n , are presented. In Fig. 4 we plot the QTS rate 
0 ( , )lΓ   for the chain that has 16 qubits ( = 16)N  and for 

the same set of parameters. This figure has a better resolu-
tion than Fig. 3. In both figures, along the -axis we have 
the standard QTS peaks corresponding to four energy 
eigenstates | nΨ 〉  of the source Hamiltonian SH  (9). If we 
move along the other axis, we will see a dependence of the 
states | nΨ 〉  on the kink position. The probability distribu-
tions of the kink in the frustrated chain shown in Figs. 3 
and 4 are similar to the distribution of a quantum particle 
in a potential well. 

5. Conclusions 

We have generalized the qubit tunneling spectroscopy 
approach of Ref. 5 to allow performing quantum eigenstate 
tomography in a multi-qubit (source) system. An addition-
al (probe) qubit, working in the incoherent regime, has to 
be coupled to all source qubits in all bases to make projec-
tive measurement onto an arbitrary basis state possible. A 
limited, but practical, version of tomography is described 
with an example of a single kink in a frustrated Ising chain. 
The lowest energy eigenstates of this system is equivalent 
to those of a free quantum particle confined in a potential 
well. We have calculated the incoherent tunneling rate of 
the system and shown that its peak values correspond to 
the modulus squared of the overlap of the eigenstates and a 
preselected basis state which is related to a kink position. 
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Appendix A: Derivation of the master equation 

The system of N  source qubits and one probe qubit is 
described by the Hamiltonian 0H  defined by Eqs. (1) and 
(2). The probe qubit is working in a regime of incoherent 
tunneling between its wells. The tunneling is introduced by 
the small tunneling amplitude p∆  in the Hamiltonian 0H . 
We also take into account an interaction of the probe qubit 
with its dissipative environment, which is described by the 
variable pQ . Weak coupling of source qubits to their envi-
ronments is omitted here. This coupling contributes to the 
width of MRT lines of the probe qubit [7]. The main con-
tribution to the linewidth, however, is given by the low-
frequency bath directly coupled to the probe. The total 
Hamiltonian H  of the source-probe system coupled to the 
probe qubit bath has the form  

 0= ,z
p p BH H Q H− σ +  (A.1) 

where BH  is the free Hamiltonian of the bath, and x
pσ  is the 

Pauli matrix responsible for the flipping of the probe qubits 
between states | p↓ 〉  and | ,p↑ 〉  = | | | | .x

p p p p pσ ↑ 〉 〈↓ + ↓ 〉 〈↑  
The bath can be represented as a sum of independent 

harmonic oscillators [11,12] with the Hamiltonian   

 
2 2 2

= .
2 2

k k k k
B

kk

p m x
H

m

 ω
+ 

 
∑  (A.2) 

Fig. 3. (Color online) Escape rate 0Γ  as a function of the kink 
position l and the bias   applied to the probe qubit. Here we have 
seven source qubits. As in the case of a free particle in the potential 
well, the ground state of the kink has a maximum in the middle of 
the chain where the first excited state has a node. The second and 
third excited states have two and three nodes, respectively. 

Fig. 4. (Color online) The QTS rate Γ0(,l) reflects the quantum 
distribution of a kink position l in the 16-qubit Ising chain for 
four lowest energy eigenstates. The peak with the energy  ∼ 0 
corresponds to the ground state of the kink (particle). The next 
peak, with  ∼ 1 GHz, is related to the first excited state having 
one node, at l = 8, in the wave function. The wave function of the 
next state, with the energy  ∼ 1,5 GHz, has two nodes, at l = 6 
and l = 12. The last state shown in the picture has the energy  ∼ 
∼ 2.25 GHz. This state is described by the wave function having 
three nodes located at l = 4, l = 9, and l = 14. 
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The kth oscillator in the bath is characterized by position 
kx , momentum kp , mass km  and positive frequency kω . 

The bath operator pQ  in Eq. (A.1) is given by the formula 

 2= .p k k kp k
k

Q m z xω∑  (A.3) 

A constant kpz  determines the strength of coupling be-
tween the probe qubit and the k-mode of the bath. The 
Hamiltonian H  (A.1) can be written as 

 = | | | | x
S p p S p p p pH H H↑ ↓⊗ ↑ 〉 〈↑ + ⊗ ↓ 〉 〈↓ −∆ σ +   

 
2 2

2( ) .
2 2

zk k k
k kp p

kk k

p m
x z

m
ω

+ + − σ∑ ∑  (A.4) 

Here we have omitted the constant term. The unitary trans-
formation 

 = e = 1 (e 1)| |
zi ip p p

p p pU
− ξ σ − ξ

+ − ↓ 〉〈↓ +   

 (e 1)| |
i p

p p
ξ

+ − ↑ 〉 ↑ 〉 , (A.5) 

applied to the Hamiltonian H  turns this operator to the 
form 

 
2 2 2

†= =
2 2

k k k k
p p

kk

p m x
H U HU

m

 ω
+ +′  

 
∑   

 
2

| | | | e | |
i p

S p p S p p p p pH H
ξ↑ ↓+ ⊗ ↑ 〉〈↑ + ↓ 〉〈↓ −∆ ↓ 〉〈↑ −   

 
2

e | | .
i p

p p p
− ξ

− ∆ ↑ 〉〈↓  (A.6) 

Here =p kp kkz pξ ∑  is a stochastic phase produced by the 

bath. We notice that this phase appears only at the tunnel-
ing terms. 

The source-probe Hamiltonian has eigenstates µΨ  de-
fined by the following equations: 

  ( | | | |) | = | ,S p p S p pH H E↑ ↓
µ µ µ⊗ ↑ 〉〈↑ + ⊗ ↓ 〉〈↓ Ψ 〉 Ψ 〉  (A.7) 

where 1{0,1, , (2 1)}.N +µ ∈ −  We notice that the set of 
eigenstates {| }µΨ 〉  contains two subsets — one, which is 
related to the up-state of the probe qubit, and another, which 
is related to the down-state of the probe: {| } =µΨ 〉

{| | , | | .n p m p
↑ ↓= Ψ 〉 ⊗ ↑ 〉 Ψ 〉⊗ ↓ 〉  Here the eigenstates | n

↑Ψ 〉  
and | m

↓Ψ 〉  can be found from Eqs. (3). The indices m  and 
n  run over 2N  states: , {0,1, , (2 1)}.Nm n ∈ −  The eigen-
energies { }Eµ  also have two subsets: { } =Eµ

{ , },n mE E↑ ↓= +   with   being the bias applied to the probe 
qubit. 

Following the approach proposed in Ref. 13 and devel-
oped in Ref. 14 we introduce a time-dependent Heisenberg 
operator µνρ  of the source-probe system, 

 = (| |)( ).tµν µ νρ Ψ 〉〈Ψ   

In the Heisenberg representation the total Hamiltonian H  
(A.6) is given by the formula 

 = ,BH E Q Hµ µµ µν µν
µ µ≠ν

ρ − ρ +∑ ∑  (A.8) 

with the bath operator 

 
2

= e | |
i p

p p pQ
ξ

µν µ ν∆ 〈Ψ ↓ 〉〈↑ Ψ 〉 +   

 
2

e | | .
i p

p p p
− ξ

µ ν+ ∆ 〈Ψ ↑ 〉〈↓ Ψ 〉  (A.9) 

Here we drop the prime sign in the Hamiltonian H  (A.6). 
The diagonal elements of the Hamiltonian (A.8) are deter-
mined by the eigenenergies Eµ  of the system-probe Hamil-
tonian 0H  (2). The bath Hamiltonian BH  is defined by 
Eq. (A.2). The operator µνρ  obeys the Heisenberg equation 

     = ( ),i i Q Qµν µ µν νµ µµ µ µ µ ν′ ′ ′ ′
µ′

ρ ω ρ + ρ − ρ∑ ν  (A.10) 

with = .E Eµν µ νω −  Using the approach developed in 
Refs. 13 and 14 we derive a set of equations for the qubit 
operators averaged over fluctuations of the free bath, 

____________________________________________________ 

 (0) (0) (0) (0)
1 1 1 1 1 10 0

= ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
t t

i dt Q t Q t t t dt Q t Q t t tµν µ µν µµ µ ν µ ν µµ′ ′′ ′′ ′′ ′′ ′νµ µ ν µ ν νµ′ ′′ ′′ ′′ ′′ ′ρ − ω ρ − 〈 〉〈ρ ρ 〉 + 〈 〉〈ρ ρ 〉 +∫ ∫ ν   

 (0) (0) (0) (0)
1 1 1 1 1 10 0

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
t t
dt Q t Q t t t dt Q t Q t t tµ µ ν µ ν µ ν′ ′′ ′′ ′′ ′′ ′µ µ µ ν µ ν µ µ′ ′′ ′′ ′′ ′′ ′+ 〈 〉〈ρ ρ 〉 − 〈 〉〈ρ ρ 〉∫ ∫ν . (A.11) 

_______________________________________________ 

An operator (0) ( )Q tµν  is defined by Eq. (20) where the sto-
chastic phases pξ  are replaced by their unperturbed values 

(0)(0) =p kp kkz pξ ∑  that have free Heisenberg operators 
(0)
kp  of the bath. A time evolution of the free bath opera-

tors is determined by the Hamiltonian BH  (A.2). We also 
assume that there are sums over repeated indices 

, ,µ µ′ ′′ ′′ν  in the right-hand side of Eq. (A.11). The free 

bath variables (0) ( )Q tµν  are nonlinear functions of the 
Gaussian bath operators (0)

pξ . Therefore, non-Markovian 
equations (A.11) are valid at the small system-bath cou-
pling only. We consider a regime of incoherent tunneling 
for the probe qubit. This regime takes place at the small 
tunneling amplitude p∆ . It follows from Eq. (A.9) that the 
small p∆  is related to the small system-bath interaction. 
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Within the perturbation theory in terms of the parameter 
p∆  we assume that in Eq. (A.11) the correlation functions 

of the qubit operators, such as 1( ) ( )t tµµ µ′ ′′ ′′ρ ρ ν , can be cal-
culated using the free evolution equations. It is convenient 
to reduce the operator 1( )tµ′′ ′′ρ ν  to the operator ( )tµ′′ ′′ρ ν  in 
such a way that  

 ( )1
1( ) = e ( )

i t t
t t

− ω −µ ν′′ ′′
µ µ ν′′ ′′ ′′ ′′ρ ρν ,  

so that the correlator is given by the equation 

 
( )1

1( ) ( ) = e ( ),
i t t

t t t
− ω −µ′′ ′′

µµ µ µ µ µ′ ′′ ′′ ′ ′′ ′′〈ρ ρ 〉 δ ρν
ν ν   

where µ µ′ ′′δ  is the Kronecker delta. 
A diagonal element =Pµ µµ〈ρ 〉  of the averaged matrix 

µ〈ρ 〉ν  defines the probability to find the source-probe sys-
tem in the state | µΨ 〉 . It follows from Eqs. (A.11) that these 
probabilities are governed by the set of master equations, 

 = .P P Pµ µ µ µ
ν

+ Γ Γ∑ ν ν  (A.12) 

Here =µ µΓ Γ∑ ν
ν

 is a relaxation rate and µΓ ν  is a relax-

ation matrix defined by the equation 

     
( )(0) (0) 1

1 1
0

= ( ) ( ) e h.c.
t i t t

dt Q t Q t
− ω −µ

µ µ µΓ 〈 〉 +∫ ν
ν ν ν  (A.13) 

The bath operator (0) ( )Q tµν  is given by Eq. (A.9) where 

(0)
pξ  is a free Gaussian operator, (0)(0)  = p kp k

k
z pξ ∑ . The 

commutator and the correlation function of these Heisen-
berg operators taken at different moments of time are de-
termined by the following expressions 

____________________________________________________ 

 
2

(0) (0)
2

( )1[ ( ), ( )] = sin ( ) = sin ( ),
2 2 2

k k kp pp
p p k

k

m z dt t i t t i t t−
ω χ ω′′ω

ξ ξ − ω − − ω −′ ′ ′
π ω

∑ ∫   

 
2

(0) (0)
2

( )1[ ( ), ( )] coth cos ( ) = cos ( ),
2 2 2 2

k k kp pk
p p k

k

m z Sdt t t t t t
T+

ω ωω ω ξ ξ = ω − ω −′ ′ ′   π ω
∑ ∫  (A.14) 

with T being the equilibrium temperature of the free bath. The dissipative properties of the bath are defined by the imagi-
nary part of its susceptibility ( )ppχ ω′′  and by the spectrum ( )pS ω . They are described by the following formulas 

 
3 2

( ) = [ ( ) ( )],
2

k k kp
pp k k

k

m zω
χ ω π δ ω − ω − δ ω + ω′′ ∑   

 [ ]
3 2

( ) = ( )coth = coth ( ) ( ) .
2 2 2

k k kp k
p pp k k

k

m z
S

T T
ω ωω   ω χ ω π δ ω − ω + δ ω + ω′′       ∑  (A.15) 

_______________________________________________ 

For the correlator of free variables (0)Qµν  of the bath we 
obtain 

 (0) (0) 2( ) ( ) = ( ),pQ t Q t t tµ µ µ〈 〉 ∆ Φ −′ ′ν ν ν  (A.16) 

where the prefactor 2
µ∆ ν  is defined as 

 2 2 2 2= (| | | | | | | | ).p p p p pµν µ ν µ ν∆ ∆ 〈Ψ ↓ 〉〈↑ Ψ 〉 + 〈Ψ ↑ 〉〈↓ Ψ 〉   

  (A.17) 

The characteristic functional of the bath is given by the 
formula: 

 
(0) (0)2 ( ) 2 ( )

( ) = e e =
i t i tp p

p t t
ξ − ξ ′

Φ − 〈 〉′   

 2
1 cos ( )exp 4 ( )

2 p
d t tSω − ω − ′= − ω − π ω ∫   

 2
sin ( )4 ( )

2 p
d t ti ω ω − ′ − χ ω′′ π ω ∫ . (A.18) 

The heat bath acting on the probe qubit may have both, low-
frequency and high-frequency, components [15]. In this case 
the dissipative function ( )pχ ω′′  is represented as a sum of 
the low-frequency susceptibility, ( )LFχ ω′′ , and the high-
frequency function ( )HFχ ω′′ : ( ) = ( ) ( ).p LF HFχ ω χ ω + χ ω′′ ′′ ′′  
The functional ( , )p t tΦ ′  is equal to the product of the    
low-frequency and high-frequency parts: ( ) =pΦ τ

( ) ( ).LF HF= Φ τ Φ τ  Here, the low-frequency factor is deter-
mined by the formula 

 
2 2

( ) = e exp ,
2

i p
LF

W− τ  τ
Φ τ − 

 


 (A.19) 

with the reorganization energy p  and with the width W 
defined by the following equations,  

 
( )( )

= 4 ,
2

LF
p

d χ ω ω′′ω
π ω∫   

 2 = 4 ( ) = 2 .
2 LF p
dW S Tω

ω
π∫   (A.20) 
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The high-frequency noise acting on the probe qubit is usu-
ally described by the Ohmic spectral density 

 ( ) = exp( | | / )HF cχ ω ηω − ω ω′′   

where η  is a small dimensionless coupling constant and 
cω  is the cutoff frequency [12]. In this case the high-

frequency factor ( )HFΦ τ  of the functional ( )pΦ τ  is giv-
en by the expression 

 
4 /

1( ) = .
1 sinh( )HF

c

T
i T

η π π τ
Φ τ  + ω τ π τ 

 (A.21) 

The relaxation matrix (A.24) can be written as 
____________________________________________________ 

 
4 /

2 2( )2 /2

0

1= e e h.c.
1 sinh( )

i Wp

c

Td
i T

η π∞ − ω + τ − τµν
µν µν

 π τ
Γ ∆ τ + + ω τ π τ 

∫


 (A.22) 

_______________________________________________ 

A more comprehensive description of the dissipative dy-
namics of the open quantum system has been carried out in 
Ref. 16. We notice that in the case of the very weak cou-
pling of the slow probe qubit to the high-frequency bath, 
when 4 / 1,η π  the relaxation matrix is given by the Mar-
cus formula [9], 

 
2

2
2 2

( )2= exp .
2

p

W W
µν

µν µν

 ω +π  Γ ∆ −
  


 (A.23) 

For indices µ  and ν  we have two possible cases: 

 (a) | = | | , | = | | ,n p m p
↑ ↓

µ νΨ 〉 Ψ 〉 ⊗ ↑ 〉 Ψ 〉 Ψ 〉 ⊗ ↓ 〉   

and 

 (b) | = | | , | = | | .m p n p
↓ ↑

µ νΨ 〉 Ψ 〉 ⊗ ↓ 〉 Ψ 〉 Ψ 〉 ⊗ ↑ 〉  

These cases correspond to two sets of eigensenergies and 
frequencies: 

 (a) = , = , = ,n m n mE E E E E E↑ ↓ ↑ ↓
µ ν µν+ ω − −    

and 

 (b) = , = , = .m n m nE E E E E E↓ ↑ ↓ ↑
µ ν µν+ ω − +    

For these two sets we obtain the following relaxation 
matrices: 

____________________________________________________ 

 
2

( ) 2 2
2 2

( )2(a) = | | | exp ,
2

n m pa
p n m

E E

W W

↑ ↓
↑ ↓

µν

 − − +π  Γ ∆ 〈Ψ Ψ 〉 −
 
 

 
  

 
2

( ) 2 2
2 2

( )2(b) = | | | exp .
2

n m pb
p n m

E E

W W

↑ ↓
↑ ↓

µν

 − − −π  Γ ∆ 〈Ψ Ψ 〉 −
 
 

 
 (A.24) 

_______________________________________________ 

If we start the QTS experiment with the probe qubit being 
in its | p↓ 〉  state and allow the qubit to tunnel into the | p↑ 〉  
state, the situation is described by the master equation 
(A.12) where mP Pµ ≡  is the probability to find the system 
in state | = | | .m p

↓
µΨ 〉 Ψ 〉 ⊗ ↓ 〉  The system tunnels into the 

state | = | | ,n p
↑

νΨ 〉 Ψ 〉 ⊗ ↑ 〉  so that here we have the case 
(b) described by the relaxation matrix ( )b

mnµνΓ ≡ Γ  defined 
in Eq. (A.24). 

The probability to find the system in the state νΨ  is 
given by the variable nP Pν ≡ . It follows from Eq. (A.12) 
that the escape rate µΓ  is determined by the transposed 

matrix νµΓ , since =µ νµ
ν

Γ Γ∑ . In our case the matrix 

νµΓ  is described by the case ( )a , so that the relaxation 

rate µΓ  is given by the formula 
____________________________________________________ 

 
2

2 2
2 2

( )2= | | | exp .
2

n m p
m p n m

n

E E

W W

↑ ↓
↑ ↓

µ

 − − +π  Γ ≡ Γ ∆ 〈Ψ Ψ 〉 −
 
 

∑
 

 (A.25) 

______________________________________________ 

As a result, the time evolution of the probability mP  to 
find the source-probe system in the state | |m p

↓Ψ 〉 ⊗ ↓ 〉  is 
governed by the equation 

 = ,m m m mn n
n

P P P+ Γ Γ∑  (A.26) 

where nP  is the probability for the system to be in state 
| |n p

↑Ψ 〉 ⊗ ↑ 〉 . 
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