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The dynamics of the one-dimensional array of magnetic particles (dots) with the easy-plane anisotropy is 

investigated. The particles interact with each other via the magnetic dipole interaction and the whole system is 

governed by the set of Landau–Lifshitz equations. The spatially localized and time-periodic solutions known as 

discrete breathers (or intrinsic localized modes) are identified. These solutions have no analogue in the con-

tinuum limit and consist of the core where the magnetization vectors precess around the hard axis and the tails 

where the magnetization vectors oscillate around the equilibrium position. 

PACS: 63.20.Pw Localized modes; 

63.20.Ry Anharmonic lattice modes; 

75.10.Hk Classical spin models. 
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1. Introduction 

The artificially manufactured periodic arrays of mag-

netic particles have received much attention in the litera-

ture during the last two decades [1–8]. Apart from their 

technological importance as candidates for the high-

density magnetic storage media [1,2,5], these arrays appear 

to be a good testing ground for studying various nonlinear 

magnetic wave phenomena [9–11]. 

Many of these phenomena, such as magnetic solitons, 

domain walls, vortices are well studied and documented in 

scientific literature [12,13]. Owing to the fact that they are 

well described by the continuum version of the Landau-

Lifshitz (LL) equation, these solutions can be treated ana-

lytically. In some cases, if the underlying system is 

integrable, the inverse scattering method has been applied 

[14]. The anharmonic localization in lattices occupies a 

special place among other nonlinear wave phenomena. The 

discrete breathers (DBs) (also know as intrinsic localized 

modes) [15–21] are time-periodic and spatially localized 

excitations. Unlike their continuum counterparts that nor-

mally exist only in the integrable systems [22], discrete 

breathers can exist in discrete media that are not necessari-

ly described by the integrable equations. Discrete breathers 

owe their existence to the fact that the spectrum of the lin-

ear waves is bounded and as a result all the resonances 

with the linear excitations can be avoided if the breather 

frequency and/or the system parameters are chosen appro-

priately [23,24]. In magnetic systems DBs have been stud-

ied rather extensively [20,25–33]. In particular, experi-

mental observation of breathers in antiferromagnets has 

been reported [34,35]. 

The bulk of these studies was performed for the Hei-

senberg magnets, where the interaction between the neigh-

bouring spins occurs via the exchange interaction. For the 

Heisenberg models the exchange interaction usually domi-

nates over the single-ion anisotropies, so the breather solu-

tions in the underlying models can be treated as the weakly 

discrete modes. Also, interesting solutions that have no 

analogue in the continuum limit has been discussed 

[29,30,36,37]. The weakness of the interspin interaction 

comparing to the anisotropy (or they should be at least of 

the same order) is necessary for these excitations. In the 

magnetic dots arrays the interaction between the dots is of 

the dipole-dipole kind, which decays as 3r  (with r  being 

the distance between the interacting magnets). Thus, if the 

array is manufactured with the spacing large enough to 

guarantee the fulfilment of the necessary non-resonance 

conditions, it is highly probable that DBs will exist in such 

a system. To investigate the DB existence in the magnetic 

dot array is the main aim of this article. 
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The paper is organized as follows. In the first section 

the model of interacting magnetic dipoles is presented. The 

next section is devoted to the numerical studies of discrete 

breathers. Discussion and conclusions are given in the last 

section. 

2. The model 

2.1. The Hamiltonian and equations of motion 

We consider the one-dimensional array of N  immobile 

equidistant magnetic particles that interact as magnetic 

dipoles. 

The Hamiltonian of this model consists of the dipole-

dipole interaction energy between all dots and the magnet-

ic anisotropy term for each dot [38]: 
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Here D  is the anisotropy constant, a  is the distance be-

tween the adjacent dots, ,mn xν e  and =nM

( , , )x y z T
n n nM M M  2 2(| | = )n MM  is the magnetic dipole 

momentum of the nth particle. In this article the easy-

plane anisotropy is considered with the plane of the array 

(xy) being the easy plane, thus, < 0.D  

It is convenient to introduce the new dimensionless var-

iables in which the total magnetic dipole momentum is 

normalized to unity: 

    2= /  ,   = / | |  ,   2 | |  .n n M H H D M t D Mtμ M  (2) 

 In the new dimensional variables the dynamics of the 

magnetic moment of the nth dot is described by the dis-

crete version of the LL equation [38]: 
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where the dot denotes differentiation with respect to time. 

Now the system of coupled dipoles has only one parame-

ter: 3=1/ (2 | | ).D a  This parameter appears as a 

prefactor in the dipole-dipole term of the dimensionless 

energy .H  It can be treated either as a measure of the dis-

creteness of the system or as the ratio of the dipole-dipole 

and exchange energies. 

2.2. Dispersion law 

Before embarking on studies of the nonlinear vibrations 

of the array it is useful to recall the dispersion law of the 

linear waves (magnons). The magnon spectrum can be 

found when Eq. (3) is linearized around the obvious 

ground state, where the dipoles are lying in the easy plane 

and are oriented tail-to-tail: ( ) ( ) ( )=1, = = 0.x y z
n n n  

Consider first the infinite array. Then the dispersion law is 

well-known and reads [7,11] 
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Typical curves for the dispersion law for the different val-

ues of the coupling constant  are given in Fig. 1(a). If the 

array is finite the magnon band becomes discrete. It con-

sists of the set of modes 
( )

,
n

L  = 1, 2, , .n N  The de-

pendence of these modes as a function of the coupling con-

stant is given in Fig. 1(b). Strictly speaking, the discrete 

translational invariance is lost for the finite linear array and 

we can speak about it only in the approximate sense if  is 

small. As a result, there is a mode that is placed below the 

band (see Fig. 1(b)). If the periodic boundary conditions 

are applied the translational invariance of the array holds 

exactly. 

Fig. 1. (Color online) Dispersion law (4) for  = 0.01 (curve 1), 

 = 0.03 (curve 2) and  = 0.06 (curve 3) (a). Frequencies of the 

magnon modes as a function of  for the finite chain with N = 11 

(blue) and N = 31 (red). Thick black lines demonstrates L(0) and 

L( ) from Eq. (4) (b). 
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3. Discrete breathers and their properties 

In this section we report the results of the studies of dis-

crete breathers with the help of numerical simulations. 

3.1. Spontaneous localization 

Discrete breathers are spatially localized excitations 

that are periodic in time, i.e. =1 =1{ ( )} = { ( )}N N
n n n nt t Tμ μ , 

= 2 /T , where  is the breather frequency. The con-

cept of the anti-continuum limit [17,18] is important for 

constructing the DB solutions. In the current model it can 

be implemented by setting = 0 . Thus, the dipole-dipole 

interaction between the dots is absent and each of them can 

be excited independently. If a particular dot with the num-

ber 0=n n  is excited, the magnetization vector will per-

form precession around the hard axis with the frequency 
( )

0
=

z
n

. Projection on the xy  plane demonstrates the 

following dynamics: 
0 0

( ) ( )
=

x y
n n

i 2 ( )1  e .i t  

Similarly, several dots located in the arbitrary places of the 

array, can be excited. 

In this article we will restrict ourselves to the configura-

tions that consist of the precessing core of rN  dipoles. 

Such an initial state can be represented as follows: 
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_______________________________________________ 

First of all we report on the simple numerical experi-

ment that demonstrates the phenomenon of dynamical lo-

calization of the magnetic dot magnetization. We take the 

anti-continuum configuration (0)m  from Eq. (5) as the 

initial condition and integrate the LL equations numerical-

ly. The fourth order Runge–Kutta method was used. The 

precision of the method was tested by monitoring the con-

servation of the total energy and the dipole moment. We 

have observed different results that depend on the value of 

.  If this constant is sufficiently small, the localized state 

Fig. 2. (Color online) Contour plots of the temporal evolution of the ( )z
n  (a), (c) and ( )1 x

n  (b), (d) components of the magnetization 

in the array of N = 100 magnetic dots with the initially excited one [(a), (b),  = 0.039] and three [(c), (d),  = 0.0045] dipoles. 
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persists for rather long times. Otherwise, for larger values 

of  the initially excited dipoles fall into the easy plane 

and localization disappears. In Fig. 2 the contour plots of 

the dynamical evolution of the array magnetization are 

demonstrated for = 1rN  [panels (a), (b)] and = 3rN  

[panels (c), (d)] initially excited dots. Here the dipoles 

were initially excited with ( ) = 0.9z
n . As one can see, 

energy stays with the initially excited central dots remain 

in the excited state for rather long time, with the respective 

magnetization vectors precessing around the hard axis. The 

lifetime of the localized excitation exceeds the period of 

one rotation 2 /0.9 7T  by several orders of magni-

tude. Thus, the phenomenon of dynamical localization is 

established. At this point we wish to know whether a local-

ized mode is an exact periodic solution that can be attribut-

ed to the excitations known as discrete breathers [19]. Be-

low we investigate these excitations in more detail. 

3.2. Breather periodic orbits 

In this subsection we show that time-periodic localized 

modes are indeed exact solutions of the LL equation. Nu-

merically this task can be performed in the following way. 

Define the evolution operator 

 0 0 1 2
ˆ : ( ) ( ), = col( , , , ) ,T NI t t T μ μ μm m m  (6) 

which stands for the integration of the LL equations (3) 

along the time interval 0 0[ , ].t t T  The fixed points of the 

3N-dimensional map  

 2
0 0 0( ) ( ) | ( ) | 1= 0, =1,2, , ,nt T t t T n Nn nμ μ μ  

  (7) 

will be the periodic solution with the period T. This map is 

complemented by the term 2
0| ( ) | 1,n t Tμ  which is 

necessary to ensure that the normalization condition holds 

after each iteration step. We start from the anti-continuum 

Fig. 3. (Color online) Dynamics of the central out-of-plane and neighbouring magnetization vectors of the DB orbit on the unit sphere 

for: (a) blue curve (central dot, n = 16), red curve (n = 15), other parameters  = 0.022,  = 0.5, N = 31; (b) same as (a) but for  = 

0.048,  = 0.75; (c) same as (a) but for N = 20 dots with Nr = 2, blue curves correspond to the dots n = 10 and n = 11, red curve : n = 9; 

(d) N = 21 dots with Nr = 3,  = 0.5,  = 0.016, pink curve corresponds to n = 11, blue curves n = 10 and n = 12, red curve: n = 9. 
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limit (5), “turn on” the dipole-dipole interaction by setting 

> 0  and show that the spatially localized excitation per-

sist. Then  can be increased gradually and the breather 

periodic orbit can be followed until it ceases to exist. In 

case of successful choice of the initial configuration 0( )tm  

convergence with the desired precision takes place after 

several iteration steps. The numerical scheme based on the 

Newton method [39] has been designed [40] for finding 

DB periodic oribits. It has been shown to work successful-

ly in the number of models [41], including magnetic lattic-

es [29,30]. Below we report the main results. 

Starting from the anti-continuum approximation (5) and 

using the method, described above, we have managed to 

detect the breather periodic orbits for the different values 

of  and , number of dots in the array N, and number of 

the precessing dipoles, .rN  The phase  in the initial 

condition (0)m  does not seem to play any role as we have 

achieved conversion to the same solutions for the different 

values of . The dynamics of the magnetization vector 

nμ  of these periodic orbits is shown in Fig. 3. The struc-

ture of DB's in all these figures is the same: it consists of 

the core of few dipoles that precess around the hard axis 

(although due to the interaction the precession trajectory is 

tilted towards the x  axis) and the weakly oscillating tails. 

If the coupling constant  is increased, the precessing tra-

jectory is tilted stronger toward the x  axis as the in-plane 

dipoles interact stronger with the precessing dipole (com-

pare Figs. 3(a) and 3(b)). Note, that the oscillations beyond 

the precessing core appear to be rather weak (shown by the 

red trajectories). 

Next we estimate the existence area of DBs on the param-

eter plane ( , ).  We remind that in order to exist, the 

breather frequency together with its multiples should not 

resonate with the linear waves of the system. In the anti-

continuum limit ( = 0)  the allowed range of the breather 

frequencies is 0 < < 1.  Since the precession frequency 

coincides with the z  component of the magnetization vector, 

 cannot exceed 1. If the coupling is on, the allowed breath-

er frequencies lie in the range [0, ] ( ) < < 1maxq L q . 

Thus, the existence area of DBs in the ( , )  parameter 

plane coincides approximately with the upper left triangle in 

Fig. 2(b) with the edges, given by = 1 , = 0  and 
( )

=
N

L . We have managed to track numerically the DB 

periodic orbit starting from = 0  up to the critical values 

when the Newton method ceases to exist. We have found the 

orbits to persist into the magnon spectrum. In that case the 

breather tails do not decay asymptotically as 0, .n N  In-

stead, we observe a bound breather-magnon state. However, 

these solutions appear to be unstable. 

The asymptotic behaviour of the breather tails is given in 

Fig. 4. The decay law is close to the power law if we are not 

far from the anti-continuum limit. Indeed, we observe almost 

power law decay for = 0.018  with ( ) 6
01 | |x

n n n  

and ( , ) 3
0| | .y z

n n n  The power-law decay is in ac-

cord with other models that possess long-range interac-

tion [42–44]. As  increases and the dipole-dipole inter-

action becomes more prominent. At this point we notice 

that the decay law becomes faster than the power law [see 

Fig. 4(b)]. This can be attributed to the fact that the array 

does not possess the discrete translational invariance. 

Although the absence of this symmetry is felt rather 

weakly, it becomes more and more pronounced as the 

coupling constant  increases. Moreover, it should mani-

fest itself in the strongest way at the edges of the array, since 

Fig. 4. (Color online) Spatial decay of the breather profile [1 – 

| n|
(x)

 (+), ( )y
n  (), ( )z

n  ()] on the log-log scale for the array 

of N = 31 dots with  = 0.75 and  = 0.018 (a) and  = 0.048 (b). 

The solid lines in the panel (a) approximate the decay of the 

magnetization (see text for details). 
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the dipoles at the edges interact only with the dipoles to the 

left (to the right), while the dipoles in the middle of the array 

interact symmetrically with all their neighbours. We remind, 

that the discrete translational invariance is possible only 

when the periodic boundary conditions are imposed. 

Suppose we are not looking for the breather periodic 

orbit. Instead, we are simply interested in the details of the 

time evolution of the initial configuration (5) on the large 

time scale. Then we obtain the quasiperiodic localized so-

lution. Its spatial structure will be the same as for the 

breathers, discussed in the previous paragraphs. The time 

evolution of the magnetization components appears to be 

quasiperiodic, as shown in Fig. 5. Here we have excited 

initially = 5rN  dipoles with the precession frequency 

= 0.75.  As the course of evolution the localized struc-

ture persisted, but the temporal evolution exhibits two fre-

quencies: the precession frequency 0.75  and the much 

lower envelope frequency. Within of one modulation peri-

od the magnetic moment can encompass the hard axis ap-

proximately ten times. It is not possible to trace the 

quasiperiodic breather solution with the method used in 

this section for the periodic breathers. The problem of the 

quasiperiodic breather existence is an interesting problem 

on its own [45,46] and will be pursued independently. 

4. Discussion and conclusions 

Discrete breathers (intrinsic localized modes) have been 

demonstrated to exist in the one-dimensional array of 

magnetic dots that interact as magnetic dipoles. We have 

focused on the arrays with the easy plane anisotropy. DBs 

are time periodic and spatially localized solutions of the 

Landau–Lifshitz equation. The structure of the breather 

solution is as follows: several dipoles in the core of the 

breather rotate around the hard axis and the rest perform 

small amplitude oscillations while lying in the easy plane. 

It should be noted that this type of breathers has no ana-

logue in the continuum limit. The breather frequency 

should not resonate with the linear modes of the array 

(magnons). It appears that the area of breather existence is 

limited from below by the maximal frequency of the 

magnon band and by the value = 1  (in the dimensionless 

units) from above. 

In terms of the structure and the existence conditions 

the solutions obtained in this article are similar to the DBs 

in classical ferromagnetic Heisenberg chains with the easy-

plane anisotropy, obtained earlier [29,30]. The difference 

is that in the Heisenberg chains the ground state is degen-

erate while for the array of magnetic dipoles it is con-

strained to the state ( ) = 1.x
n  Another difference appears 

due to the long-range dipole-dipole interaction, and it man-

ifests itself in the asymptotic behaviour of the magnetiza-

tion away from the breather core. Also, we believe that 

experimental observation of DBs in the arrays of magnetic 

particles seems to be much more easier as compared to the 

previously studied Heisenberg models. While in both mod-

els (Heisenberg and magnetic dots) the breathers exist if 

the interaction is considerably weaker than the anisotropy, 

such a situation is rather rare for the Heisenberg lattices, 

where the exchange interaction usually dominates over the 

anisotropy energy. In the case of magnetic dots the interac-

tion can be chosen sufficiently weak by increasing the dis-

tance between the particles. 

As far as the further research is concerned, we believe 

that the following directions are of considerable interest: 

(i) the influence of dissipation and external magnetic fields 

(both constant and periodic) on the breather existence area; 

(ii) DB existence and properties in arrays with easy-axis 

anisotropy; (iii) breather existence in the two-dimensional 

arrays of magnetic particles. 

We thank V.P. Kravchuk for useful discussions. One of 

the authors (Y.Z.) acknowledges the financial support from 

the Ukrainian State Grant for Fundamental Research 

No. 0112U000056. 
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