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RESUMO

Phragmites australis (common reed) comumente encontrada em zonas
úmidas costeiras pode alterar rapidamente a ecologia por competir e
superar as plantas nativas por espaço e pelos recursos. Além disso,
este tipo de vegetação representa um perigo de navegação para embar-
cações menores, prejudicando a visibilidade ao longo do litoral e em
torno de curvas e canais de rios. Os esforços de gerencialmento di-
recionados a plantas não nativas de Phragmites dependem fortemente
de um mapeamento preciso das áreas invadidads. No entanto, o ma-
peamento de Phragmites representa um desafio único por diferentes
razões. Identificar e mapear Phragmites pode ajudar os gerentes de re-
curso a restaurar zonas húmidas afetadas. Neste trabalho, quatro téc-
nicas de extração de características foram testadas: gabor filters, grey
level co-occurrence matrix, segmentation-based fractal texture analysis
e wavelet texture analysis. Estes algoritmos foram combinados com
três estruturas de rede neural artificial: multilayer perceptron, prob-
abilistic neural network e radial basis function network. Além disso,
objetivando reduzir o tempo computacional, uma implementação na
Graphics Processing Unit do melhor método identificado foi realizada.
O estudo de avaliação foi realizado com imagens adquiridas no delta de
Pearl River localizado no sudeste da Louisiana e no sudoeste do Missis-
sippi, Estados Unidos da América. Em comparação com os resultados
apresentados no estado da arte, wavelet texture analysis com prob-
abilistic neural network e segmentation-based fractal texture analysis
com probabilistic neural network apresentaram melhorias em várias var-
iáveis estatísticas como acurácia geral e o kappa. Além disso, o nível de
Phragmites agreement aumentou considerávelmente. Nos mostramos
que os erros de omissão e comissão restantes geralmente estão localiza-
dos ao longo dos limites das áreas identificadas como Phragmites, o que
reduz os esforços desnecessários para os gerentes de recursos na busca
de áreas inexistentes.
Palavras-chave: Análise de textura em imagens, aprendizado de má-
quina, Phragmites, avião não tripulado, Imagens de espectro visível.





RESUMO EXPANDIDO

INTRODUÇÃO

Phragmites australis (common reed) comumente encontrada em zonas
húmidas costeiras pode alterar rapidamente a ecologia por competir e
superar as plantas nativas por espaço e pelos recursos. Além disso, este
tipo de vegetação representa um perigo de navegação para embarcações
menores, prejudicando a visibilidade ao longo do litoral e em torno de
curvas e canais de rios. Como consequência, há um grande interesse no
controle desta vegetação. O principal método de controle é a aplicação
de herbicidas (MARTIN; BLOSSEY, 2013; HAZELTON et al., 2014). Porém,
para se aplicar qualquer método de controle é primeiro necessário iden-
tificar o local destas vegetações. Este processo representa um desafio
único, pois não há padrões para novos estandes e a disseminação gener-
alizada da common reed nas zonas húmidas. Diferentes métodos podem
ser usados para localizar o tipo invasivo de Phragmites. Caminhar ao
redor ou através de Phragmites com uma unidade de GPS para mapear
manualmente esta vegetação é um dos métodos mais simples. No en-
tanto, os ambientes das zonas húmidas têm pouca acessibilidade devido
à vegetação densa, alta, emergente e profundidades variadas de água,
impossibilitando o trabalho de campo (LANTZ; WANG, 2013). Sensoria-
mento Remoto fornece um método alternativo para a aquisição de dados
que podem ajudar a reduzir custos, mão-de-obra e economizar tempo
em relação ao trabalho de campo. Diferentes combinações de platafor-
mas com sensores podem possibilitar a aquisição de dados de diferentes
resoluções espaciais, espectrais e temporais. Dentre as plataformas pos-
síveis, as mais comumente utilizadas para mapeamento de Phragmites
são: Satélite, aeronave tripulada e aeronave não tripulada. A primeira
destaca-se por sua maior capacidade de cobertura, menor dependência
pós-processamento e velocidade para adquirir os dados. Vários tra-
balhos foram propostos com dados coletados através de satélite, como
demonstrado em (GILMORE et al., 2008; LANTZ; WANG, 2013; PENGRA;
JOHNSTON; LOVELAND, 2007; BOURGEAU-CHAVEZ et al., 2013; VILLA
et al., 2013). A segunda plataforma se diferencia por proporcionar um
melhor aproveitamento de sensores hiperespectrais, criando a possi-
bilidade de soluções com maior resolução espectral. Becker (2009),
Artigas and Pechmann (2010) e Villa et al. (2013) apresentaram tra-
balhos com dados coletados através desta plataforma. Já as aeronaves
não tripuladas permitiram uma nova metodologia de sensoriamento re-
moto chamada de low altitude remote sensing. O interesse nessa abor-



dagem está crescendo principalmente devido ao seu custo, segurança e
possibilidade de coleta de dados com alta resolução espacial. Conse-
quentemente, recentemente, vários trabalhos propuseram novas técni-
cas de mapeamento de Phragmites com base nessa metodologia. Dentre
eles, Samiappan et al. (2016b) e Casagrande et al. (2017) apresentaram
soluções que podem ser considerados o estado da arte no escopo deste
trabalho. Neste trabalho tentou-se responder a seguinte pergunta de
pesquisa: Como desenvolver uma nova solução para mapear Phragmites
australis usando imagens de alta resolução no espectro do visível, cole-
tadas através de uma aeronave não tripulada, através do uso de técnicas
de análise de textura e aprendizagem de máquina que consiga reduzir
o erro espacial e o custo computacional?

OBJETIVOS

O objetivo geral deste trabalho é desenvolver um framework eficiente
para mapeamento de Phragmites australis usando dados coletados por
sistemas aéreos não tripulados através de um sistema de classificação
fundamentando em análise de textura e aprendizagem de máquina.
Para atingir tal objetivo, visa-se melhorar a precisão geral do mapea-
mento, reduzir o custo computacional através de uma implementação
fundamentada na General-purpose Graphics Processing Unit e com-
parar as precisões de mapeamento e a eficiência computacional dos
métodos propostos com o estado da arte.

METODOLOGIA

O framework proposto neste trabalho pode ser resumido em seis eta-
pas: Antes da extração de características, extração de características
fundamentadas na textura, seleção dos conjuntos, ajuste de parâmetros,
classificação através de aprendizagem de máquina e a pós-classificação.
Neste caso, considerando-se que as combinações precisavam ser avali-
adas, uma etapa adicional foi posicionada após a pós-classificação. A
etapa de ajuste dos parâmetros, a implementação de parte das soluções
utilizando os recursos da Graphics Processing Unit e o estudo de difer-
entes arquiteturas de redes neurais artificiais são diferenciais deste tra-
balho. Na primeira etapa da solução, a informação geográfica do mo-
saico gerado é armazenada, a imagem é dividida em blocos de 100x100
pixels e estes blocos são convertidos de red-green-blue para escala de



cinza. Tal divisão de blocos resulta em aspectos positivos e negativos
para o sistema. Além de reduzir o tempo computacional por não re-
alizar uma classificação por pixel, a informação espacial dos blocos é
essencial para a etapa de classificação. Porém, o uso de blocos preju-
dica a acurácia geral do sistema em situações específicas. Após, quatro
técnicas de análise de textura foram testadas na etapa de extração de
características, sendo: Grey Level Co-occurrence Matrix, Gabor Filters,
Segmentation-based Fractal Texture Analysis e Wavelet Texture Analy-
sis. Estas técnicas também foram utilizadas no trabalho de Samiappan
et al. (2016a). Cada uma destas técnicas tem suas especificidades que
podem contribuir ou não para o resultado final do sistema. Após, neste
caso específico, os dados extraídos são divididos entre treinamento, teste
e validação. Primeiro, 10% de todos os blocos são selecionados para
a etapa de ajuste dos parâmetros. Os outros 90% são utilizados para
validação. Destes 10%, 80% dos blocos são então utilizados para treina-
mento e os outros 20% para teste. Neste trabalho, três arquiteturas de
rede neural artificial foram analisadas: multilayer perceptron, probabilis-
tic neural network e radial basis function network. Na primeira arquite-
tura, utilizou-se o algoritmo de treinamento Levenberg-Marquard. Já
na radial basis function network, utilizou-se o treinamento fundamen-
tado em dois estágios: k-means para definição dos centros e o método de
equações normais para otimização dos pesos. Após a etapa de definição
dos conjuntos, ocorre a etapa de ajuste dos parâmetros. Neste caso,
dois algoritmos foram utilizados: Algoritmo busca em grid e algoritmo
genético. O primeiro foi utilizado para identificar o sigma do algoritmo
probabilistic neural network. Já o segundo foi utilizado com as outras
duas arquiteturas. Em ambos os casos, o espaço de busca foi o fator
decisivo. Após este processo, ocorre então a predição de classe para os
blocos não identificados e os dados salvos na etapa de pré-extração são
utilizados para geração de um arquivo shape. Seis parâmetros foram
computados para avaliar o sistema: kappa, overall accuracy, agree-
ment, commission error e omission error. Algumas das combinações
dos algoritmos cidatos foram também implementados visando a Graph-
ics Processing Unit.

RESULTADOS E DISCUSSÃO

O estudo de avaliação foi realizado com imagens adquiridas no delta
de Pearl River localizado no sudeste da Louisiana e no sudoeste do
Mississippi, Estados Unidos da América. A área total foi dividida em



duas imagens. Os dados foram coletados por meio de uma aeronave não
tripulada a prova d’água com uma Canon Rebel EOS SL1. As missões
de coleta de dados foram conduzidas a 300 metros de altura, com 50%
de sobreposição lateral e 70% de frente. A resolução espacial final ficou
em 5cm/pixel. Para o processo de validação dos resultados, um mapa
de referência foi gerado por especialistas na área através de dados co-
letados em solo e inspeção visual. Os resultados visuais das soluções
aqui propostas foram gerados através de implementação no MATLAB.
Já para a comparação entre as implementações na Central Process Unit
e na Graphics Processing Unit, os algoritmos foram implementados em
C. Com os valores estatísticos e os mapas gerados, pode-se observar
que existe um trade-off entre Phragmites agreement e não Phragmites
agreement. Tal fato é principalmente causado pela proporção e as in-
stâncias utilizadas no conjunto de treinamento de cada classificador.
Além disso, observou-se que as principais fontes de erro são: Transição
entre Phragmites e não Phragmites, mistura de vegetações e reflexão da
lux no rio. A primeira fonte de erro é causada pela abordagem de blo-
cos utilizada. Já a segunda fonte de erro, apesar de não tão comum, já
era esperada neste trabalho. O mesmo problema foi relatado em vários
trabalhos relacionados. O terceiro problema aconteceu apenas com
as soluções baseadas em características extraídas através das técnicas
Grey Level Co-occurrence Matrix, Gabor Filters e Segmentation-based
Fractal Texture Analysis. A granularidade apresentada por Phragmites
foi o principal fator responsável por tal problema. Para a imagem I,
os melhores resultados foram obtidos com a combinação wavelet trans-
form analysis com probabilistic neural network. Neste caso o valor
final para o kappa ficou em 0.9113 e para a overall accuracy ficou em
97.8%. Já para a imagem II, os melhores resultados foram obtidos
com a combinação Segmentation-based Fractal Texture Analysis com
probabilistic neural network. O valor final de kappa ficou em 0.9362 e
para a overall accuracy ficou em 99.2%. Apesar destes problemas de-
scritos, as melhores combinações apresentaram mapas com alto nível de
confiabilidade. Identificou-se também que probabilistic neural network
apresentou dominância sobre as outras estruturas em praticamente to-
das as combinações e que as técnicas Segmentation-based Fractal Tex-
ture e wavelet transform analysis demonstraram um maior potencial
quando comparadas as outras técnicas. Dois fatos podem ser concluí-
dos da comparação entre as implementações na Central Process Unit
e na Graphics Processing Unit : Primeiro, a implementação na Cen-
tral Process Unit conseguiu reduzir drasticamente o tempo médio por
quilometro quadrado quando comparado com as soluções propostas no



MATLAB. Neste caso, o tempo final para a imagem I ficou em 10 minu-
tos. Em segundo lugar, a implementação da Graphics Processing Unit
para este problema é viável e reduziu consideravelmente o tempo de
processamento necessário para gerar um mapa.

CONCLUSÃO

Neste trabalho se apresentou um estudo comparativo de técnicas de
análise de textura e de aprendizagem de máquina para classificação
de Phragmites australis em imagens de alta resolução no espectro do
visível. Além disso, implementações na Graphics Processing Unit foram
propostas visando reduzir o tempo computacional. Para maior con-
sistência na comparação, os mesmos dados apresentados por Samiappan
et al. (2016a) foram utilizados neste trabalho. O estudo experimental
demonstrou que as combinações de Segmentation-based Fractal Texture
ou wavelet transform analysis com probabilistic neural network resul-
taram em mapas com maiores níveis de confiabilidade. Além disso, o
tempo computacional necessário para gerar o mapa foi reduzido dras-
ticamente com a implementação na Graphics Processing Unit. Este
resultado já era esperado, pois a solução proposta pode ser facilmente
paralelizada.

Palavras-chave: Análise de textura em imagens, aprendizado de má-
quina, Phragmites, avião não tripulado, Imagens de espectro visível.





ABSTRACT

Phragmites australis (common reed) commonly found in the coastal
wetlands can rapidly alter the ecology by outcompeting with natives
for space and resources. In addition, this type of vegetation presents a
navigation hazard to smaller boats by impairing visibility along shore-
lines and around bends of canals and rivers. Management efforts target-
ing non-native Phragmites rely heavily on accurately mapping invaded
areas. However, mapping Phragmites represents a unique challenge
for different reasons. Identifying and mapping Phragmites can help re-
source managers to restore affected wetlands. In this work, four feature
extraction methods were tested: gabor filters, grey level co-occurrence
matrix, segmentation-based fractal texture analysis, and wavelet tex-
ture analysis. These algorithms were combined with three artificial
neural network architectures: multilayer perceptron, probabilistic neu-
ral network, and radial basis function network. In addition, aiming
to reduce the computational cost, a graphics processing unit imple-
mentation of the best result was performed. Evaluation study was
conducted with imagery acquired in the delta of Pearl River located in
southeastern Louisiana and southwestern Mississippi, United States of
America. In comparison to state-of-art results, wavelet texture anal-
ysis with probabilistic neural network and segmentation-based fractal
texture analysis with probabilistic neural network presented presented
improvements in several statistical variables such as overall accuracy
and kappa value. Furthermore, the Phragmites agreement increased
considerably. We show that the remaining omission and commission
errors are generally located along boundaries of patches with Phrag-
mites, which reduces unnecessary efforts for resource managers while
searching for nonexistent patches.
Keywords: Image Texture Analysis, Machine Learning, Phragmites,
low altitude remote sensing, visible spectrum imagery.
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1 INTRODUCTION

Phragmites australis (Cav.) Trin. ex Steud. (common reed) is a
perennial grass species that is found on every continent except Antarc-
tica. In the United States, it is found in the 48 contiguous states (M
LAPIN B, 1994). This vegetation type is hollow, rigid and it has woody
stems. It has a vigorous root system called rhizomes and can grow
up to 4.8m with an average height of 3.6m in brackish and freshwater
wetlands. It has the potential for propagation through sexual reproduc-
tion, seed germination, or vegetative reproduction through the rhizomes
(KETTENRING et al., 2009).

According to historical records (NIERING; WARREN; WEYMOUTH,
1977; GOMAN; WELLS, 2000), Phragmites is native to the North Amer-
ican continent. However, its distribution and abundance has increased
dramatically over the past 150 years, mainly because of human dis-
turbance of the landscape and introduction of novel genetic lineages
(SALTONSTALL, 2002, 2003). As reported by (SALTONSTALL, 2002),
there are 14 Phragmites haplotypes, where 11 are native and 3 non-
natives (Haplotypes M, L and I). These non-natives were most likely
introduced from populations originating in Europe or Asia.

Native Phragmites were not historically found on the Gulf Coast
of the US (SALTONSTALL et al., 2005). In this region, the non-native
haplotype I is predominant (SALTONSTALL, 2002, 2003). Unlike its na-
tive counterpart, invasive Phragmites creates dense, near mono-specific
stands that outcompete native vegetation (KETTENRING et al., 2009). It
alters considerably the invaded environments, posing a threat to biodi-
versity, water resources, and human and animal well-being. Phragmites
invasions are frequently associated with decreases in plant biodiversity
(BERTNESS; EWANCHUK; SILLIMAN, 2002), declines in habitat quality
for fish and wildlife (CHAMBERS; MEYERSON; DIBBLE, 2012), disrup-
tions to biogeochemical cycles (MEYERSON; CHAMBERS; VOGT, 1999)
and other ecosystem services.

In addition to these biological impacts, this invasive plant is
responsible for social impacts, such as: it is a navigation hazard by
reducing visibility; it is a fire danger for nearby residents mainly by
the plant material that dies during each fall creating concentrations of
tinder-dry vegetation; it reduces the value of the property by infesting
the landowners area; it blocks access to the water for swimming, fishing,
and other recreation activities; and it obscures views of landowners,
nearby residents, and visitors, among others. As a consequence, there
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is a growing interest in controlling this type of invasive vegetation.
Between 2005 and 2009, private and public conservation organizations
in the United States spent more than 4.6 million per year on Phragmites
removal (MARTIN; BLOSSEY, 2013).

The main tools used by the resource managers to reduce or mit-
igate the impact of invasive Phragmites are mowing, cutting, burning,
grazing, and mainly herbicides (MARTIN; BLOSSEY, 2013; HAZELTON
et al., 2014). However, in order to apply any control methods, it is
first necessary to map the locations of this vegetation quickly and ac-
curately. This process of precise mapping presents a unique challenge,
mainly because there is no pattern to spawn new stands and the per-
vasive spread of common reed in wetlands.

Multiple methods can be used to map the vegetation. Walk-
ing around or through Phragmites stand with a GPS unit to manually
map this vegetation is one of the simplest methods. However, wetland
environments have poor accessibility due to dense, tall, emergent veg-
etation and varying depths of water, making fieldwork impossible or
impractical for large areas (LANTZ; WANG, 2013). In addition, it can
be dangerous to field crew members due to the cited aspects, dangerous
wildlife, or insect-borne diseases. Considering the fast propagation and
the actual spreading stage of Phragmites, this process of manually map-
ping is impractical. As a consequence of all challenges involving this
mapping method, several authors proposed the use of remote sensing
platform to solve this problem.

Remote Sensing (RS) can be defined as the practice of deriving
information about the Earth’s land and water surfaces using images
acquired from an overhead perspective, using electromagnetic radia-
tion in more than one spectrum region, reflected or emitted from the
Earth’s surface (CAMPBELL, 1996). It provides an alternative method
for acquisition of data which can help to reduce costs, labor, and save
time relative to field work. Different remote sensing platforms can pro-
vide the possibility to acquire data from different spatial and temporal
resolutions. The spatial resolution, that is the on the ground size of
a single pixel, can range from sub-centimeters to several kilometers.
High-resolution aerial images may be more feasible to discern individ-
ual landscape features, such as scattered weeds (LAMB; BROWN, 2001).
The temporal resolution that is the time between image acquisition
events, can vary between years, weeks, days, or less. Each remote sens-
ing platform has its own limitations in relation to the time resolution,
and, considering that this plant can colonize even small patches of dis-
turbed soils very quickly (KETTENRING et al., 2009), a small temporal
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resolution is important for the mapping process as well. All these re-
mote sensing characteristics create the possibility of a wide range of
applications for mapping this specific type of vegetation.

The most common remote sensing platforms are the satellite,
manned aircraft, and unmanned aircraft. The analysis based on im-
agery acquired by high-resolution sensors mounted on planes or satel-
lites can be relatively expensive (ANDERSON; GASTON, 2013). Poor
spatial resolution of satellite or aircraft captured imagery restricts the
ability to delineate and map small Phragmites patches. Additionally,
for free satellite imagery, the rate of orbit and time to market for im-
agery may not be feasible for resource manager goals. Consequently,
reestablishment of a Phragmites stands after management efforts may
go unnoticed until satellite imagery is updated. Manned aircraft is an
alternative to satellites, but can be prone to pilot error during image
collection. Moreover, it can be costly and may have a lower spatial reso-
lution than what is needed. To overcome these drawbacks, in this work
the data was acquired using a Low Altitude Remote Sensing (LARS)
approach with a small UAS. According to Anderson and Gaston (AN-
DERSON; GASTON, 2013), UAS can offers to ecologists a promising route
to responsive, timely, and cost-effective monitoring of environmental
phenomena at spatial and temporal resolutions that are appropriate to
the scales of many ecologically relevant variables. Recently, Samiap-
pan et al. (2016a) and Casagrande et al. (2017) presented a method for
mapping regions with Phragmites based on true-color high-resolution
imagery acquired with UAS. In the first work, the authors investigated
the use of four texture analysis methods, GF, GLCM, SFTA, andWTA,
with Support Vector Machine (SVM). Among the approaches in their
investigation, they showed that the combination of GLCM with SVM
provided the best result. Casagrande et al. (2017) showed that WTA
with PNN presented improvements in several statistical variables such
as overall accuracy and kappa value. These works can be considered
the state-of-art in the scope here specified.

Considering that in this work was investigated the use of true-
color high-resolution imagery acquired by a low altitude remote sensing
platform, it is known that the computational methods used to map
Phragmites play an essential role in the system accuracy. Recognizing
this context, it was formulated the research question for this work:
How to develop a new solution for mapping Phragmites australis, using
low altitude remote sensing images acquired in the visible spectrum,
through the use of texture analysis and machine learning techniques,
capable of reducing the computational cost and spatial error?
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1.1 OBJECTIVES

This section presents the general and specifics objectives of this
work.

1.1.1 General

Develop an efficient framework for mapping Phragmites australis
using low altitude remote sensing data acquired by a unmanned aerial
systems through a classification system based on texture analysis and
machine learning.

1.1.2 Specifics

• Improve mapping overall accuracy in true-color high-resolution
imagery using binary classifiers and texture analysis techniques;

• Compare the mapping accuracies and computational efficiency of
existing methods;

• Reduce the computational cost through a General-purpose Graph-
ics Processing Unit (GPGPU) based framework implementation;

1.2 HYPHOTESIS

Use an ANN architecture with parameter optimization aiming
to improve classification overall accuracy and implement the texture
analysis and machine learning algorithms in the GPU aiming to reduce
the computational cost.

1.3 JUSTIFICATION

The interest in ANN has been motivated by growing knowledge
about the human brain (HAYKIN, 2003). This technique presents few
advantages over other techniques, such as the large capacity for general-
ization (BENARDOS; VOSNIAKOS, 2007), less formal statistical training
to develop, implicitly detect complex nonlinear relationships between
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independent and dependent variables, ability to detect all possible in-
teractions between predictor variables (TU, 1996). In addition, ANN
approach has a distinct advantage over statistical classification meth-
ods, where it is non-parametric and require little or no a prior knowl-
edge of the distribution model of input data (GANATRA et al., 2011).

As a consequence of all advantages, this technique is being widely
used in a large number of applications, such as classification (THAKUR;
MISHRA, 2017), pattern recognition (JALI et al., 2015), control systems
(SRINIVASARAO; SREENIVASAN; SHARMA, 2016), among others. In re-
mote sensing, ANN is being used mainly to improve the classification
accuracy, such as (LIWA, 2006; YUAN; WIELE; KHORRAM, 2009). In
(LIWA, 2006), the authors used an ANN to classify coastal marshes
based on the phenological stages of plants. In (YUAN; WIELE; KHOR-
RAM, 2009), the authors proposed an automated ANN system for land
use/land cover classification.

In a direct comparison between SVM, which was used by (SAMI-
APPAN et al., 2016a), and ANN, there is no consensus about which
method will perform better for a specific problem. Some authors argue
that SVM can present better results in a greater amount of problems
since it is a very efficient and stable algorithm (AKANDE et al., 2014;
SINGLA et al., 2011). In addition, these authors argue that ANN con-
verge to local minima, considering that the optimization objective of
ANN is multimodal in nature (AKANDE et al., 2014). Another argu-
ment that is commonly used against ANN is the difficult to settle its
architecture a prior (HAYKIN, 2011), and, as a consequence, it tends to
converge to local solutions too. As a counterpoint to these arguments,
several authors have already proposed ways to solve or minimize the
problems mentioned through optimization techniques (GANATRA et al.,
2011; GARRO; VÁZQUEZ, 2015; BENARDOS; VOSNIAKOS, 2007). In addi-
tion, there are several works that presented comparisons between both
classifiers in different data sets, where ANN presented a better result, as
in (BELAKHDAR et al., 2016; PATEL; VALA; PANDYA, 2014; ANTKOWIAK,
2006). That is, both techniques have a great potential mainly in bi-
nary classification problems, but there is no clear pattern in which one
of these two specific techniques will perform better. Considering that
Phragmites maps reliability is essential for the resource managers, new
solutions must be investigated, and among all techniques, ANN was
chosen since it can offer the possibility of a better perform.

In addition to accuracy, the computational cost necessary to gen-
erate the map is an important factor to be considered. In (SAMIAPPAN
et al., 2016a), the authors argued that the overall processing time per
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square kilometer of their solution based on GLCM and SVM was ap-
proximately 50 min. Considering that this work will implement the
same texture analysis methods described in (SAMIAPPAN et al., 2016a),
the main difference is the classification algorithm. The optimization
process, that is necessary to overcome the issues related to the ANN,
is a process that has a high computational cost as well. Consequently,
it is known that this solution based on optimized ANN probably will
have a higher overall processing time per square kilometer considering
a CPU implementation.

An alternative to reduce computational time, even using an ar-
tificial neural network, is to consider a GPU implementation of the
proposed solution. According to (NVIDIA, 2017), CUDA is a parallel
computing platform and programming model that harness the power
of the GPU. As reported by (CHE et al., 2008), GPU can offer extensive
resources, such as massive parallelism, high memory bandwidth, and
general purpose instruction sets, including support for both single- and
double-precision floating point arithmetic. As demonstrated by (CHE
et al., 2008; JAROS; POSPICHAL, 2012) GPU implementation through
CUDA obtained impressive speedups if compared to CPU implementa-
tion. In (CHE et al., 2008), the authors proposed the implementation of
speckle reducing anisotropic diffusion and HotSpot, ANN Backpropa-
gation, data encryption standard, Needleman–Wunsch global optimiza-
tion, and k-means clustering. They described a speedup of 6 times in
the ANN Backpropagation implementation if compared to GPU imple-
mentation. In (JAROS; POSPICHAL, 2012), the author proposed a fair
comparison between CPU and GPU running the GA under Knapsack
Benchmark and the GPU implementation achieved a speedup of 11,82
times. Furthermore, considering that the proposed solution split the
original image into sub-images of 100 x 100 pixels and there is not a
strict relation between these blocks, they can also be processed in par-
allel. Consequently, a CUDA implementation of the proposed methods
is an alternative that will be investigated to reduce the necessary com-
putational time to map Phragmites.

1.4 METHODOLOGY

Aiming to achieve the described objectives (Section 1.1), this
work was developed by the following steps:

1. Do an exploratory bibliographical research in two main focus:
Texture analysis and machine learning techniques, and solutions
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to map Phragmites based on remote sensing;

2. Implement feature extraction and binary classifier methods cho-
sen through step 1;

3. Optimize the parameters for the feature extraction methods. In
this step will be used the same data described in step 4. Overall
accuracy will be used for the parameter assessment;

4. Compare the maps generated from the proposed solution to the
state-of-art, considering the kappa coefficient (κ);

5. Implement the proposed algorithms in the using CUDA aiming
to reduce the computational cost;

6. Evaluate the GPU and CPU implementations considering the
computational cost.

1.5 WORK STRUCTURE

This work is structured in 6 (six) chapters, including the intro-
ductory chapter (Chapter 1).

Chapter 2 presents the background knowledge necessary for this
work. In addition, a resume about the main works published in the least
fifteen years about methods for mapping of Phragmites using remote
sensing is presented.

Chapter 3 describes the study area, the materials, and the method-
ology used in the image acquisition process. In addition, the ground
reference map used in the evaluation step was presented.

Chapter 4 describes the pre-extraction and feature extraction
steps used in this work. The four methods proposed are detailed in
this chapter. In addition, the GPGPU implementation is discussed in
details.

Chapter 5 will follow the same sequence described in chapter 3.
However, instead of feature extraction algorithms, in this chapter will
be defined all necessary steps to develop the binary classifiers techniques
used in this work.

Chapter 6 will discuss and present the obtained results. First, a
comparative study based on the spatial error between the techniques
will be detailed. Then, the maps generated from the best combination
will be presented. Finally, the computational cost is presented.

Finally, in chapter 7 this work will be concluded, highlighting
the main contributions and opportunities for future work.
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2 BACKGROUND

The process of data acquisition is an essential step for the solu-
tions that are being proposed in this work. Low quality or non-standard
data sets can drastically compromise the system accuracy. This fact
can be explained by the system’s dependence on the level of detail of
the texture to be analyzed. That is, before the system itself, the re-
source manager must think about the equipment and methodology to
be used for the data acquisition. Considering that, understanding the
basic principles of remote sensing is as important as understanding the
specificities of the solutions proposed here. In the following sections,
the basic concepts needed to understand the solution and the image
acquisition process are presented together with an analysis of the main
related works.

2.1 REMOTE SENSING

There are two main categories of spatial data acquisition:

1. Ground-based methods: In-situ measurements, land surveying,
field observation, among others is the operation in real world
environment.

2. Remote sensing methods: Based on the data acquisition through
sensors such as aerial cameras, radar or scanners. The informa-
tion is derived from the data acquired through the sensors, which
has a limited representation of the real world.

RS has been defined in many different ways by different authors,
being the definition made by Campbell (1996) was adopted in this work.
RS can be applied in many fields, including architecture, medicine, in-
dustrial quality control, robotics, etc. This work, however, is focused
on the earth observation. As described in the introduction, although it
has some negative aspects associated with the process of remote sens-
ing, this methodology guarantees a good number of advantages. In
some cases, the use of remote sensing is essential to make an applica-
tion feasible. For example, although it is possible to map Phragmites
using ground-based methods, it is not feasible mainly by the associated
hazards and the total area to be covered.
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2.1.1 Historic Context

Remote sensing of application started in 1859 by Gaspart Tour-
nachon that took an oblique photograph of a small village near Paris
from a balloon (AGGARWAL, 2003). He was responsible to start a trig-
ger. After this first report of data acquisition through any platform,
other people all over the world followed this example. New reports
emerged from the Civil War and World War I. During these war pe-
riods, new technologies have emerged and developed remote sensing.
Aircraft instead of balloons were tested during the World War I, for
example. The military discovered that aircraft proved to be more re-
liable and more stable platform for earth observation than balloons
(AGGARWAL, 2003).

As described by Aggarwal (2003) the civilian officially started
to use remote sensing between the World War I and World War II.
First applications of airborne photos in that time are geology, forestry,
agriculture and cartography. These new applications helped to develop
new technologies. New types of data acquisition spanned, such as near
infrared, thermal infrared, and radar. After the wars, the color in-
frared emerged as well. In the 60s, data were already collected from
space (NASA, 2017). In 1956, Colwell published the first reports of an
important non-military use of color infra-red film and conducted exper-
iments for the classification and recognition of vegetation type and the
detection of diseases and damaged or stressed vegetation (COLWELL,
1956). From this point, remote sensing maintained a good level of de-
velopment and use. Today, this method is increasingly being used for
problem-solving. Refer to (AGGARWAL, 2003) for more details about
remote sensing history.

2.1.2 Electromagnetic Energy

In most situations, RS relies on the measurement of electromag-
netic energy. Unless it has a temperature of absolute zero (−273◦C)
an object reflects, absorbs, and emits electromagnetic radiation in a
unique way, and at all times (NASA, 2017). This energy, that is emit-
ted in waves, originates from vibrating electrons, atoms, and molecules.
They absorb and emit electromagnetic radiation in unique combina-
tions, called spectral signature. The entire array of electromagnetic
waves comprises the electromagnetic spectrum.

Wavelength and frequency are two characteristics of electromag-
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netic waves that are important for remote sensing. Wavelength is the
distance between successive wave crests. Frequency is the number of cy-
cles of a wave passing a fixed point over a specific period of time. Mostly
the wavelength is usually used to describe specific places in the electro-
magnetic spectrum where the object emits more energy. The amount
of energy radiated by an object depends on its absolute temperature,
emissivity and is a function of the wavelength (JANSSEN; HUURNEMAN,
2001).

In RS, data acquisition can be active or passive . In the active
methodology, the equipment has its own source of energy, such as radar
and laser, where it emits its energy and measures the amount of energy
reflected back. The passive technique uses natural source of energy. In
the specific case that the source of energy is the sun, this technique
can work only during daylight. This work uses only true-color imagery,
consequently the sensor used is passive. Figure 1 shows a demonstration
of the cited methodologies.

Figure 1 – Active and Passive techniques. The first has its own source
of energy and can be used at any time. The second depends on external
sources of energy, and in some cases, can be used just during daylight.

Source: Image from Janssen and Huurneman (2001).

2.1.3 Energy Interaction with the Earth’s Surface

In the scope of the application being proposed in this work, the
reflected solar energy is the most important information since it helps
to describe surface characteristics. In soil and water applications, part
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of the energy is reflected, absorbed and even transmitted. Absorption
occurs when radiation is absorbed by the object, whereas transmission
occurs when radiation pass through the target. According to Janssen
and Huurneman (2001), reflection can be further divided into two types:

• Specular reflection: occurs when the surface is smooth and almost
all of the energy is directed away from the surface as a mirror-like
reflection;

• Diffuse reflection: occurs when the surface is rough and the energy
is reflected almost to all directions.

Figure 2 – Response of 14 different wetland plant species and bandwidth
of each spectral band of sensor. As related by Samiappan et al. (2016b),
the imagery has three visible bands blue (480 nm), green (560 nm), and
red (670 nm), as well as red-edge (720 nm) and near-infrared (840 nm)
bands. Despite the near spectral signatures, the difference between
plants is perceptible.

Source: Image from Samiappan et al. (2016b).

In nature, it is common to find a mix of both types of reflections.
The energy that reaches the surface is called irradiance and the reflected
radiance. Each object has its own spectral signature. This spectral
signature can be established through the reflectance of the object. In
the application here proposed, this type of information can drastically
modify the proposed solution, because the higher the spectral resolution
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is, the lower the level of difficulty for the classification process. Figure
2 shows an example of different spectral signatures.

2.1.4 Digital Images

Images constitute a spatial distribution of the irradiance at a
plane (JäHNE, 1997). A basic monochromatic image is usually a func-
tion of two spatial variables f [x, y], which represents the brightness f
at the Cartesian location [x, y]. This idea can be extended to three
dimensions, with brightness displayed in the z-axis (EASTON, 2017). A
real image, however, has a higher level of representation complexity,
where time and spectral descriptors can also be used to represent the
information being captured.

It is known that until the present moment computers cannot
handle continuous images, but only arrays of digital images. Sampling
and quantization are the two processes used to converter this continuous
data captured through a sensor in a digital image, where quantization
is the process of digitizing the average irradiance and sampling is the
process of digitizing the values of the coordinates.

The quantization capacity is an important factor for the distinc-
tion of different irradiance levels. For example, a 16 bits irradiance
value can be represented in 65536 different ways while an 8 bits value
in only 256 ways. In solutions where classification is strongly related
to the spectral signature of objects, the quantization capability is es-
sential to better distinguish objects with close signatures. However,
considering that this work is based on texture feature analysis, even
more important than the quantization capacity is the sampling capac-
ity.

The size of the region that the pixel represents, determines the
level of detail of the data acquired. There is no specific rule to define
how many points (pixels) an image must have to represent a data, but
a general rule used is that, for a specific task, the pixel size should
be smaller than the finest scale of the objects in study. The sampling
capacity is an essential factor to define the size of the region, that is,
the spatial resolution.

In remote sensing, a common way to define the spatial resolution
of a sensor is called GSD. This measure is the distance, in field units,
between the centers of two neighboring detectors, i.e. two neighboring
pixels on the image (ORYCH, 2015). For example, in an image with a
ten-centimeter GSD, adjacent pixels image locations are 10 centimeters
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apart on the ground. The definition of this setting directly determines
how sharp the final data will be, as demonstrated in Figure 3.

Figure 3 – Comparison between images with different GSD. (a) UAV
imagery with GSD of 4cm, (b) Manned aircraft with GSD of 50cm.

(a) (b)

Source: Images from authors.

In this work, GSD is defined according to 2.1 (PIX4D, 2017).

GSD =
Sw ∗H ∗ 100

FR ∗ ImW
(2.1)

Where H is the height at which the sensor is located relative to the
object under analysis in meters, Sw is the sensor width in millimeters,
FR is the focal length in millimeters, and ImW the image width.

2.1.5 Sensors and Platforms

The measurements of this energy are made by sensors that are
attached to remote platforms. Different types of sensors can be used
for different types of applications. In addition, the platform and its
specificities can modify important parameters that are essential for the
development of the solution, such as final spatial resolution and quality
of the data acquired. That is, the sensor-platform combination deter-
mines essential parameters of the resulting image data.

There is a growing community studying and discussing differ-
ent approaches to map Phragmites australis efficiently. Accordingly to
Mozdzer and Zieman (2010) Phragmites is one of the most widely re-
searched plant species because of its perceived benefits and/or threats
to ecosystem health and services. In addition, it often spans multi-
ple years and multiple spatial scales, from small individual patches to
whole landscapes (ADAM; MUTANGA; RUGEGE, 2009). Consequently,
there is a wide range of possible solutions and already proposed works
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aiming to map this specific type of vegetation using remote sensing.
One platform that has been widely used for Phragmites mapping

is the satellite. Its higher coverage capacity, lower post-processing de-
pendence, and speed to acquire the data are important features used to
justify its use. In (GILMORE et al., 2008; LANTZ; WANG, 2013; PENGRA;
JOHNSTON; LOVELAND, 2007; BOURGEAU-CHAVEZ et al., 2013; VILLA et
al., 2013), different combinations of satellite-sensors were used aiming
reduce the platform’s drawbacks and achieve a solution with higher ac-
curacy. Gilmore et al. (2008) suggested the use of the QuickBird Satel-
lite with a five-band data (panchromatic, blue, green, red, and near IR)
with 65cm/pixel of spatial resolution for the panchromatic band and
2.62m/pixel for the other bands at nadir. In addition, they opted for
a laser-based sensor scanner for height identification of objects. Lantz
and Wang (2013), hypothesized that the eight multispectral bands and
the panchromatic band possessed by the Worldview-2 satellite would
increase classification accuracy if compared to the traditional satellites
with only four multispectral bands. This hypothesis is totally based on
the spectral signature potential. In this case, the spatial resolution is
0.46m for the Panchromatic and 1.84m for the other eight multispec-
tral bands at nadir. Pengra, Johnston and Loveland (2007) further
explored this aspect of spectral signature and proposed the use of 30m
resolution EO-1 Hyperion hyperspectral sensor to create a raster map of
this kind of vegetation using a Spectral Correlation Mapper algorithm.
Two important aspects to highlight in this work: small spatial and
high spectral resolution. In Bourgeau-Chavez et al. (2013), the authors
proposed a new combination of satellite-sensor based on multi-season
Radar data. In this work besides the spatial and spectral context, the
temporal context plays an essential role in the system.

Another platform that is commonly used to acquire data and
map invasive plants is manned aircraft, as demonstrated in (BECKER,
2009; ARTIGAS; PECHMANN, 2010; VILLA et al., 2013). The data ac-
quired through this platform generally has a higher spatial resolution
than satellites. Becker (2009) and Artigas and Pechmann (2010), for ex-
ample, proposed the use of high-resolution hyperspectral data collected
through a light aircraft to classify Phragmites. Villa et al. (2013) pro-
posed a more robust solution based on multitemporal and multisensor
remote sensing datasets to monitor the conservation status and to as-
sess the morphological complexity of Phragmites australis. In the first
and second data acquisition, the authors proposed the use of airborne
hyperspectral data. The first data has a spatial resolution of 1m and
the second 2m. After, data was acquired using satellites (GeoEye and
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Worldview 2). The first acquired 4 bands (blue, green, red, and near
IR) with a spatial resolution of 1.7m and the second 8 bands (coastal,
blue, green, yellow, red, red edge, near infrared 1, and near infrared 2)
with a spatial resolution of 1.9m.

The recent development of UAVs allowed a new methodology of
remote sensing called LARS. The interest in this approach is growing
mainly due to its cost, safety, and very-high resolution data. Conse-
quently, recently, several works have proposed new Phragmites mapping
techniques based on this methodology. Considering that the spectral
signature is essential to segment the objects, some authors proposed
the use of sensors capable to acquire data out of the visible spectrum,
as demonstrated in (SAMIAPPAN et al., 2016b; ZAMAN; JENSEN; MCKEE,
2011). Zaman, Jensen and McKee (2011) used four band data (visible
and near infrared) with high-resolution (25cm/pixel) data to identify
Phragmites locations. Samiappan et al. (2016b) proposed the use of a
five band multispectral data (red, green, blue, red edge, and near in-
frared) with a digital surface model in 8cm/pixel data. Other authors
consider that the high spatial resolution could be enough to propose
solutions to map this vegetation, as demonstrated in (HUSSON; ECKE;
REESE, 2016; SAMIAPPAN et al., 2016a; CASAGRANDE et al., 2017). In
all cases, the authors used a spatial resolution of 5cm/pixel.

2.2 PATTERN RECOGNITION

Despite having a long history, Pattern Recognition (PR) began
to evolve in the 1960s. Before it, most of the contributions to the area
were proposed aiming theoretical advances in statistics. The advent
of computers increased the demand for practical applications of PR.
This field is concerned with the design and development of systems
that recognize patterns in data. In a more formal definition, PR is
described as the scientific discipline of machine learning whose goal
is the classification of objects into a number of categories or classes
(KPALMA; RONSI, 2007). Pattern, more specifically, is an entity, vaguely
defined, that could be given a name. In other words, pattern can be
described as an entity of interest that someone wants to identify or
recognize. Texture in image, footprint, voice of an individual, and
speech are examples of patterns.

According to Rosenfeld and Wechsler (2000), PR is one of the
most important functionalities for intelligent behavior and it is dis-
played in both biological and artificial systems. Biological organism
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must be capable to understand the data collected and respond appro-
priately for survival. In artificial systems, some form of sensing is used
to identify specific characteristics. For example, a machine may be able
to classify if a ceramic tile is within the norm using visual inspection.
This classification would be based on features extracted from the data
acquired through a sensor, where in this example the data type could be
an image in the visible spectrum. This classification process might fail
by some factors, and if this happens, this data can be saved for further
analysis. This is an example of a pattern recognition application.

Although some authors disagree on the number of steps, the final
process is well defined as demonstrated in (ROSENFELD; WECHSLER,
2000; DUTT; CHAUDHRY; KHAN, 2012; ELIE, 2013). PR approaches are
typically composed of four steps: data acquisition and collection, pre-
processing, feature extraction, and classification. The PR techniques
in this work follow this description.

Data acquisition, that is the process of measuring some specific
signal through a sensor, is an essential step for the final result. Poor
quality and out of specification data can drastically compromise the
result of the solution generated. The background knowledge needed to
understand this work can be found in the previous section.

The pre-processing step is optional. However, this is a desirable
step since operations at this stage may contribute considerably to the
accuracy gain of the system. The most common operations in this
step are: noise filtering and smoothing, data normalization to correct
the data from different errors, and data segmentation to highlight the
pattern from other objects.

Feature extraction methods aim to describe the relevant informa-
tion contained in a pattern. This is a crucial step, since the the correct
choice of feature is the key to system success. According to Elie (2013),
good features must satisfy the three following requirements. First, In-
traclass variance must be small. This means that features extracted
from the same object must be close. Next, interclass separation should
be large, which means that features extracted from different objects
should have some value difference. Third, the dimensionality of the
extracted feature. As a consequence of the complexity associated to a
larger vector, the system’s performance can decrease and the computa-
tional complexity became larger. In this case specifically, pre-processing
operations can be applied aiming to reduce the impact of a complex
data.

After this process, this extracted data must be assigned to a
class. In the classification step, the classification approach attempts
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to define a set of classes and labels for each input value. The number
of possible classes represent the number of possibilities for the object
in analysis; e.g., classify a set of images of fruits that can be oranges,
apples, pears, or bananas. The number of labels represents the number
of proprieties. For example, the shape of the fruit and the color.

PR is generally categorized according to the type of learning
used to generate the output value (ELIE, 2013). There are two different
categories: Supervised learning and unsupervised learning. In the first
case, the methodology needs an training set that consists of a set of
instances that have been labeled. Unsupervised learning, on the other
hand, attempts to find inherent patterns in the data that could be used
to correctly assign the correct class and label for new data instances.

As already described, several applications have already been pro-
posed in order to solve the problem of mapping Phragmites. As pre-
sented in (BROOKS, 2014; LANTZ; WANG, 2013), maximum likelihood
is a common classifier algorithm used, where it assumes that the statis-
tics for each class in each band are normally distributed, calculating
then the probability of a given area belongs to a specific class (SHAFRI;
SUHAILI; MANSOR, 2007). Brooks (2014) proposed the use of this algo-
rithm based on the spectral signature and majority filter to smooth the
result’s noise. She related that distortion, blurring, and inter-mixing
of the vegetation were the main limitations of the proposed solution.
Lantz and Wang (2013) reported a complete solution based on object-
based and per-pixel maximum likelihood classification. The use of dif-
ferent rules for the same object using experimental values of threshold
can be a problem for different applications. However, the use of a spe-
cific processing flow for shadowed objects increased the overall accuracy
of the solution.

Another supervised learning algorithm commonly used in pro-
cesses of Phragmites mapping is spectral angle mapper, as reported
in (PENGRA; JOHNSTON; LOVELAND, 2007; BECKER, 2009; ARTIGAS;
PECHMANN, 2010). This algorithm is a physically-based spectral clas-
sification that uses an n-dimensional angle to match pixels to reference
spectra (SHAFRI; SUHAILI; MANSOR, 2007). In these three papers, the
authors proposed the creation of spectral libraries aiming to identify dif-
ferent classes. After, a pixel-wise classification was performed through
the spectral angle mapper. As shown in the works and considering the
spectral angle mapper characteristics, this algorithm is usually chosen
when the data has a high spectral resolution.

In addition to these alternatives, many authors propose the use
of more than one pattern recognition flow in order to treat each object
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in a specific way, as demonstrated in Bourgeau-Chavez et al. (2013),
Husson, Ecke and Reese (2016). In Bourgeau-Chavez et al. (2013), the
authors presented a solution based on iterative process based on isodata
unsupervised classification. However, in mixed vegetation areas where
Phragmites was heavily confused with other vegetation types, spectral
signatures of identified classes from the isodata unsupervised classi-
fication algorithm were extracted and used for supervised, maximum
likelihood classification. Husson, Ecke and Reese (2016) used three dif-
ferent techniques to generate the map: water versus vegetation using
threshold classification, growth form using threshold classification and
random forest, and dominant taxon classification through random for-
est. In the threshold classification, the thresholds used were determined
empirically based on expert knowledge, limiting the solution’s usage.

Other methods have already been proposed. In Zaman, Jensen
and McKee (2011), the authors used a combination of high-resolution
multi-spectral and temporal data in a multiclass relevance vector ma-
chine algorithm to produce quantitative land cover descriptions that
identify Phragmites locations. Samiappan et al. (2016b), presented a
new approach based on digital surface models, normalized difference
vegetation index, soil-adjusted vegetation index, and morphological at-
tribute profiles with SVM. In (SAMIAPPAN et al., 2016a), the authors
described a comparison between four techniques of texture analysis with
SVM. The tests conducted with GF, GLCM, SFTA, and WTA by the
authors indicated that the texture-based approaches were suitable to
map this kind of vegetation. The main difference between (SAMIAPPAN
et al., 2016b) and Samiappan et al. (2016a) are the features used and
the type of classification. In the first, the authors proposed a pixel-wise
classification. In the second, a block classification. Block classification
approach was proposed by Casagrande et al. (2017) as well, where the
authors presented an improvement in the solution using WTA as tex-
ture analysis technique with PNN instead of SVM.

Although this work proposed the use of the same texture analysis
techniques and PNN that were already reported in previous works, it
differs by:

• Including a parameter tuning step in the execution flow;

• Using and comparig different neural network architectures as bi-
nary classifiers;

• Paralleling the solution on the GPU.

That is, despite having some steps equal to the works considered
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as state of the art, this work proposes modifications in the execution
flow. The modifications aim to produce results that are within the
proposed objectives and confirm the hypothesis described.

2.3 GENERAL-PURPOSE GRAPHICS PROCESSING UNIT

Increasing the processor clock speed has been one of the main
methods to improve the computational capabilities of devices for some
time. However, as described by Simonite (2016), Moore’s law is dy-
ing and other ways must be found to make computers more capable.
Unfortunately, due to various limitations in the manufacturing pro-
cess, the possibility of increasing the clock speed is getting smaller and
smaller. As suggested by International Technology Roadmap for Semi-
conductors, silicon transistors can only keep shrinking for another five
years (COURTLAND, 2016). Increasing parallelism rather than increas-
ing clock rate has become the primary engine of processor performance
growth. This trend is likely to continue (GARLAND et al., 2008).

Today the parallelism capacity of a CPU is much smaller than
that of a GPU. Modern GPUs have been at the leading edge of the chip-
level parallelism. Today a CPU can offer the possibility of a few cores
optimized for sequential serial processing while a GPU has a massive
parallel architecture consisting of thousands of smaller, efficient cores.
This difference is a reflection of the objective of each component. GPU
architectures evolved aiming to handle the needs of real-time computer
graphics, that is a task with tremendous inherent parallelism (GAR-
LAND et al., 2008).

According to Riha and Smid (2011), there are three main tech-
nologies for general purpose programming on GPUs:

• CUDA by NVIDIA;

• BROOK+ from advanced Micro Devices (AMD);

• Open Computing Language (OpenCL), maintained by Khronos
Group.

This work proposes the parallelization of the algorithms in the
GPU through CUDA C extension. The main objective of this program-
ming model is to use the GPU (device) as a coprocessor with its own
Dynamic random access memory (DRAM) memory to the main CPU
(host). NVIDIA describes this process as GPU-Accelerated comput-
ing, where just portions of the application are computed on the device,
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that represents the GPU and the remainder of the code still runs on
the host, that is CPU.

Figure 4 – Representation of a possible application with 2 kernels where
the first was divided into 2x3 blocks with an internal size of 3x5 threads.
That is, there are 6 blocks where each block has 15 threads.

Source: Image from Ding (2017).

The host code manages the memory and the kernels that will be
executed on the GPU, where kernels can be seen as a function which is
executed on the device. However, prior to the GPU memory use, the
kernel must allocate space and copy the data from host to device. After
the use, this data must be copied again to the host. Afterwards, the
host should also free the memory allocated on the device. The host is
the responsible to launch and configure the kernels as well. The kernel
is executed as a grid of thread blocks. A block is a batch of threads that
can share data through a shared memory and that can be synchronized
during the execution flow. Different blocks cannot access the same
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shared memory and the threads cannot be synchronized. Figure 4
shows a possible application where the host started two kernels.

Although all threads and blocks execute the same code, as demon-
strated in Figure 4, they have specific identifications. This creates the
possibility of different behaviors when taking decisions, making com-
putations and accessing the memory for each thread. In the kernel,
the thread, block, and grid information are accessible via the following
constants:

• threadID: Index of the thread in a block. This can be composed to
up to 3 dimensions, where they can be addressed by: threadID.x,
threadID.y, and threadID.z;

• blockID: Index of the block in the grid. It can be composed by one
or two dimensions, where they can be addressed by: blockID.x
and blockID.y;

• blockDim: Number of threads in the block;

• gridDim: Dimensions of the grid in blocks.

Figure 5 – CUDA device memory hierarchy representation.

Source: Image from Ding (2017).
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CUDA supports several types of memory that can be used by the
developers. Each memory type has its specifics and must be correctly
addressed aiming a high compute to global memory access ration. The
possible types of memory in the GPU are: registers and local, global,
constant, texture, and shared memory. For more details about the
memory specifications refer to (RIHA; SMID, 2011). Figure 5 shows a
diagram of CUDA Memory hierarchy.

Each memory type has its own specificities. Global, constant,
and texture can be accessed by the host. Register and local can be
accessed only by a specific thread. All memory types, except for texture
and constant can be accessed for read/write operations. Constant and
texture are read only. Register and shared memory are the unique on-
chip. These characteristics must be taken into account when proposing
a GPU implementation. A poor management can drastically reduce
processing capacity of the system.
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3 STUDY AREA

The study site near Pearlington, Mississippi, United States of
America (USA) was selected to evaluate the proposed technique to map
invasive Phragmites (Fig. 6). The region can be classified as a tidal
freshwater marsh. Such regions are influenced by the daily influx of
tides, yet they have a salinity of less than 0.5 ppt (CRONK; FENNESSY,
2001). This region, that is located in the delta of Pearl River and
drains into the Gulf of Mexico, is one of the most intact river systems
in the southeast USA (TEAM, 2001) with one of the healthiest marsh
complexes in the USA (BIRD; KYLE, 2004). The Pearl River has been
identified as a high priority focus for conservation within the Eastern
Gulf Coastal Plain and Northern Gulf of Mexico eco-regions (BIRD;
KYLE, 2004).

Figure 6 – The study site near Pearlington, Mississippi, USA (about
2600 acres) selected for developing and evaluating techniques to map
invasive Phragmites.

Source: Image from Samiappan et al. (2016a).
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Figure 7 – (I) Desert Island - total area of approximately 574ha

Source: Image from authors.

Figure 8 – (II) Browns Island - total area of approximately 489.35ha

Source: Image from authors.
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Data was collected on 23 September 2014 in the lower Pearl River
basin west of Pearlington, Mississippi north and south of US Highway
90. The analysis was conducted on data collected at two sites: (I)
Desert Island (Figure 7) and (II) Browns Island (Figure 8), with a
total area of approximately 2600 acres (1063 ha).

3.1 IMAGE ACQUISITION

The data was acquired using a waterproof Altavian Nova UAS
that weighs approximately 7 kg with payload, with a 2.7 m wingspan
and 1.5 m length (see Figure 9), and is capable of water landings. This
system can capture data on flights lasting 90 minutes.

The camera used to acquire the images is a modified Canon Rebel
EOS SL1 that captures true color images. The size of the images ac-
quired is 5184×3456 pixels with 8 bits per RGBA channel. Considering
the camera’s specifications and an altitude of approximately 231m, the
GSD maintained was approximately 5 cm/pixel side. Aiming to keep
a pixel overlap in five images or more in the region of analysis, the
flight plan was defined considering 50% side overlap and 70% forward
overlap.

Figure 9 – Waterproof Altavian Nova UAS.

Source: Image from Altavian (2017).

The software used to create the mosaic was Agisoft Photoscan
Pro. The latitude, longitude, and altitude that the UAS stored during
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the flights were used to define initial camera positions in the software.
Orthomosaic tiles were exported at a size of 3184 × 3184 pixels and
stitched together into a virtual mosaic using Geospatial Data Abstrac-
tion Layer software. The geo-referencing was performed using only
data obtained through the flight telemetry data. Ground control points
and post-flight corrections were not used. The mosaics produced were
within meters or better of their true position.

The image was white-balanced in a post-processing step. This
process was necessary to remove unrealistic color casts in pixels that
are actually white (MALONEY; WANDELL, 1986). The open source soft-
ware RawTherapee was used to create white-balance profiles that were
applied to the data.

3.1.1 Ground Reference Map

To build the Ground Reference Map (GRM), in the work by
Samiappan et al. (2016a), domain experts recorded the boundaries of
three selected patches by walking around them with a Trimble Geo
7X GPS unit, with sub-decimeter accuracy. Navigation to and around
patches was difficult due to location, terrain, and navigation. This
reinforces the need to develop solutions based on remote sensing.

After collecting coordinates of GR patches, the true color im-
age was loaded into Environmental Systems Research Institute ArcMap
program. The boundaries of the same three patches were manually dig-
itized by a domain expert based on direct visual inspection of the image
mosaic in ArcMap. These digitized boundaries were then compared to
the in situ patch GR boundaries. Samiappan et al. (2016a) discussed
that the difference between both boundaries is almost insignificant (See
Figure 10).

Aiming to physically verify the rest of the GR Phragmites patch
locations along river channels and roadways, the authors of this work
returned to the field. The authors navigate around these patches with
a GPS unit or visit patches that were inland from a river channel or
roadway during the revisit. These series of actions were performed with
the intention of ensuring that the digitized boundaries could be used
as a ground reference to verify the system’s accuracy.
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Figure 10 – Ground reference for study area I (Phragmites locations are
outlined in red) (top). Ground reference patches of Phragmites deter-
mined by walking along the patch boundary and determining vertices
using a handheld GPS unit (Bottom-left). Digitized boundaries – DIG
from visual inspection (Bottom-right).

Source: Images from Samiappan et al. (2016a).
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4 TEXTURE FEATURE ANALYSIS

The input to all proposed approaches consists of a true-color
image in GeoTIFF format, that provides extra georeferencing informa-
tion. Prior to any texture feature extraction method, the input image
passes through three different steps that aim to adjust the data for the
next stages.

First, the geoinformation that composes the GeoTIFF image is
saved in a structure to be used in the post-processing stage. This
information is essential and cannot be lost since the resource managers
need to know the exact location of each Phragmites stand. In the post-
processing step, this saved data will be reused in the map generation.

After, the image is divided into blocks of nxn pixels. This op-
eration was performed aiming to reduce the computational cost and
include the spatial context in the classification step. Considering that
Phragmites generally creates mono and dense stands and that each
pixel has only three spectral values, the spatial context is essential for
the proposed solutions. In our study, one pixel of the study images
represents a square area of approximately 25cm2. The optimal size for
the blocks was derived via empirical analysis with various sizes, and it
was defined as 100 x 100 pixels representing 25m2. A representation of
the input image divided into blocks is shown in Figure 11.

Figure 11 – Segment from original set I represented through blocks.

Source: Image from authors.
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Finally, these blocks need to be converted to grayscale by com-
puting the luminance (Equation 4.1). This process is necessary because
all texture feature extraction algorithms used in this work are limited
to only 2 dimensions and the execution of each visible spectrum sep-
arately would increase considerably the computational cost without a
gain that worth it. The conversion was based on the ITU-R BT601-7
recommendation.

Y = 0.2989 ∗R+ 0.5870 ∗G+ 0.1140 ∗B (4.1)

Where R, G, and B represents red, green, and blue channels, respec-
tively.

4.1 FEATURE EXTRACTION

Feature extraction is an important process to compute charac-
teristics of a digital image. The features should be able to describe a
region and concisely quantify its texture content. This descriptor plays
an essential role in image processing because many properties can be
measured by it. Considering that in this work only the visible spectrum
was used, features extracted from texture were used to compensate the
lack of richness in the data collected.

Figure 12 – Segment from Site I representing Phragmites object.

Source: Image from authors.

A visual inspection of these imagery revealed unique properties
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of Phragmites; mainly roughness, granulation, and regularity (Figure
12). Consequently, it was observed that the use of texture features is
a solution for the distinction between Phragmites and other objects,
as demonstrated in (SAMIAPPAN et al., 2016a). In this work was used
the same four extraction feature algorithms proposed by (SAMIAPPAN
et al., 2016a), being them: (1) GLCM, (2) Texture Features Based on
GF, (3) SFTA, and (4) WTA.

4.1.1 Grey Level Co-occurrence Matrix

Initially proposed in (HARALICK; SHANMUGAM; DINSTEIN, 1973),
GLCM is a square matrix, whose elements can reveal the relative fre-
quency of occurrence of pairs of gray level values separated by certain
distance or offset (∆x,∆y). ∆x is the number of columns between
the pixel and its neighbors and ∆y corresponds to the number of rows.
The offset is generally expressed in polar coordinates as an angle Θ and
distance ρ. If an intensity image were entirely flat, i.e. without tex-
ture, the resulting GLCM would be completely diagonal. As the image
texture increases, the off-diagonal values become larger (BHARATI; LIU;
MACGREGOR, 2004).

The GLCMs are normalized and stored in a I x I x N matrix,
where N is the number of GLCM calculated due to the different dis-
placements and orientation used in the computation. In this case, con-
sidering the computational time required to calculate each GLCM, only
one value for displacement and orientation was used. In our experi-
ments, the number of gray levels (I) was defined as 8, 135◦ for Θ, and
4 as distance ρ.

The co-occurrence probabilities provide a second-order method
for generating texture features (HARALICK; SHANMUGAM; DINSTEIN,
1973). These probabilities represent the conditional joint probabilities
of all pair wise combinations of gray levels in the spatial region of ρ
and Θ. This co-occurrence probability between gray levels i and j is
denoted as pij and is given by Equation 4.2.

pij =
Pij
R

(4.2)

Where Pij represents the number of co-occurrences of i and j within
the spatial region and R the number of cells in the matrix. The GLCM
is then used for calculation of features that describe the texture of the
image. In this work, besides the 14 characteristics proposed by (HAR-
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ALICK; SHANMUGAM; DINSTEIN, 1973), it was used other 8 features
proposed by (SOH; TSATSOULIS, 1999; GOMEZ; PEREIRA; INFANTOSI,
2012). The features can be described by the following equations:

Table 1 – GLCM Features

Feature Formula
Angular Second Moment f1 =

∑
i

∑
j p(i, j)

2

Entropy f2 = −
∑
i

∑
j p(i, j) ∗ log(p(i, j))

Dissimilarity f3 = sumi

∑
j p(i, j) ∗ |i− j|

Contrast f4 =
∑
i

∑
j p(i, j) ∗ (i− j)2

Inverse difference f5 =
∑
i

∑
j

p(i,j)
1+|i−j|

Correlation f6 =
∑
i

∑
j
i∗j∗p(i,j)−µx∗µy

σx∗σy
Homogeneity f7 =

∑
i

∑
j

p(i,j)
1+(i−j)2

Autocorrelation f8 =
∑
i

∑
j i ∗ j ∗ p(i, j)

Cluster Shade f9 =
∑
i

∑
j(i+ j − µx − µy)3 ∗ p(i, j)

Cluster Prominence f10 =
∑
i

∑
j(i+ j − µx − µy)4 ∗ p(i, j)

Maximum probability f11 = MAX
i,j

pi,j

Sum of Squares f12 =
∑
i

∑
j(i− µ)2 ∗ p(i, j)

Sum Average f13 =
∑2

∑
i

∑
j

p(i,j)

1+(i−j)2
I2

i=2 i ∗ px+y(i)

Sum Variance f14 =
∑2I
i=2(i− f8)2 ∗ px+y(i)

Sum Entropy f15 =
∑2I
i=2 px+y(i) ∗ log(px+y(i))

Difference variance f16 = variance of px−y
Difference entropy f17 =

∑I−1
i=0 px−y(i) ∗ log(px−y(i))

Information measures of correlation - 1 f18 = HXY−HXY 1
max{HX,HY }

Information measures of correlation - 2 f19 = (1− e[−2∗(HXY 2−HXY )])
1
2

Maximal correlation coefficient f20 = (second largest eigenvalue of Q)
1
2

Inverse difference normalized f21 =
∑
i

∑
j

p(i,j)
1+|i−j|2

I2

Inverse difference moment normalized f22 =
∑
i

∑
j

p(i,j)
1+(i−j)2

I2

Source: Adapted from Haralick, Shanmugam and Dinstein (1973), Soh
and Tsatsoulis (1999), and Gomez, Pereira and Infantosi (2012).

Where i and j are the index of the matrix, HXY is the entropy,
HX and HY are entropy of Px(i) and Py(j), and the other variables
are described in the Table 2.
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Figure 13 – Image blocks examples (top), representing the five most
common object categories in the study area, and their respective GLCM
signatures (bottom) concerning 22 statistical properties.

Phragmites Trees Soil River Highway

Im
ag

e
B
lo
ck

Fe
at
ur
es

1 22
0

1

1 22
0

1

1 22
0

1

1 22
0

1

1 22
0

1

Source: Images from authors.

Table 2 – GLCM Variables

Variables
py(j) =

∑I
j=1 P (i, j)

px(j) =
∑I
i=1 P (i, j)

µ =
∑
i

∑
j P (i, j)/I2

µx =
∑
i

∑
j ip(i, j)

µy =
∑
i

∑
j jp(i, j)

σx =
∑
i

∑
j(i− µx)2p(i, j)

σy =
∑
i

∑
j(i− µy)2p(i, j)

HXY = −
∑
i

∑
j p(i, j) · log(p(i, j))

HXY 1 = −
∑
i

∑
j p(i, j) · log(px(i)py(j))

HXY 2 = −
∑
i

∑
j px(i)py(j) · log(px(i)py(j))

px+y(k) =
∑Ng
i=1

∑Ng
j=1 p(i, j), i+ j = k e k = 2, 3, ..., 2Ng.

px−y(k) =
∑Ng
i=1

∑Ng
j=1 p(i, j), |i− j| = k e k = 0, 1, ..., Ng − 1.

Q(i, j) =
∑
k
p(i,k)∗p(j,k)
px(i)∗pj(k)

Source: Adapted from Haralick, Shanmugam and Dinstein (1973), Soh
and Tsatsoulis (1999), and Gomez, Pereira and Infantosi (2012).

As described, the large mosaic was divided into sub-images of
nxn pixels. However, in this case, GLCM features were extracted for
each sub-image with an overlap of 20% between sub-images to avoid
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the edge effect. Figure 13 (bottom) shows the 22 parameters calculated
from GLCM in the most common images in both sites. From the data
shown in the graphs, it is possible to determine that, in a specific com-
parison between the five graphs, the closest to the features extracted
for Phragmites was the soil. However, there is a considerable differ-
ence between all blocks. For more details about GLCM algorithm im-
plemented in this work, refer to (HARALICK; SHANMUGAM; DINSTEIN,
1973; MARCEAU et al., 1990).

4.1.2 Gabor Filters

GF were initially described in (GABOR, 1946) and later extended
to 2-D in (DAUGMAN, 1985). It has been recognized as a very useful
tool in image processing and recognition, and computer vision, mainly
for texture analysis due to its capacity to acquire localization prop-
erties in both spatial and frequency domains. The most important
advantage of Gabor filters technique is its invariance to illumination,
rotation, scale, and translation. Furthermore, they can withstand pho-
tometric disturbances, such as illumination changes and image noise
(HAGHIGHAT; ZONOUZ; ABDEL-MOTTALEB, 2013). In the spatial do-
main, a two-dimensional Gabor filter is a Gaussian kernel function
modulated by a complex sinusoidal plane wave, and it can be defined
in equation 4.3.

G(x, y) =
f2

πγη
exp

(
−x
′2 + γ2y′2

2σ2

)
exp(j2πfx′ + φ) (4.3)

Where f is the frequency of the sinusoidal factor, Θ represents the
orientation of the normal to the parallel stripes of a Gabor function, φ
is the phase offset, σ is the standard deviation of the Gaussian envelope,
γ is the spatial aspect ratio which specifies the ellipticity of the Gabor
function’s support, and x′ and y′ are defined as follows:

x′ = xcosθ + ysinθ (4.4)

y′ = −xsinθ + ycosθ (4.5)

As shown in the Figure 14, this texture analysis technique has a
good ability to differentiate Phragmites, trees, and soil from the objects
river and highway. However, the signature from the first three objects is
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Figure 14 – Features from image blocks representing the five most com-
mon objects. From top to down: Phragmites, trees, soil, river, and
highway.
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Source: Images from authors.

relatively similar and this can confuse the classifier algorithm. Despite
it, it is still possible to observe some specific points of change between
the mentioned signatures.

We experimentally defined the number of orientations as 8 and
scales as 5. Considering that the adjacent pixels in the image are highly
correlated, it is possible to reduce the redundancy by downsampling the
features images resulting from Gabor filters (SHEN; BAI; FAIRHURST,
2007; DUNN; HIGGINS, 1995). Since the column and row downsampling
factors were defined as 50, the final feature vector was composed of 160
features (100 x 100 x 5 x 8) / (50 x 50). Examples of features extracted
using this algorithm of the most common blocks are presented in Figure
14. For more details about feature extraction in Gabor Filters, refer to
the work of (HAGHIGHAT; ZONOUZ; ABDEL-MOTTALEB, 2013).
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4.1.3 Segmentation-based Fractal Texture Analysis

Filter functions such as Gabor is fairly useful in capturing texture
information in the images. However, this techniques are very time-
consuming because they need to consider multiple orientations and
scales. In this type of work, where a large amount of high-resolution
data is used, the computational cost that an algorithm requires is very
critical. Considering this problem, fractal features were considered.

SFTA consists of two main methods. In the first method, the
grayscale input image is decomposed into nt binary images trough
the Two-threshold Binary Decomposition (TTBD) algorithm (COSTA;
HUMPIRE-MAMANI; TRAINA, 2012). After, the mean gray level and the
number of pixel is computed from each binary image. In addition, the
fractal dimensions are computed.

In the TTBD algorithm, the first step is to define the superior
and inferior limit for each interval. Threshold pairs (T) that minimize
the input image intra-class variance are computed by recursively apply-
ing a multilevel Otsu algorithm (LIAO; CHEN; CHUNG, 2001) nt times.
The number of times is a parameter defined by the user and has an
influence on the feature vector size. The binary image for each thresh-
old is obtained applying the original image in the equation described
in 4.6.

Lb(x, y) =

{
1, if tl < L(x, y) ≤ tu

0, otherwise
(4.6)

Where L(x, y) is the input image, tl and tu are the lower and upper
threshold values and Lb(x, y) is the binary image.

The set of binary images is obtained applying equation 4.6 on
the input image using all pairs thresholds of contiguous thresholds from
T ∪nl and all pairs of thresholds t, nl ∈ T , where nl corresponds to the
maximum possible gray level in the input image. As a consequence of
this step, the number of resulting binary images is 2nt.

After applying TTBD to the grayscale image, the feature vector
is defined by the pixel quantity, mean gray level, and fractal dimen-
sions from each binary image. Fractal dimensions are described by the
complexity of the object’s boundary and are represented as a border
image Le(x, y). This value is obtained through the equation 4.7.

Le(x, y) =

 1, if∃(x′ , y′) ∈ N8[(x, y)],

Lb(x
′
, y
′
) = 0 ∧ Lb(x, y) = 1,
0, otherwise

(4.7)
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Figure 15 – Image blocks examples (top), representing the five most
common object categories in the study area, and their respective SFTA
features (bottom) calculated using nt = 8.
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Source: Image from authors.

Where N8[(x, y)] represents the region of pixels that are connected in
eight possible directions to (x, y). Le(x, y) gets value 1 if the (x, y) in
the corresponding Lb(x, y) has a value of 1 and (∧) having a minimum
of one neighboring pixel with value 0. The region boundary set gets a
value of 0 otherwise. The fractal dimension is computed from Le(x, y)
by using a box counting algorithm described in the work of (JR et al.,
2010).

The second and third feature represent the mean and size (pixel
count) of the binary images, respectively, and are calculated using the
binary images generated by TTBD. These features bring the advantage
of complement the extracted information without increase too much the
computational time. The final size of the feature vector is three times
the quantity of binary images produced by TTBD.

Figure 15 (bottom) shows these parameters for the most common
blocks in both sites. From Figure 15, it is possible to conclude that the
most similar object to Phragmites is the soil. However, it is visible
the difference between the five objects. In this work, the final nt was
defined experimentally as 8. For more details about the SFTA method,
refer to the work of (COSTA; HUMPIRE-MAMANI; TRAINA, 2012).

4.1.4 Wavelet Texture Analysis

The human visual system is very effective at interpreting spa-
tial frequency of the luminance channel at multiscale. This ability
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can be emulated by means of wavelet transforms. Wavelet transforms
enable multi-resolution analysis of features by decomposing data X =
{x1, x2, ..., xN} into two sub-bands L|H = {l1, l2, ..., lN

2
, h1, h2, ..., hN

2
},

where L represents the low-pass component and H represent its high-
pass counterpart. This can be extended to bi-dimensional data, where
four sub-bands are obtained by performing low- and high-pass decom-
position in both horizontal and vertical directions. In this work, each
grayscale block is applied to the Haar wavelet transform (STANKOVIĆ;
FALKOWSKI, 2003), that extracts the low-pass components by aver-
aging and the high-pass counterpart by differencing, according to the
following equations:

li =
x2i + x2i+1

2
(4.8)

hi =
x2i − x2i+1

2
(4.9)

Where x2i and x2i+1 are row transformed pixels.

Figure 16 – One level of Haar wavelet transform applied to (a) exam-
ple block with 100 × 100 pixels. The output (b) is divided into four
sub-regions with 50× 50 pixels each. Top-left (LL) shows the approxi-
mation values, top-right (LH) shows details in horizontal, bottom-left
(HL) shows details in vertical, and bottom-right (HH) shows details
in diagonal.

(a) (b)

Source: Images from authors.

A transformation given by Equations 4.8 and 4.9 is employed
horizontally to the image block, dividing it into two sub-regions con-
cerning the two sub-bands L (low-frequency) and H (high-frequency).
Later, these sub-bands are used as input to a second pass, now verti-
cally, which results in four sub-bands with 2:1 downsampling. Fig. 16b
shows the four sub-bands (i.e., approximation LL, details in horizon-



67

tal point LH, details in vertical point HL, and details in diameter
HH at top-left, top-right, bottom-left, and bottom-right, respectively)
obtained after applying one level Haar wavelet transform to Fig. 16a.
The input images were captured at an approximate constant and low
ground distance by the UAS, thus, more than one level Haar transform
is not required.

In order to represent spatial frequency, from each sub-band, it
was computed four statistical parameters, i.e., mean, standard devi-
ation, entropy, and energy value, composing 16 parameters of each
image block. Entropy is often described as a measure of randomness
and energy a measure of the frequency distribution. These values can
be computed as described in the Table 3.

Table 3 – Wavelet Features

Mean value µ = 1
N

∑
i

pi

Standard deviation σ =
√

1
N

∑
i

(pi − µ)2

Entropy S = −
∑
i

pi log pi

Energy E =
∑
i

|pi|2

Source: From authors.

Where pi are pixels’ values and N is the total number of pixels.
Figure 17 (bottom) shows the values of these four parameters for

the example blocks on the top row. Note the difference in the values
of parameters for each block category, which makes these parameters
suitable for classification of Phragmites in this context. Refer to the
work of (LIVENS et al., 1997) for more details about the WTA algorithm
implemented in this work.

4.1.5 GPU Implementation

The described feature extraction step can be easily structured
in a GPU implementation mainly by the way the solutions were struc-
tured. The block processing purpose created a good opportunity for
parallelization, because these blocks does not have any time of relation.
That is, these blocks do not share the same memory, do not rely on
data from the other blocks, do not need to be synchronized, and among
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Figure 17 – Image blocks examples (top), representing the five most
common object categories in the study area, and their respective
wavelet texture signatures (bottom) concerning four statistical prop-
erties (mean, entropy, standard deviation, and energy value) for each
sub-band (LL, LH, HL, and HH).

Phragmites Trees Soil River Highway
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Source: Images from authors.

others.
It is known that different approaches could be used to reduce

the necessary computational time through the use of a GPU. One of
these approaches is to consider each block as an independent process.
In this case, the feature extraction algorithm would be processed in
linear, but the blocks no. Another possibility is to consider the parallel
implementation of the method, where each block would be processed in
serial but the feature extraction method would be processed in parallel.
Examples of GPU implementations of the methods discussed in this
chapter can be found in (WANG; SHI, 2010; FRANCO et al., 2009; HONG;
ZHENG; PAN, 2017), where in the first the authors proposed a Fast
Gabor Filters GPU implementation, the second 2D Wavelet transform,
and the third GLCM. A third feasible option would be the use a two
levels of parallelization, where the block process would start a new
kernel to process the data in parallel. In this work, considering that
a parallel implementation of each feature extraction algorithm would
cause big changes in the structure, the first option was chosen to be
tested.

Each image block is processed as follows:

• Image is read into host memory;

• Data is copied to the device and saved as texture;
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• Grid is defined for the RGB to Grayscale step. Each thread was
responsible for one pixel and the blocks were responsible for a
group of threads.

• RGB to Grayscale parallel operation is performed and the data
is saved in the global memory;

• A new grid is defined for the feature extraction process. Each is
represented by a clock;

• The feature extraction process happen here;

• The resulting data is copied back from the global memory to the
host.

In this scenario, two different kernels were identified: RGB to
gray scaçe conversion and the feature extraction process. In the first
one, small blocks of 10 x 10 threads were used. The number of blocks is
a consequence of the image size and the number of threads per blocks.
In this case, each pixel was treated by one thread.

Threads were not used in the second process. Each grid block
represented a real image block. The grid block size depends on the total
image size. For example, for Site I the final grid block size was defined
as 335 x 190, where the total image size is 33500 x 19000 pixels. After
identigying the position of the block in the grid, the linear process of
each extraction method is normally performed.
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5 CLASSIFICATION SYSTEM

After the feature extraction step, a class must be assigned to each
block. For this task, three different ANN architectures were compared,
being PNN, RBFN, and MLP. In addition, SVM, which is the classifi-
cation algorithm used in Samiappan et al. (2016a) is also discussed in
this chapter. However, prior to the class assignment, pre-classification
and hyperparameter tuning steps must be performed in order to better
adjust the data and parameters used in the algorithms.

5.1 PRE-CLASSIFICATION

The classification system receives from the texture feature analy-
sis an array that is composed by N×F values, where N is the number of
blocks and F is the number of features per block. These values are then
linearly scaled to values in the range [0, 1]. This process is necessary to
normalize the numerical difference between the extracted features. As
reported by Sola and Sevilla (SOLA; SEVILLA, 1997), this normalization
can have two side effects. First, the network performance is enhanced
when input is equalized. Second, after a certain number of iterations
and with some normalization methods, the square mean error tends
to rise again. The first effect can be explained by some facts: in the
MLP and RBFN architectures the weights are randomly defined in the
(-1,1) interval, Hyperbolic tangent and Log-sigmoid transfer function,
with unitary slope, are being used in the MLP algorithm, reduction of
the distance to be covered by the backpropagation algorithm, specific
features will not have a greater importance in the error reduction al-
gorithm due to an uneven scale, among others. The counterpoint from
this process is explained by the proximity of the data, i.e. when the
training data are fitted more closely, its performance for other data
start to become worse.

In the final phase of the pre-classification step, it is necessary to
define the cases that will be used in the hyperparameter tuning step.
For such, it is used a ground reference map that indicates the regions
with Phragmites in the input map. 20% from the whole input map
area was used to select the training set. From this area, only 10% was
used in the training step. The remaining blocks, which are not known
by the classifier, were used for the system evaluation.

However, prior to the hyperparameter tuning step of each com-
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bination of texture-classifier, a search operation is performed aiming to
find a viable training set. This process is performed in order to find
a set that could represent the maximum possible area. For example,
using a random selection of training cases could result in a training set
selected from an area with specific illumination. Another possibility is
a specific object that is not represented in the training cases. In both
examples, the system final accuracy could be considerably reduced by
a training set selection error.

In this training set search operation, the blocks were randomly
selected. In the first set, the total number of blocks that are completely
inside regions with Phragmites could range from 20 to 52% of the total
number of Phragmites blocks in the Site. In the second set, the total
number ranged from 27 to 62%. The remaining training set percentage
was completed with not Phragmites cases. The other 10% not randomly
selected blocks were used to check the training set fitness. The Mean
Square Error (MSE), that is described in the Equation 5.6, is calculated
from the classifier’s outputs.

5.2 SUPORT VECTOR MACHINE

SVM is a kernel-based classification algorithm (BURGES, 1998),
which has been shown to be effective in many types of applications. As
reported, SVM is very efficient, stable (CASAGRANDE et al., 2017), and
presents a good capacity of generalization (AKANDE et al., 2014).

The objective of SVM is to produce a model based on the training
data. Thus, this model need to be capable of predicting the class of the
sample using its attributes (HSU et al., 2003). The training set needs
to be organized as sample-class (xi, yi), i = 1, ..., l, where xi ∈ Rn and
y ∈ {1,−1}l, and the SVM searches a solution for the optimization
problem described by the Equation 5.1.

min
w,b,ξ

1

2
wTw + C

l∑
i=1

ξi

Subject to yi(wTφ(xi) + b) ≥ 1− ξi,
ξi ≥ 0.

(5.1)

SVM is based on the notion of the margin between different
classes (KOTSIANTIS, 2007). The vector containing the training data xi
needs to be mapped to a higher dimensional space by the function φ. In
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this new space, SVM tries to find a hyper-plane capable of separating
the data with maximum margin aiming to reduce the generalization
error by creating the widest possible distance between classes.

In their implementation, Samiappan et al. (2016a) used the li-
brary LIBSVM (CHANG; LIN, 2011). On their application, they pro-
posed the use of radial basis function kernel. This Function was chosen
because it can deal with non-linear data (HSU et al., 2003). The equation
of the kernel is described by Equation 5.2.

K(xi, xj) = exp(−γ||xi − xj ||2), γ > 0 (5.2)

γ and C are the two major radial basis function parameters and
they play an essential role in the final accuracy. The γ parameter
affects the partitioning outcome in feature space. If this value is too
high, it can results in overfitting. High values of γ causes overfitting,
and low values causes underfitting. The parameter C represents the
cost of penalty. High values of C distorts the accuracy rate, which will
be high in the training phase and low in the testing phase. Low values
of C may cause unsatisfactory accuracy (LIN et al., 2008). Aiming to
optimize these parameters, Samiappan et al. (2016a) proposed the use
of Grid Search Algorithm.

5.3 CLASSIFICATION BASED ON ANN

An ANN is a computational model based on the neural architec-
ture of the brain. According to Haykin (2007), the interest in ANNs
has been motivated by the growing knowledge about the human brain.
As related by Rauber (1998), among all brain’s capabilities, robust-
ness and fault tolerance, ability to learn, processing of uncertain in-
formation, and parallelism are the characteristics that are especially
attractive to be simulated in an ANN.

A human brain contains an enormous amount of nerve cells, also
called neurons. Each of these neurons is connected to many other sim-
ilar neurons, creating a very complex network of signal transmission.
These neurons can be specialized in some task or not, but all of them
are composed basically of a cell body, dendrites, and axons (Figure
18). Furthermore, neurons process signals in the same way (JR., 2004;
AHARKAVA, 2010), i.e. the dendrites are responsible to bring infor-
mation to the cell body and axons are responsible to take information
away from the cell. The synapse is an electrochemical, not a physical,
connection between one of the branches of the axon and the dendrite
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Figure 18 – Biological Neuron.

Source: Image from The Pennsylvania State University (2017).

which has a small space between them (JR., 2004). Information from a
neuron flows to another across a the synapse.

For a communication between neurons to occur, a signal must
travel through the axon until the synaptic terminal, and after through
the dendrites of the cell body. Signals are represented by electric im-
pulses. These signals received from various neurons in the dendrites
go to the cell body of the neuron that will sums them. If this sum is
greater than some threshold, the cell fires and transmits a signal over
its axon to other cells (AHARKAVA, 2010).

First ANN theory were presented in 1943 by Warren McCulloch
and Walter Pitts (MCCULLOCH; PITTS, 1943), where the authors pro-
posed the first artificial neuron model. These neurons could be further
arranged into networks. However, since a learning rule was not defined
at that time, these networks were not able to learn yet. Figure 19 shows
a graphical representation of a simple artificial neuron. The neuron’s
output can be defined by the Equation 5.3.

yk = f

 n∑
j=0

xjwkj

 (5.3)

Where yk is the output from the kth neuron, n is the number of input,
xj is the jth input value, wkj is the weight associated with the jth
input and kth neuron, and f is the activation function.

Later, in 1949, the psychologist Donald Hebb designed the first
learning rule for artificial neural networks (HEBB, 1949). In this case,
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Figure 19 – Perceptron representation. In this image, y is the output
signal, xi is the value of the ith connection, wi is the weight associated
to the ith connection, and b is the bias associated.

Source: Image from authors.

the connection between two neurons should be increased if they were
active simultaneously. After, the theory of ANN has evolved consider-
ably with the perceptron’s introduction in 1958 by Frank Rosenblatt
(ROSENBLATT, 1958). He reported that adjustable connections could
be used to train the ANN and classify certain types of patterns. How-
ever, it had a number of limitations, and as a consequence, the scientific
community saw little interest.

With the advancement of technology and greater knowledge about
the brain, new algorithms based on ANN have emerged over time.
Mainly in the 80s, when several learning procedures for MLP were pro-
posed, the interest in ANN has grown considerably. Nowadays, neural
netwroks are being used in a huge number of problems by different
scientific and industrial fields.

5.3.1 Multilayer Perceptron

Multilayer perceptron is one type of ANN. It was introduced
with the advent of the back-propagation learning algorithm. Until that
point, an architecture with more than one layer was not feasible since
the learning algorithms were no efficient with that kind of architecture.
A neural network of the type MLP consists of a system of intercon-
nected neurons. Although it does not have a fixed architecture, such
as in PNN and RBFN, these neurons follow a pattern of organization.
In this case, they are arranged in three different types of layers:
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1. Input layer: The neurons in the input layer encodes the data
from the external environment. Neurons in the input layer don’t
perform any type of computation. They only pass the input data
to subsequent neurons;

2. Hidden layer: The neurons that compose the hidden layer receive
the signal from the input or the previous hidden layer, process
this data considering the Equation 5.3 and pass the output signal
to the subsequent layer;

3. Output layer: The neurons from the output layer receive the
signal from the hidden and compute the output.

In each MLP architecture, there is one input and output layer,
and one or more hidden layers. The neurons and the layers are con-
nected through synapses. That is, each connection has a weight that
represents how strong is the link between the neurons. The MLP ar-
chitecture can be fully connected, but this is not a requirement. An
example of a MLP basic architecture is shown in the Figure 20.

Figure 20 – MLP fully connected architecture example. In this case,
the architecture is composed of the input, one hidden, and output layer.

Source: Image from authors.

A Multilayer perceptron is a specific configuration of feedforward
artificial neural network. That is, the output from a neuron always go
forward until the output. For example, considering the Figure 20. First,
as soon as the input data entry in the input layer, this data is passed
to the first hidden layer. In the hidden layer, the input from the first
layer is computed and passed to the subsequent layer. Finally, in the
output layer, the data is processed again and output is presented.
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In this technique, the process of learning through example is
achieved by updating the synaptic weights associated with the con-
nections between the layers. Currently, there are a large number of
algorithms that aim to help to this process, where each one has its own
specifications and can be more suitable for specific problems. In this
work, the Levenberg-Marquard algorithm was used.

5.3.1.1 Levenberg-Marquard Learning Algorithm

First described by Kenneth Levenberg and Donald Marquardt in
(LEVENBERG, 1944; MARQUARDT, 1963) and first reported as a possi-
bility for ANNs in (HAGAN; MENHAJ, 1994), the Levenberg-Marquard
(LM) algorithm provides a numerical solution to the problem of min-
imizing non-linear functions. This method can be seen as a blend of
the Gauss-Newton and steepest descendent method, and fortunately, it
inherits the speed advantage from the first and the stability from the
second (YU; WILAMOWSKI, 2011). In other words, this method per-
forms a combined training process, where around the area with com-
plex curvature it switches to the steepest descent algorithm and in the
areas where the quadratic approximation is feasible, it becomes the
Gauss-Newton algorithm.

As demonstrated in recent comparison with other ANN learning
algorithms (AYAT et al., 2012; YU; WILAMOWSKI, 2011; SEDHURAMAN;
HIMAVATHI; MUTHURAMALINGAM, 2012), LM has high learning abil-
ity, which confirms the characteristics afromentioned. Ayat et al. (2012)
state that LM has the best performance index and one of the shortest
training time if compared to other five learning algorithms. Despite
these facts, the authors highlighted that this algorithm presents high
memory usage. Yu and Wilamowski (2011) and Sedhuraman, Hima-
vathi and Muthuramalingam (2012) also state that LM algorithm is the
most efficient among others. In addition to that, they reported that LM
was the most stable, with more compact design, and less parameters.

As already described, the LM is very robust at dealing with
respect to many problems. In addition to that, it has a simple formu-
lation. Basically, it consists of solving the following equation:

J tE = (J tJ + λI)δ (5.4)

Where J is the Jacobian matrix for the architecture, λ is the damping
factor, E is the error vector containing the simple error for each training
case, J tJ is the approximated Hessian matrix, and δ is the weight



78

updated vector.
The Jacobian is a N by M matrix, where N is the number of

entries in the training set and M is the number of weights plus bias
of the network. This matrix is calculated through all first-order par-
tial derivatives of each output in respect to each weight. The overall
architecture is described in the Equation 5.5.

J =


∂F (x1,w)
∂w1

· · · ∂F (x1,w)
∂wm

...
. . .

...
∂F (xn,w)
∂w1

· · · ∂F (x1,w)
∂wm

 (5.5)

Where F (xi, w) is the network function evaluated for the ith input
vector of the training set using the weight vector w and wj is the jth
element of the weight vector.

The λ factor is adjusted at each iteration, where if the MSE
(Equation 5.6) does not reduce, the weights are not updated and the λ
factor is increased by a factor of 10. That is, if the reduction of MSE is
fast, smaller values can be used, bringing the algorithm to the Gauss-
Newton algorithm. Otherwise, the value increases and the algorithm
gives a step closer to the gradient descent direction.

mse =
1

n

n∑
i=1

(Ŷi − Yi)2 (5.6)

Where Ŷi is the vector denoting the output value for each training
case, Yi the vector representing the true values, and n the number of
samples in the training set.

5.3.2 Probabilistic Neural Network

Specht (1990) presented the PNN classifier, that is a specific
configuration of feedforward artificial neural network ANN. According
to Specht, there are some advantages of using PNN over other clas-
sification algorithms, among them, it has a well-defined architecture
and, hence, straightforward implementation; it has an instantaneous
training process, where the training cases are incorporated into the
network as new nodes; and it is robust with respect to noise in the
input. Moreover, under certain easily met conditions, it can approach
a Bayes optimal result. It is appropriate to say that the PNN is in a
special class of ANN for classification problems.
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Figure 21 – Illustration of our PNN’s architecture for classification.
The input layer has n nodes, one for each input parameter. The pat-
tern layer is fully connected to the input layer, and its nodes represent
the training cases. The summation layer averages the results from pat-
tern layer for each of the two categories (positive P or negative NP ).
And the output layer decides to which category (i.e., with or without
Phragmites) the input corresponds.

Source: Image from authors.

A typical PNN has four layers: input, pattern, summation, and
output (Figure 21). The input layer maps the n input parameters from
the input data to the PNN.

The pattern layer has one node pi for each training case and it
is fully connected with the input layer. Computation in each pattern
node is given due to the following equation:

pi =
1

(2π)
n
2 σn

exp

[
− (v − vi)T (v − vi)

2σn

]
, (5.7)

where vi is the vector representing the corresponding training case and
σ is a value of the function that determines the spread of the function.

As demonstrated in Figure 22, this value plays an essential role
in the classification algorithm. As presented, a higher value, that is not
very selective, will benefit the predominant class. The higher value,
that is very selective, results in misclassification of the objects with
the closest texture to the target class. In the other side, with a lower
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value, all blocks are assigned with the predominant object class. Con-
sequently, the optimal sigma value selection is essential for the process.

Figure 22 – Output map from PNN using data output from WTA with
four different σ for the set II.

σ = 0.001 σ = 0.01 σ = 0.1 σ = 0.99

Source: Images from authors.

Further, the pattern nodes can be divided into subgroups ac-
cording to the training cases’ category. Two categories were defined in
this work for the PNN: Phragmites (P ) for blocks with Phragmites and
not Phragmites (N) for blocks without Phragmites.

The summation layer computes the maximum likelihood of input
v being classified into each one of the categories. For such, each node
in the summation layer corresponds to one distinct category and it is
connected to the corresponding subgroup of nodes in the pattern layer.
In fact, the summation nodes perform an averaging of the results in
the connected pattern nodes as follows:

sc =
1

Nc

Nc∑
i

pi (5.8)

where pi in the sum represents the results from pattern nodes of cate-
gory c and Nc is the total number of pattern nodes in this category. If
the probabilities for each category are the same, the decision layer unit
classifies the pattern v following the Bayes’ decision rule based on the
output of all summation layer neurons as follows:

Ĉ(v) = argmax {sc} , i = 1, 2, · · · , q (5.9)

Where Ĉ(v) denotes the estimated class of the pattern w and q
is the total number of classes in the training samples.
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5.3.3 Radial Basis Function Network

Radial basis function network was proposed as a new paradigm
of simpler ANN architectures with only one hidden layer that could
reduce the necessary time to train a architecture considering the tra-
ditional back-propagation learning algorithm. This method was first
described by (POWELL, 1987) to solve the interpolation problem in
a multi-dimensional space requiring as many centers as data points.
Later, Broomhead an Lowe in (BROOMHEAD; LOWE, 1988) removed
this restriction, allowing the use of a smaller number of centers and
increasing the number of possible applications.

Although it is possible to define RBFN as a special case of MLP,
as described by Xie, Yu and Wilamowski (2011), there are four main
differences between them:

1. RBFN has a well defined architecture;

2. RBFN performs as local approximation networks. MLP performs
global approximation;

3. it is essential to set correct initial states for RBF networks while
MLP networks use parameters generated randomly;

4. RBFN clusters are separated by hyper spheres; while MLP uses
arbitrarily shaped hyper surfaces for separation.

Although RBFN and PNN are similar as well, there are some
differences between both methods:

1. RBFN has only one hidden layer and PNN has two;

2. Although it is possible to consider a neuron per test data, the
use of clustering algorithms to reduce the number of neurons is a
common approach;

3. RBFN may have a training phase;

As a consequence of the described differences, this technique has
some advantages and disadvantages over other techniques. As con-
cluded by (XIE; YU; WILAMOWSKI, 2011), this technique is more robust
and tolerant to noise input data set if compared to ANN. However,
according to Zhao, Huang and Guo (2003), PNN presents better noise
tolerance than RBFN mainly because there exists more than one hidden
center vector for each pattern class. Zao et al., Xie et al., and Mirzaei et
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al. (ZHAO; HUANG; GUO, 2003; XIE; YU; WILAMOWSKI, 2011; MIRZAEI
et al., 2011) showed that RBFN is the worst choice for classification
systems. However, as reported in (MEDAPATI et al., 2011) this may
not be true for all problems. In addition, the authors from (XIE; YU;
WILAMOWSKI, 2011) described that for function approximation prob-
lems, RBF networks are specially recommended for surface with regular
peaks and valleys, since efficient and accurate design can be obtained

5.3.3.1 Radial Basis Function Network architecture

Commonly the RBFN method has three layers: Input, radial
basis functions, and output. The n input parameters from the input
data are mapped by the input layer. Figure 23 shows the RBFN’s
overall architecture.

Figure 23 – Illustration of our RBFN’s overall architecture. The input
layer has n nodes, one for each input parameter. The hidden layer,
here identified as radial basis function layer, is fully connected to the
input layer, and its nodes represent the identified centroids. This layer
is composed of radial basis function neurons that is a specific type
of artificial neuron. The output sums the weighted outputs from the
hidden layer for each category (in this case, just one category with
possible classes: Phragmites or not Phragmites).

Source: Image from authors.

In the radial basis function layer, each node represents one cen-
ter. This layer is fully connected to the input layer. There are different
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possible choices of activation functions for this layer, but in this work
it was used the most popular, that is based on the Gaussian. The
Gaussian activation function is described below:

rbfi =
1

σ
√

2π
e−
‖xi−ci‖2

2σ (5.10)

Where xi is the vector representing the corresponding training
case, ci is a vector representing one center, and σ is a value of the
function that determines the spread of the function. In the RBFN
algorithm, the σ also plays an essential role in the final classification
accuracy.

The output layer basically sums the weighted outputs from the
radial basis function layer. The final equation for this layer is described
below:

yk =

n∑
i=0

rbfiwki + bi (5.11)

Where wki denotes to the weight of each connection and bi the
bias for each output neuron.

5.3.3.2 RBFN Learning

As demonstrated in (SCHWENKER; KESTLER; PALM, 2001), there
are many possible approaches to train RBFNs. In this work, a two-
stage training algorithm based on k-means clustering and in the normal
equations method was used.

K-means clustering algorithm is an unsupervised classifier that
is commonly used in the data mining and image recognition area. The
main objective of this algorithm is to define the k centers based on
clusters. In the RBFN, each of these clusters is represented in the
radial basis function layer by an artificial neuron.

This is an iterative algorithm that can be divided basically into
four steps: Before the loop starts, the groups are randomly labeled.
After, the distance between each data and the k clusters is calculated.
Next, the data is labeled according to the nearest centroid. The last
step is to calculate the average of each cluster separately. Based on
these values, the new positions of the centroids are found. This pro-
cess repeats until the stop criteria are satisfied. In this case, the stop
criteria used are the maximum number of iterations, defined as 100, or
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a maximum number of data moving between clusters in one iteration,
defined as 1% from the total number of vectors. There are some ways
of calculating the distance between each data and the clusters, such as
squared euclidean distance, Hamming distance, Mahalanobis distance,
and among others. In this work the Euclidean distance was chosen
(Equation 5.12).

d(x, c) = (x− c)(x− c)′ (5.12)

Where x is a vector from the input data and c is the centroid, that
represents the average value from all points in the cluster.

In addition to the σ value, the number of k is also a parameter
that can change drastically the final accuracy and computational cost
necessary to generate the final map. Consequently, the optimal sigma
value selection is essential for the process. Figure 24 shows examples
of maps generated with a different number of centers are shown. From
this figure, it is possible to conclude the essential role that the num-
ber of centers has for the map generation. In the first situation, with
k = 2, the mapping has practically no representation in reality. Few
Phragmites sites were identified and many are outside the correct area.
However, in the last situation with k = 200, it is possible to perceive
that the true positive rate has increased considerably. From this figure,
we can also verify that there is some evolution with the number of k,
but this is not true for all situations. For example, a k = 101 will not
necessarily present a map with higher accuracy than a k = 100.

After this process, the weights are updated using the normal
equations. This process can be simplified into three steps: First, for
every training case in the data set, the activation value of the RBF
neurons is calculated. After, for each category in the problem, a binary
vector identifying the position of all training cases correspondent to the
category is generated and the optimal weight is identified using normal
equations (Equation 5.13).

βc = (XTX)−1XT y = X+y (5.13)

Where βc is the new vector for each category, X is the activation
matrix, y is the binary vector for each category, and X+ is the Moore-
Penrose Matrix Inverse.
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Figure 24 – Output map from RBFN using data output from WTA
with four different k for the set I.

k = 2 k = 50

k = 100 k = 200

Source: Images from authors.

5.4 HYPERPARAMETER TUNING

Hyperparameter optimization is an essential step before the clas-
sification. Many of the machine learning and data mining algorithms
are sensitive to the setting of parameters, which is considered a task of
a human expert (MATUSZYK et al., 2016). The most used method to de-
fine these parameters is the trial and error, where the main objective is
to test the greatest amount of possibilities until finding a classifier with
good generalization capacity. However, it is known that this method
is time-consuming and depends directly on the knowledge and prior
experience of the expert for designing the ANN. In addition, setting a
non-optimal parameter can drastically reduce the accuracy or cause a
non-convergence situation.

Another aspect associated with the importance of this step is
the necessity to marginalize the influence of the human choice of the
parameters. When this process is done manually by a human, the
comparison is not feasible because it is not known whether the error
difference is actually being caused by the algorithm or by the parameter.
The use of an objective and fair hyperparameter tuning algorithm is a
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way to reduce the influence of this highlighted question.
In this work, two algorithms were considered for this task. In

the PNN tuning process, it was used the grid-search algorithm. In the
MLP and RBFN, it was used GA. These choices were based on the size
of each algorithm search space, defined by the number and size of each
set of combinations. Considering that in the first classifier the search
space is considerably smaller than in the second and third algorithm, it
is feasible the use of an exhaustive searching such as grid-search. This
fact is not true for the second and third case, that has a bigger search
space as will be explained in the next sections.

However, prior to any of these algorithms, the 10% selected for
this step must be redivided into training and test set. In this case,
80% from these cases are randomly selected for the first ground and
the other part for the second one. In this case, understanding that the
distribution of the training set can influence in different ways the final
result of the solution, the number of blocks representing Phragmites
ranged from 30 to 75% in the first set and from 20 to 45% in the second
set. The rest of the training set is completed with blocks representing
other objects. The test set consists of all the blocks that are not in the
train set.

5.4.1 Grid-Search Algorithm

As described in the previous section, this exhaustive search al-
gorithm was chosen to perform hyperparameter tuning in the PNN
algorithm. This is a consequence of the search space size (

−→
θ ) of PNN

if compared to the
−→
θ defined to the MLP method.

Hsu, Chang and Lin (2003) stated that the grid-search is straight-
forward but seems naive. In fact, there are several advanced methods
which can save computational cost by, for example, approximating the
MSE rate. However, there are three reasons for choosing this algo-
rithm in this situation: First, this is a way of ensuring that all desired
situations are tested. Second, its performance is similar to complex al-
gorithms in narrow search spaces. Third, the grid-search can be easily
parallelized because the parameters are independent.

This algorithm consists of exhaustive searching through a manu-
ally defined subset of the hyperparameter space. The two most common
types of this algorithm are the "Cartesian" and the random grid search.
In the first type, the algorithm test each possible combination of hyper-
parameter values. In the second, the algorithm will sample uniformly
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from the set of all possible hyperparameter value combinations in the
search space. In this work, the Cartersian type was used. The fitness
of each combination was defined using MSE, defined in the Equation
5.5.

After this process of testing all combinations, the best combina-
tion is identified and used for map generation.

5.4.2 Genetic Algorithm

GA, that was first proposed by John Holland in the mid-1970s,
was based on the evolutionary biology theory presented by Charles Dar-
win. This method was developed with the goal of becoming a powerful
results optimization algorithm. The main advantage presented by GA,
when compared to other optimization methods, is that GA searches
for the best results based on individuals’ potential of the population
(GREFENSTETTE, 1986).

5.4.2.1 Genetic Algorithm and ANN-MLP

When proposing the use of an ANN MLP to solve a possible
problem, the only certainty is that there should be an input and an
output layer, and that the number of neurons in each of these layers is
specified by the number of input and output parameters used to model
the system. Therefore, it is not possible to theoretically determine the
exact number of hidden layers and neurons in each hidden layer for
each problem.

The activation functions generally are chosen based on the type
of data that is used to train the ANN. For example, the linear function
is almost always used in the input layer and some sigmoid function is
used in the hidden layer. However, these guidelines do not guarantee
the ideal choice for the problem in analysis.

The training algorithm influences directly in the training speed,
ANN performance and the computational cost to train. Therefore, the
choice of the algorithm does not influence the generalization capacity.

In summary, there is no specific methodology to define the num-
ber of hidden layers, number per layer, activation function and the
training function. However, it is clear that essentially the number of
neurons and hidden layers, and activation functions are the main char-
acteristics that can drastically modify the generalization level of the
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system.
According to Akande et al. (2014), considering that the objec-

tive of ANN MLP optimization is multimodal in nature, this technique
tends to converge to a local minimum. In addition, the choice of archi-
tecture and training parameters for ANN MLP is a task that directly
impacts the performance of the classification system and the general-
ization capacity. As related by Haykin (2011), a architecture wrongly
defined also tends to converge to a local minimum.

Understanding the critical nature of the problem and the amount
of data obtained for analysis in this work, the use of trial and error
becomes an undesirable option and can reduce drastically the accuracy
of the proposed system. In addition, the use of an exhaustive search
algorithm such as grid search can result in a high computational cost
due to the search space generated by all ANN MLP variables. Genetic
algorithm can be an alternative to search the "optimal" solution in the
search space mainly by its evolutionary capacity.

Recently many papers proposed the use of GA with ANN to per-
form search and optimization tasks, as demonstrated in (BENARDOS;
VOSNIAKOS, 2007; PATER, 2016; DYKIN et al., 2015). Such combination
of computational techniques has already demonstrated a good perfor-
mance finding the optimal result in the proposed research space.

There are different ways of GA interacting with an ANN, as
described in (SCOTT; JAMES; ALI, 2006), such as:

• ANN contributing with GA: The neural network creates the first
population while GA optimizes;

• GA contributing with an ANN: In this case, GA can contribute by
selecting parameters, learning rate, training function, activation
function, weights, bias, among others.

In this work, the second type of interaction was used.

5.4.2.2 Optimization Algorithm

The optimization system can be described by the execution flow
represented in Figure 25. In general, this system is divided into specific
functions that are responsible for different operations in the optimiza-
tion process. These include: generate the individuals, initialize each
ANN and train it, quantify the trained classifiers, sort the generation
based on the fitness, eliminate individuals considered weak, create indi-
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viduals through crossover operation, and mutate the generation under
analysis.

First, a random initial population is generated using a dynamic
chromosome sequence. Each individual that composes the population
was organized following the structure that is shown in Figure 26.

Figure 25 – Genetic Algorithm-Artificial Neural Network algorithm
flowchart composed by eight process and two decision. Three from
these eight process are specific from GA algorithm: selection, crossover,
and mutation.

Source: Image from authors.

The chromosome that represents the input layer stores all weights
between the input neurons and the neurons that compose the first hid-
den layer. The chromosomes that symbolize the hidden layer(s) are or-
ganized between the genes that represent the bias for the actual layer,
the weights from the actual layer to the next layer, and the activa-
tion function for the actual layer. The output layer genes are divided
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between the bias and activation function for the actual layer, and the
learning rate for the ANN that represents the architecture.

Figure 26 – Individual general structure. The input layer is represented
by the chromosome I. The hidden layers are represented by the chro-
mosome H and can range from 1 to n where n represents the number
of hidden layers. The chromosome H represents the output layer. Each
chromosome type represents different features from the architecture.

Source: Image from authors.

Both, the number of internal layers and the number of neurons
per layer, were generated randomly. For each layer, an arbitrary acti-
vation function was defined. Each layer has its function defined within
a group of three distinct functions: linear, Log-sigmoid transfer func-
tion (as described in 5.14) and Hyperbolic tangent transfer function
(described in 5.15).

logsig(n) =
1

1 + e−n
(5.14)

tansig(n) =
2

1 + e−2∗n
− 1 (5.15)

The biases of all layers and the weights of the layers that have
logistic sigmoid and tangent sigmoid activation function were defined
using the Nguyen-Window method. The weights of the layers that have
a linear activation function were randomly defined between -1 and 1.
The learning rate was also randomly defined between 0 and 1. Then,
the previously defined data is structured in an object representing an
ANN for later training using LM algorithm.

After the training process, the test set, which is composed of data
not known by the classifier, is used to assess the generalization perfor-
mance of the model generated. The MSE obtained in the validation
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process is then stored for later ranking of the individuals.
In the fourth step, the values obtained after the training and

validation process are used to evaluate the entire population. After,
the best-fit individual of the generation is saved as the best individual
if its fitness is lower than the actual best-fitness individual.

The evolutionary process happens between the steps 6 and 8. In
the sixth step, 50% of the individuals are selected based on the ranking
made by the fitness obtained. After the selection operation, the indi-
viduals that were not eliminated generate new individuals through the
crossover operation. In this operation, a pair of individuals is selected
sequentially, where the first half of the first individual chromosome and
the second half from the second individual chromosome are used to
create a new individual for the next generation. However, considering
the fact that there was a change in the number of neurons between the
first half and the second half of the new individual, new values for ini-
tial weights and bias are generated following the procedure and search
space described in the individuals’ generation. In the eighth step, 10%
of individuals are selected for the mutation operation. Being selected,
the individual has equal changes to suffer some kind of mutation in
the learning rate, activation functions, number of neurons in a specific
layer or number of layers. Such operation ensures that if any chromo-
some is lost through selection and crossover, it can reappear in future
generations.

After this process, it is verified if the algorithm reached the num-
ber of generations previously defined. If yes, the algorithm presents the
best individual found. If not, the process returns to the step 2.

5.4.3 GPU Implementation

As well as in the feature extraction process, a wide range of
opportunities for parallelization is created by the CPU implementation
proposed in this work. Two steps must be performed in this process:
Hyperparameter Tuning and map generation. For each of these steps,
different approaches can be conducted aiming to optimize the GPU
implementation.

In the first case, the search step-by-step algorithm could be op-
timized, as demonstrate in (JAROS; POSPICHAL, 2012; CARPENTER,
2009). Jaros and Pospichal (2012) proposed a fair GA algorithm com-
parison between the CPU and GPU implementations. Carpenter (2009)
reported a SVM and grid-search GPU implementation. Another possi-
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bility would be a classifier GPU implementation, as reported in (PHAUD-
PHUT; SO-IN; PHUSOMSAI, 2016; BRANDSTETTER; ARTUSI, 2008; RAIZER
et al., 2010), where Phaudphut, So-In and Phusomsai (2016) proposed
a PNN GPU implementation, Brandstetter and Artusi (2008) a RBFN
implementation, and Raizer et al. (2010) a ANN-MLP implementation.
As described in the feature extraction GPU implementation, another
feasible option would be the use of two levels of parallelization. In this
option, both the optimization process and the training and prediction
process could be processed in parallel.

The map generation algorithm offers a wide range of opportu-
nities too. First, as already described, the specific classifier execution
could be modified aiming a GPU implementation. Since this problem
has a large number of instances, a parallel execution would be a option
too. As in the other cases, the combination of these possibilities cre-
ates new possibility of implementation. Aiming to reduce the amount
of modifications of the algorithms, in this work the GPU paralleliza-
tion was performed on the search algorithm in the first step and in the
instances in the second step.

In the hyperparameter tuning step, each image block is processed
as follows:

• Training and validation set are read into host memory;

• Data is copied to the global memory device;

• Grid is defined for the hyperparameter tuning step. Each grid
block represents one possible combination.

• The chosen parameters are copied back to the host.

For the grid-search algorithm, only one kernel is used. In this
case, each combination is one block from the grid. The training and
fitness calculation process for each combination is linear.

In the GA algorithm, the algorithm’s specific operations were
also implemented in the GPU. Each individual from the population is
represented by a grid block, that is, the individuals are parallelized in
this process. As in the grid-search algorithm, the training and fitness
calculation process is linear.

After, in the hyperparameter tuning step, each image block is
processed as follows:

• Features and parameters are read into host memory;

• Data is copied to the global memory device;
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• Grid is defined for map generation step. Each grid block repre-
sents one instance.

• The output classes are saved in the host memory.
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6 RESULTS AND DISCUSSIONS

6.1 IMPLEMENTATION SPECIFICATIONS

The main parameters defined for this work are shown in this
section.

6.1.1 Hyperparameter Tuning Search Space

The search space was defined based on the main characteristics
of each classifier algorithm. Considering that just the σ was optimized,
PNN had the smallest search space. Its definition can be found in the
Table 4.

Table 4 – PNN’s search space totaling 90 combinations.

Parameter Step Range
σ 0.01 0.05-0.95
Source: From authors.

As described before, GA algorithm had to be employed to find
optimal parameters for RBFN and MLP algorithms. Search space size
of each algorithm created this necessity to use another search algorithm.
Two parameters were optimized for the RBFN algorithm: the number
of centers (k) and the σ. The search space used in the experiments can
be found in the Table 5.

Table 5 – RBFN’s search space.

Parameter Range
σ 0.05-0.95
k 2-802

Source: From authors.

Mainly because the ANN-MLP algorithm does not have a well
defined architecture, this algorithm had the largest search space when
compared to the other methods. One problem associated with this
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issue was the definition of the search space. The bias and activation
function parameter search space is known and well defined. However,
the ideal number of hidden layers and neurons per hidden layer is not
known. Considering this context, an experiment was conducted aiming
to identify the convergence capacity with different MLP architectures.

In this experiment, the grid search algorithm was used. In each
combination of hidden layers and number of neurons per hidden layer,
a GA optimization process was employed. In this case, 10% from the
Set I blocks were used totalling 6654 cases. From this number, 10%
was experimentally selected as training case. SFTA with nt = 6 was
used to extract features from the blocks. In the optimization, 100
individuals were tested by 100 generations. The bias value ranged from
0 to 1 and the activation function was chosen between linear, hyperbolic
tangent sigmoid, and Log-sigmoid. The grid search space used in this
experiment is defined in the following table:

Table 6 – Search Space for MLP experiment totalling 100 combinations.

Parameter Step Range
Hidden Layers 2 1-19

Max Neurons per Layer 2 1-19
Source: From authors.

The best MSE from each combination was found. These values
are shown in the Table 7.

Table 7 – Results from MLP experiment.

Maximum Number of Neurons per Layer

H
id
de
n
La

ye
rs

1 3 5 7 9 11 13 15 17 19
1 0,085 0,086 0,086 0,085 0,083 0,081 0,081 0,084 0,079 0,086
3 0,084 0,081 0,077 0,081 0,088 0,092 0,082 0,085 0,080 0,083
5 0,088 0,084 0,086 0,092 0,089 0,121 0,083 0,080 0,085 0,091
7 0,085 0,500 0,121 0,500 0,093 0,094 0,087 0,092 0,079 0,095
9 0,086 0,498 0,500 0,500 0,500 0,500 0,084 0,139 0,113 0,500
11 0,098 0,500 0,499 0,499 0,500 0,500 0,481 0,500 0,500 0,346
13 0,086 0,500 0,500 0,500 0,500 0,500 0,087 0,236 0,500 0,500
15 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,208 0,500 0,500
17 0,236 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500
19 0,500 0,500 0,500 0,500 0,500 0,500 0,449 0,500 0,500 0,500

Source: From authors.
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From the values presented in the Table 7, it is possible to con-
clude that the convergence capacity reduced considerably when the
number of hidden layers was above 9. In addition, within the search
space defined for the number of neurons per layer, it is noticed that this
parameter did not result in abrupt changes in the MSE value. With
this information, the GA total search space was defined as follows:

Table 8 – Search space for ANN-MLP.

Parameter Range
Bias 0-1

Activation Function
Linear,

Log-Sigmoid,
Hyperbolic Tanget Sigmoid

Max Hidden Layers 1-10
Max Neurons per Layer 1-19

Source: From authors.

6.1.2 System Assessment

This work general objective is to increase the overall accuracy
and reduce the time required for Phragmites mapping process when
compared to the state of the art. Considering this fact, specific method-
ologies were proposed for the accuracy and computing time assessment.

6.1.2.1 Accuracy Assessment Methodology

Aiming to evaluate the system’s performance, the GRM was used
to calculate the confusion matrix. This is a specific table commonly
used in the machine learning area that is often used to describe the
performance of a classification model. Mainly in this case where the
classifiers can be defined as binary classifier, the confusion matrix is one
of the simpler ways to present the system’s performance. An example
of confusion matrix is shown in Table 9.

This matrix can be further used for the calculation of other sta-
tistical parameters. These parameters are intended to describe specific
situations presented in the final result. The parameters used to evalu-
ate the performance of each combination are the kappa coefficient (κ),
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overall accuracy (OA), agreement (A), commission error (CE), and
omission error (OE) (JANSSEN; VANDERWEL, 1994).

Table 9 – Confusion Matrix for Binary Classifiers, where P represents
Phragmites, NP not Phragmites, TP is the number of true positive
cases, FP is the number of false positive, FN is the number of false
negative, and TN is the number of true negative.

True Condition
P NP

Predicted
Condition

P TP FP
NP FN TN

Source: Adapted from Janssen and Vanderwel (1994).

The OA is the rate of correct pixels among all pixels and can be
calculated by the following equation:

OA =
TP + TN

TP + TN + FP + FN
(6.1)

The A is the rate of correct pixels within a given category, in
other words, it represents the probability of a reference pixel being
correctly classified. It can be calculated by the Equation 6.2.

Ac =
Pc

Pc +Nc
(6.2)

Where c is the indication of class. For example, in the Anp case, the
Pc value represents the false positive and Nc the false negative.

The CE represent pixels that belong to another class but are la-
beled as belonging to the class and can be calculated using the following
Equation:

CEc =
Tc

Tc + Fc
(6.3)

Where true and false are the values found for the predicted condition.
For example, in the CEP case, the Tc value represents the true positive,
and the Fc represents the false positive.

The OE (Equation 6.4) represent pixels that belong to the truth
class, but fail to be classified.

OE = 1−Ac (6.4)

According to Viera and Garrett (2005), the κ is the most com-
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monly used statistic in remote sensing for studies that measure agree-
ment between two or more learners. This coefficient can be calculated
with the following equation:

κ =
OA− pe
1− pe

(6.5)

Where:

pe = pY es + pNo (6.6)

pNo =
TN + FN

TP + TN + FP + FN
∗ TN + FP

TP + TN + FP + FN
(6.7)

pY es =
TP + FP

TP + TN + FP + FN
∗ TP + FN

TP + TN + FP + FN
(6.8)

6.1.3 Computational Time Assessment Methodology

The analysis of the necessary time to generate a map was divided
into two steps: (i) Feature extraction and (ii) hyperparameter tuning
and classification. In (i), the necessary time to run each algorithm
was computed 100 times. In the second case, considering that the
optimization and classification process are much more time consuming,
the time was computed 5 times per algorithm. From these values, mean
value was computed.

6.1.4 Experimental Setup

The maps were first generated in a MATLAB implementation.
These experiments were performed on a 2.5GHz Intel i5-2450M on 64-
bit Microsoft Windows operating system with 8 GB of RAM.

A C implementation was conducted targeting a fair comparison
between the necessary time to generate a Phragmites map in CPU and
GPU. The CPU experimental is presented in the following table:
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Table 10 – CPU Experimental Setup.

CPU Version Intel i5-4670K
CPU Core 3.4GHz

Memory Size 16GB
Operating System Ubuntu 16.04

Source: From authors.

This C implementation was further used as base for the CUDA
implementation. The GPU experimental setup can be found in the
following Table:

Table 11 – GPU Experimental Setup.

GPU Version GeForce GTX 770
#Cuda Cores 1536
Core Clock 1046MHz

Memory Type 256-bit GDDR5
Memery Bandwidth 224Gbps

Memory Size 2GB
Source: From authors.

GPU experiments were conducted on the same host described
for the CPU.

6.2 ACCURACY ASSESSMENT

In our experiments Site I and Site II were considered. A map
was generated for each combination of Site-Solution. In these maps,
Phragmites agreement is outlined in red, omission cases outlined in
green, and commission cases in blue. In addition, Class-specific classi-
fication accuracies (in percentage), agreement (in percentage), OA (in
percentage), and kappa statistic were calculated for each combination.
After, these values were used in classifier comparisons.
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6.2.1 Grey Level Co-Occurrence Matrix

Table 12 shows the statistical results for the three classifiers and
the state-of-art result. Note that the κ values from GLCM-PNN and
GLCM-MLP are above 0.8. According to Viera and Garrett (2005),
this value represents almost perfect agreement. In the GLCM-RBFN,
the κ is between 0.61 and 0.8, which means substantial agreement.

Table 12 – Site I - GLCM Texture Features.

PNN MLP RBFN SVM
Class P NP P NP P NP P NP

OE (%) 19.6 2.3 16.6 2.6 10.4 4.7 19.0 3.0
CE (%) 14.3 3.3 15.6 2.8 23.8 1.8 18.0 3.0
A (%) 80.4 97.7 83.4 97.4 89.6 95.3 80.0 96.0
κ 0.8018 0.8118 0.7910 0.7700

OA (%) 95.2 95.3 94.5 94.0
Source: From authors.

Table 13 shows the statistical results for site II. In this case, only
the κ value from GLCM-PNN is above 0.8. In the other solutions, the
κ is between 0.61 and 0.8.

Table 13 – Site II - GLCM Texture Features.

PNN MLP RBFN SVM
Class P NP P NP P NP P NP

OA (%) 10.8 0.9 19.5 2.0 31.4 0.9 28.4 2.5
CE (%) 11.7 0.84 24.3 1.5 14.9 2.4 31.0 2.2
A (%) 89.2 99.1 80.5 98.0 68.6 99.1 71.6 97.5
κ 0.8790 0.7626 0.7426 0.6700

OA (%) 98.4 96.7 96.86 95.6
Source: From authors.

Although the GLCM-PNN had a better performance in few pa-
rameters, the GLCM-MLP solution generated the most reliable map
for Site I. This difference is practically negligible if we consider the
large number of variables involved in the proposed system. The good
aspects associated with the GLCM-RBFN results were the best Phrag-
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mites agreement and lowest commission error. Although the GLCM-
RBFN kappa value is in the same range presented by the state-of-art,
its results are slightly better than the presented by the state-of-art.
The same is not true in a comparison between the GLCM-MLP and
the GLCM-RBFN result. GLCM-MLP combination performed better
in all statistical parameters and presented a considerable improvement
in the reliability level of the generated map.

This relation between the techniques changes in the Site II. In
this case, the best result was presented by GLCM-PNN and there is
a considerable difference between GLCM-PNN and GLCM-MLP sta-
tistical parameters. Furthermore, there are some differences between
GLCM-RBFN results for Site I and II. Although GLCM-RBFN not
Phragmites agreement is one of the highest, the Phragmites agreement
is the lowest. Another fact to be highlighted is the not Phragmites
agreement presented by the GLCM-RBFN combination. Althought
this is not the best result, it presented the highest not Phragmites agree-
ment. In addition, despite a lower κ if compared to the GLCM-MLP
solution, the overall accuracy is higher. Both facts can be explained by
the missclassification of considerable stands.

Figure 27 – Comparison between a river sunlight reflection (a) and
Phragmites (b) blocks.

(a) (b)

Source: Images from authors.

As shown in Figures 28, 29, and 30 from Site I and Figure 31
from Site II, the main area of misclassification is with respect to blocks
that represent locations of transition between P and NP . This is a
block processing drawback because in some of these blocks the non-
Phragmites object comprises higher area than Phragmites, and, as con-
sequence, the distance found by the classifier between the block’s pa-
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rameters and NP was smaller than with P . In addition, in these cases
regardless of the class defined by the classifier, part of the block will
be a source of missclassification. River sunlight reflection is a common
source of error for the three approaches too. This can be explained
mainly by the granularity presented in both cases, as shown in the
Figure 27.

In addition, intermixing of vegetation was a smaller source of
error for the three methods. This was already expected, because in
several related works the problem related to the vegetation mix was
discussed. In both Sites, the intermixing of threes and Phragmites was
the main problem found.

Other aquatic vegetation are a specific issue for the GLCM-
RBFN method, being one of the main sources of degradation of the
result. The low number of centers in the hidden layer may have di-
rectly influenced this aspect. This was the source of the error that
caused the biggest accuracy difference between the maps. More results
can be found on the annex A.

Figure 28 – Site I assessment for PNN classification using GLCM tex-
ture features.

Source: Image from authors.
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Figure 29 – Site I assessment for MLP classification using GLCM tex-
ture features.

Source: Image from authors.

Figure 30 – Site I assessment for RBFN classification using GLCM
texture feature.

Source: Image from authors.
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Figure 31 – Site II assessment for RBFN classification using GLCM
texture features.

Source: Image from authors.



106

6.2.2 Gabor Filters

Table 14 shows the statistical results for site I. The combination
GF-PNN presented the best solution. Despite the specific poor agree-
ment presented by the GF-RBFN solution, GF-PNN and GF-MLP so-
lutions presented substantial agreement.

Table 14 – Site I - Texture Features Based on GF.

PNN MLP RBFN SVM
Class P NP P NP P NP P NP

OE (%) 30.3 2.4 28.5 3.2 100 0 26.0 3.3
CE (%) 17.2 4.9 21.0 4.7 0 14.4 21.0 4.0
A (%) 69.7 97.6 71.5 96.8 0 100 73.0 96.6
κ 0.7200 0.7111 0.0 0.7100

OA (%) 93.6 93.2 85.6 93.0
Source: From authors.

Table 15 – Site II - Texture Features Based on GF.

PNN MLP RBFN SVM
Class P NP P NP P NP P NP

OA (%) 13.5 1.4 28.6 3.8 100 0,0 28.4 2.5
CE (%) 17.0 1.1 40.7 2.2 0 0.07 31.0 2.2
A (%) 86.5 98.6 71.4 96.2 0 100 71.6 97.5
κ 0.8351 0.6177 0.0000 0.6700

OA (%) 97.7 94.4 92.8 95.6
Source: From authors.

The GF based results for Site II are shown in Table 15. As well
as for Site I, the GF-RBFN did not converge again independently of the
parameters used in the hyperparameter tuning step. Two linked factors
can be associated to this problem: First, the number of centers may not
have been enough to differentiate the objects. That is, as demonstrated
in the GF-RBFN combination, a larger number of neurons in the hidden
layer may have helped in the final result. Second, as shown in the Figure
14, the encoding of the main blocks is very similar. This fact helps to
explain the necessity of a higher number of centers to distinguish the
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objects. The κ value for the GF-PNN solution is the unique in in the
almost perfect agreement. State-of-art and GF-MLP solutions κ value
are in the substantial agreement.

Although GF-PNN and GF-MLP combinations had a higher κ
result if compared to the state-of-art for Site I, the same is not true
for other parameters. As shown in Samiappan et al. (2016a) work, the
Phragmites agreement is higher and omission error is lower. In addition,
the difference in kappa value between the GF-MLP and state-of-art is
practically negligible. A negative aspect presented by the best solution
for Site I is the low Phragmites agreement.

The results presented for Site II changed drastically if compared
to Site I results. All parameters calculated from the GF-PNN solu-
tion improved. In addition, the GF-MLP combination results decrease
considerably. One of the main consequences is the missclassification of
areas with low density of Phragmites.

Figure 32 – Site I assessment for PNN classification using texture fea-
tures based on GF.

Source: Image from authors.

Furthermore to the problems reported in the GLCM results sec-
tion, a negative aspect presented by all solutions based on GF is the
high number of small stands that were missclassified (see Figures 32,
42, 33, and , 47 for more details). This issue was the main source
of errors for the GF-MLP and it is an important problem for the re-
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source managers, since it would cause additional effort visiting false
positive stands. Different vegetation are the main responsible for these
missclassified areas.

Figure 33 – Site I assessment for PNN classification using texture fea-
tures based on GF.

Source: Image from authors.
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6.2.3 Segmentation-based Fractal Texture Analysis

For the Site I, all combinations presented a value in the sub-
stantial or almost perfect agreement range (see Table 16).In this case,
SFTA-PNN and SFTA-MLP have κ values above 0.8, where the first
combination presented a very high value. The state-of-art and SFTA-
MLP are in the substantial agreement range.

Table 16 – Site I - SFTA Texture Features.

PNN MLP RBFN SVM
Class P NP P NP P NP P NP

OE (%) 11.9 1.31 16.4 2.0 30.3 2.4 15.8 5.8
CE (%) 8.2 2.0 12.4 2.7 17.2 4.9 29.5 2.7
A (%) 88.1 98.7 83.6 98.0 69.7 97.6 84.1 94.1
κ 0.8827 0.8319 0.7200 0.7200

OA (%) 97.2 95.9 93.6 92.0
Source: From authors.

As presented in the table 17, the SFTA-RBFN solution was the
unique combination that did not present a κ above 0.61. As well as
in the GF based solution, the SFTA-RBFN solution resulted in low
Phragmites agreement in both Sites.

Table 17 – Site I - SFTA Texture Features.

PNN MLP RBFN SVM
Class P NP P NP P NP P NP

OA (%) 10.0 0.1 23.4 0.9 68.8 0.3 34.1 2.1
CE (%) 1.5 0.8 13.5 1.8 12.2 5.1 28.7 2.6
A (%) 90.0 99.9 76.5 99.1 31.2 99.7 65.9 97.9
κ 0.9362 0.7985 0.4394 0.6613

OA (%) 99.2 94.4 92.8 95.6
Source: From authors.

Unlike in the other feature extraction algorithms, this presented
a clear pattern between the validation data in the Table 16 and 17. The
SFTA-PNN resulted in the most reliable map in both Sites. In addi-
tion, SFTA-PNN and SFTA-MLP had similar agreement value for both
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classes. The considerable drop in the Phragmites agreement value for
SFTA-RBFN was the main anomaly. This fact may be a consequence
of the low maximum number of centers defined for this work. As shown
in the Figures 34 and 35, there are small stands identified as Phrag-
mites within the real stand. This can be a consequence of a specific
pattern identified by a center. In addition, major pattern change in
the stands may have caused this smaller value. Despite these facts, the
other solutions presented reasonable values of κ for the Site II.

The same problems described in the GLCM assessment section
can be used to explain the sources of missclassification in the SFTA-
PNN and SFTA-MLP solutions. As can be seen in the Figure 44,
the problem related to the river sunlight reflection happened just with
the SFTA-MLP solution. Part of the SFTA features come from the
boundary complexity. Considering that and the blocks specificity, the
values extracted for the boundaries are very similar. This difference
may be not enough in the process of classification.

Regardless the reported problems, it is important to highlight the
high capacity demonstrate by the SFTA-PNN solution (See Figure 36).
In this combination, the main problems are related to the transition
between P and NP . However, the system presented a good mapping
capacity mainly in dense areas.

Figure 34 – Site I assessment for RBFN classification using SFTA tex-
ture features.

Source: Image from authors.
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Figure 35 – Site II assessment for RBFN classification using SFTA.

Source: Image from authors.
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Figure 36 – Site II assessment for PNN classification using SFTA tex-
ture features.

Source: Image from authors.
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6.2.4 Wavelet Texture Analysis

Table 18 and 19 shows the statistical results obtained for the
solutions based on WTA. In addition, they present the results obtained
by Samiappan et al. (2016a) and Casagrande et al. (2017). In both
situations, only the solutions based on WTA-PNN achieved a κ value
above 0.8. The other results are between 0.61 and 0.8.

Table 18 – Site I - WTA. PNN-2 column represents Casagrande et al.
(2017) results.

PNN MLP RBFN SVM PNN-2
Class P NP P NP P NP P NP P NP

OA (%) 8.4 1.1 19.8 4.0 18.9 3.0 27.0 2.6 14.8 0.4
CE (%) 6.8 1.4 24.1 3.1 18.0 3.2 17.9 4.3 3.1 2.4
A (%) 91.6 98.9 80.2 96.0 81.1 97.0 72.9 97.3 85.2 99.6
κ 0.9113 0.7443 0.7843 0.7300 0.8900

OA (%) 97.8 93.9 94.7 93.0 97.5
Source: From authors.

Table 19 – Site II - WTA. PNN-2 column represents Casagrande et al.
(2017) results.

PNN MLP RBFN SVM PNN-2
Class P NP P NP P NP P NP P NP

OA (%) 10.8 0.1 30.3 0.9 29.6 1.3 35.6 1.3 20.6 0.2
CE (%) 1.3 0.8 14.9 2.3 18.9 2.3 16.5 3.6 3.8 1.6
A (%) 89.2 99.9 69.7 99.1 70.4 98.7 64.4 98.7 79.3 99.8
κ 0.9325 0.7500 0.7359 0.70 0.8600

OA (%) 99.1 96.9 96.7 95.5 98.3
Source: From authors.

As well as in the GLCM-based solution, the WTA-RBFN had
a good performance in both Sites. Specific aquatic and non-aquatic
vegetations were the main source of error on the final map (Figures 45
and 51). In addition, low density Phragmites blocks contributed to the
reduction of system accuracy.

As demonstrated in the Figures 38 and 49, the WTA-RBFN
solution also had problems with aquatic plants. In addition, an anomaly
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can be seen in Figure 38, where a lake was completely identified as
Phragmites. WTA-PNN combination presented the most reliable map.

Figure 37 – Site I assessment for PNN classification using WTA.

Source: Image from authors.

Figure 38 – Site I assessment for MLP classification using WTA.

Source: Image from authors.
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Figure 39 – Site II assessment for PNN classification using WTA.

Source: Image from authors.

6.3 COMPARATIVE STUDY WITH OTHER TECHNIQUES

Based on the work by Kotsiantis (KOTSIANTIS, 2007), we per-
formed a comparative study with other classification approaches. Since
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decision trees can be translated into a set of rules by creating a separate
rule for each path (QUINLAN, 1993), this study did not consider this
kind of logical learning method. In addition, three ANN architectures
were proposed in this work for mapping Phragmites, we did not include
other neural networks for comparison.

Hence, our comparative study comprises the following classifiers:
SVM, k-NN, Decision Tree (DT), Naive Bayes (NB), and the best
results presented in the previous section for Site I and II. Tables 20
and 21 show the system’s performance considering these classifiers for
site I and II, respectively. The results for SVM were obtained from the
work by Samiappan et al. (SAMIAPPAN et al., 2016a).

Table 20 – Learning algorithms assessments for Site I

Best Result SVM K-NN DT NB
Class P NP P NP P NP P NP P NP

OA (%) 8.4 1.1 27.0 2.6 7.7 7.4 12.8 6.7 10.4 11.1
CE (%) 6.8 1.4 17.9 4.3 32.3 1.4 31.4 2.3 42.5 1.9
A (%) 91.6 98.9 72.9 97.3 92.3 92.6 87.2 93.3 89.6 88.9
κ 0.9113 0.7300 0.7400 0.7200 0.6400

OA (%) 97.8 93.0 92.6 92.4 89.0
Source: From authors.

Table 21 – Learning algorithms assessments for Site II

Best Result SVM K-NN DT NB
Class P NP P NP P NP P NP P NP

OA (%) 10.0 0.1 35.6 1.3 10.0 7.7 12.4 9.5 24.6 9.7
CE (%) 1.5 0.8 16.6 3.6 45.5 1.1 51.4 1.4 55.6 2.7
A (%) 90.0 99.9 64.4 98.7 90.0 92.3 87.6 90.5 75.4 90.3
κ 0.9362 0.7000 0.7359 0.5700 0.5000

OA (%) 99.2 95.5 92.1 90.2 89.0
Source: From authors.

From the data presented in Tables 20 and 21, it is possible to
conclude that there is an inverse relationship between Phragmites and
not Phragmites agreement. While k-NN has a higher P agreement, it
has a smaller NP agreement. In the other side, PNN and SVM have a
higher NP agreement and a smaller P agreement. Despite this fact that
PNN had not the highest Phragmites agreement, it had the highest not
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Phragmites agreement, κ, and OA for Site I and II. k-NN presented the
highest P agreement. Among the other learning algorithms, SVM had
the highest OA for both Sites but k-NN had the best κ.

6.4 CPU X GPU ASSESSMENT

Only Site I was considered in this study. Table 22 shows the
computational time necessary for the feature extraction method.

Table 22 – CPU Time

GLCM SFTA WTA
Time 339.46s 349.11s 24.74s

Source: From authors.

As expected, WTA implementation took less computational time.
This is the method that has the least number of iterations in its algo-
rithm. In the other side, SFTA took the longest computational time.
The same explanation can be used in this case, because SFTA has a
considerable number of iterations in its algorithm mainly because the
thresholds. Table 23 shows the computational time for these methods
in the GPU.

Table 23 – GPU Time

GLCM WTA
Time 43.85s 25.82s
Source: From authors.

As in the CPU, the WTA algorithm took the shortest time. As
it can be observed, the computational time required to run in both
situations is practically the same. This fact is associated with the
complexity of the algorithm and the associated time to copy the data
into the device. The same is not true for the GLCM implementation.
In this case, the GPU implementation obtained a speedup of 7.7 times.

Table 24 shows a comparison between classification methods with
hyperparameter tuning.
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Table 24 – CPU Hyperparameter Tuning and Map Generation steps

GLCM SFTA WTA
PNN 709.8s 667.7s 535.1s
MLP 146008s 202425s 74266s
RBFN 48462.7s 78110.8s 34071.6s
SVM 355.1s 407.3s. 393.7s

Source: From authors.

Some important aspects can be concluded from these data. As
expected the GA optimization takes much more time than the grid-
search algorithm mainly by the number of combinations tested. Except
by the SFTA-PNN combination, the solutions based on SFTA took
more time than others. This can be explained by number of features.
The same can be observed in the solutions based on WTA. Table 25
shows the computational time on GPU for the classifier that presented
best accuracy.

Table 25 – GPU Hyperparameter Tuning and Map Generation steps
for PNN solutions

GLCM SFTA WTA
PNN 18, 5s 31, 0s 4.7s

Source: From authors.

A major speedup was found in the GPU implementation from
PNN. As described in the subsection 5.4.3, this was already expected
since this problem is very parallelizable. Beside the combinations, in
the grid-search algorithm the instances were executed in parallel. That
is, each block processed a combination and in each block the threads
processed the instances. After, in the map generation step, the in-
stances were divided into threads and blocks.

6.5 DISCUSSIONS

As discussed in the section 6.3, analyzing the statistical param-
eters values and maps presented in the section 6.2, it is possible to
conclude that the same inverse relationship happened for the PNN,
MLP, and RBFN based solutions. That is, there is a trade-off between
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P and NP agreement. This is mainly caused by the proportion and
the instances used in the training set of each classifier.

Among all problems discussed in the subsections from section
6.2 and in the section 6.3, the main source of errors are:

1. Transition between P and NP ;

2. Intermixing of vegetations;

3. River sunlight reflection;

The first error can be found in all maps. This is a drawback
from the block processing method. Although not so frequent in the
maps presented, the intermixing of vegetations problem can be found
in blocks where Phragmites mix with trees or aquatic vegetation. This
kind of problem has already been reported in related works. The third
problem happened only in the GLCM, GF, and SFTA based solutions.
As described, a specific Phragmites characteristic was responsible for
this missclassification. This problem could be solved including a pre-
extraction step aiming to remove the river object.

Figure 40 – Site I assessment for k-NN classification, where Phragmites
agreement is outlined in red, omission cases outlined in green, and
commission cases in blue.

Source: Image from authors.

Although these problems, the best solution for Site I (WTA-
PNN) and Site II (SFTA-PNN) presented maps with a high level of
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reliability. If we compare the best solutions presented in the section
6.2 with the Samiappan et al. (2016a), and k-NN results (Figures 40
and 41), it is possible to verify that PNN was the unique technique that
did not present new Phragmites patches that don’t exist. That is, the
system’s misclassification were mainly located in the boundaries, and,
in few cases, in the middle of real patches. This error remains a problem
for remote monitoring efforts, but it means that the resource managers
would not need to move to new areas that do not have Phragmites. This
reaffirms the fact that, although there is still room for improvement,
the proposed solution was able to considerably improve the confidence
level of the generated maps. Although the best results from this work
and Casagrande et al. (2017) are very similar, a major improvement
in Phragmites accuracy was found mainly because the of an hyperpa-
rameter tuning step. This represents a major improvement for resource
managers as this generates more accurate information that can be used
to define the best solution for the area in analysis.

Another important aspect to highlight from section 6.3 is the
PNN performance dominance over other techniques for all performed
tests, except for the Site I GLCM-MLP solution. The same conclusion
was made by other authors in (ZHAO; HUANG; GUO, 2003; MIRZAEI et al.,
2011). Although it requires more memory than the other techniques, it
demonstrated a high potential for the problem described in this work.
Furthermore, SFTA and WTA also showed a higher potential when
compared to GLCM and GF.

In the section 6.4 two important facts must be highlighted: First,
the CPU implementation in C reduced considerably the necessary time
per squared kilometer. In Samiappan et al. (2016a), the authors de-
scribed that the overall processing time per square kilometre is ap-
proximately 50 min. Although in this case we are not considering the
mosaicing step, the overall processing time for the same solution in C
was approximately 12 minutes for the whole Site I. The same happened
if we compare the WTA-PNN implementation proposed in this work
with Casagrande et al. (2017) MATLAB implementation. In this case,
the overall processing time was approximately 10 minutes for the whole
Site I against 45 minutes per square kilometer. Second, the GPU im-
plementation for this problem is viable and it greatly reduced the pro-
cessing time required to generate a map. This improvement is essential
for the resource managers, since time is an essential factor in Phrag-
mites propagation. That is, the possibility of a map with high level of
reliability being generated in few hours can an important monitoring
tool for resource managers.
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Figure 41 – Site II assessment for k-NN classification, where Phragmites
agreement is outlined in red, omission cases outlined in green, and
commission cases in blue.

Source: Image from authors.
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7 CONCLUSION

In this work it was presented a comparative study of image
texture analysis and machine learning methods for classification of
Phragmites australis in imagery aquired by LARS with a small, hand-
launched UAS. In addition, a GPU implementation for the best results
was presented aiming to reduce the total computational time necessary
to generate the map.

For comparison and consistency, it was performed evaluation
with the same imagery aquired by Samiappan et al. (2016a). The ex-
perimental study presented in this work shows that the combination
of PNN with WTA for Site I and PNN with SFTA for Site II yields
superior classification accuracies if compared to the other combinations
proposed here. In addition, the same was found when compared to the
state-of-art results. A major improvement in Phragmites agreement for
both Sites resulted in a higher overall accuracy and κ value.

Based on experimental results presented in this research, WTA
and SFTA presented the best capacity to distinguish Phragmites stands
from other objects accurately. In addition, PNN-based solutions had
the best results in the majority of the cases. This fact was already
expected, since the same conclusion was found in works that compared
the same ANN architectures.

Furthermore, the necessary computational cost necessary to gen-
erate the final map was reduced considerably in this work through a
GPU implementation. This result was already expected too, since the
methodology proposed is very parallelizable. In addition, the blocks
and the instances do not have a direct relation, reducing the imple-
mentation complexity of the procedures.

As future work, we propose to parallelize the other methods of
classification with a GPGPU. In addition, aiming to reduce the Phrag-
mites omission error, we propose the implementation of recursive block
subdivision and further classification when the original block summa-
tion is below a specific threshold.
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ANNEX A -- Gabor Extracted Features Examles
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Figure 42 – Site I assessment for MLP classification using texture fea-
tures based on GF.

Source: Image from authors.

Figure 43 – Site II assessment for PNN classification using SFTA tex-
ture features.

Source: Image from authors.
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Figure 44 – Site I assessment for MLP classification using SFTA texture
features.

Source: Image from authors.

Figure 45 – Site I assessment for RBFN classification using WTA.

Source: Image from authors.
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Figure 46 – Site II assessment for MLP classification using GLCM.

Source: Image from authors.
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Figure 47 – Site II assessment for MLP classification using GF.

Source: Image from authors.
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Figure 48 – Site II assessment for MLP classification using SFTA.

Source: Image from authors.
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Figure 49 – Site II assessment for MLP classification using WTA.

Source: Image from authors.
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Figure 50 – Site II assessment for RBFN classification using GLCM.

Source: Image from authors.
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Figure 51 – Site II assessment for RBFN classification using WTA.

Source: Image from authors.


