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Abstract of thesis presented to the Senate of  Universiti Putra Malaysia in fulfillment of 

the requirement for the degree of Doctor of Philosophy  

 

STRUCTURAL HEALTH MONITORING AND DAMAGE DETECTION FOR 

COMPOSITE PANEL STRUCTURES VIA STATISTICAL ANALYSIS 

By 

 

NISREEN N. ALI AL-ADNANI 

 

May 2015 

 

Chairman: Faizal Mustapha, PhD, PEng. 

Faculty : Engineering 

 

Rectangular panels with or/and without mass loading are widely applied in civil, 

aerospace and mechanical engineering. Changes such as cracks, corrosion or drilled 

holes can affect the structure and integrity of components. This study focuses on three 

(3) parts of experimental works: firstly, to fabricate the three types of composite 

materials panels; secondly, to assess the mechanical properties, the micro structure and 

thermal analysis of the materials, and thirdly, to detect the damage by using smart 

sensor to appraise the Structural Health Monitoring (SHM) technique and damage 

identification. To do this, aluminium alloy type 6061-T6 and three fabricated 

composite materials are utilized. These composites are combined with epoxy resin as a 

matrix mixed individually with Twill Weave 240 g/m² carbon fiber (CFW), Plain 

Weave 300 g/m² Glass Fiber (GFW) and Chopped Strand Mats 450 g/m² glass fiber 

[GF (CSM)] as fillers. This study also includes the fabrication procedure of the three 

types of composite panels by using hand lay-up and vacuum bagging process. Al 6061-

T6 is considered as a reference material in order to evaluate the characterizations of the 

new composite materials. Moreover, each material has a case study and eventually this 

research has four case studies. The first case (undamaged) is considered as a reference 

or the baseline standard data.  Crack’s damages are simulated variedly in the panels to 

reflect the three damage cases in length such as 10 mm, 15 mm and 20 mm. 

Piezoelectric ceramic Lead Zirconate Titanate (PZT) transducer as a sensor is used to 

acquire the real time data. The comparison is carried out for damage detection and 

identification, based on the natural frequency approach and power spectrum with 

accuracy performance via signal from smart sensor (PZT). Root Mean Square 

Deviation (RMSD) index and Frequency Reduction Index (FRI) as statistical analysis 

methods for damage magnitude are performed to improve the SHM technique. RMSD 

out coming improves the damages identification, when the crack is increased RMSD is 

increased as well. Finally, SHM approach using PZT is improved and eventually very 

noticeable and probable changes in the natural frequency are observed, particularly 

when the damaged depth is increased in the composites. Meanwhile, the comparison 

between the CFW reinforced epoxy resin and the two glass fiber reinforced epoxy 

include the micro structure, thermoplastic analysis and mechanical properties. In 

general, CFW as a composite improved a higher micro structure, thermal analysis and 

mechanical properties and higher resistance against the vibration effect which is more 

than the two types of investigated glass fibers. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 

memenuhi keperluan untuk ijazah Doktor Falsafah  

 

PEMANTAUAN KESIHATAN STRUKTUR DAN PENGENALAN 

KEROSAKAN MELALUI ANALISA STATISTIK UNTUK PANEL KOMPOSIT  
 

Oleh 

 

Nisreen N. ALI AL-ADNANI 

 

Mei 2015 

 

Pengerusi:  Faizal Mustapha, PhD, PEng. 

Fakulti : Kejuruteraan 

 

Panel segiempat tepat dengan  / tanpa muatan jisim telah digunakan secara meluas 

dalam bidang kejuruteraan awam, aeroangkasa dan mekanikal. Perubahan-perubahan 

seperti retak, kakisan atau lubang yang telah digerudi, boleh menjejaskan struktur dan 

integriti komponen. Kajian ini bertujuan memberi tumpuan kepada tiga bahagian kerja-

kerja eksperimen: pertama, untuk memfabrikasi tiga jenis bahan komposit panel, 

kedua, untuk menilai sifat-sifat bahan mekanik, struktur mikro dan analisis terma bahan 

dan ketiga, untuk mengesan kerosakan dengan menggunakan sensor bijak untuk 

menilai teknik Pemantauan Kesihatan Struktur (donation) serta mengenal pasti 

kerosakan. Oleh itu, Aluminium aloi jenis 6061-T6 dan tiga fabrikasi bahan komposit 

digunakan. Komposit ini menggabungkan epoksi resin sebagai matriks bercampur 

secara individu dengan Twill Weave 240 g / m² carbon fiber (CFW), Plain Weave 300 

g / m² Glass fiber (GFW) dan  Chopped Strand Mats 450 g serat / m² Glass fiber [GF 

(CSM)] sebagai pengisi. Kajian ini juga termasuk prosedur fabrikasi daripada ketiga-

tiga jenis panel komposit dengan menggunakan proses kaedah sapuan (hand lay-up) 

dan vacuum bagging . A 6061-T6 dianggap sebagai bahan rujukan untuk menilai 

pencirian bahan komposit baru. Selain itu, setiap bahan mempunyai kajian kes dan 

akhirnya kajian ini mempunyai empat kajian kes. Kes pertama (tidak rosak) dijadikan 

sebagai rujukan atau garis dasar data standard. Manakala, untuk mencerminkan tiga kes 

kerosakan dalam panel, ditunjukkan perbezaan simulasi berbeza ukuran,  seperti 

10mm, 15mm dan 20 mm. Piezoelectric ceramic Lead Zirconate Titanate  (PZT) 

transducer sebagai sensor digunakan untuk memperoleh data masa sebenar. 

Perbandingan ini dijalankan untuk mengenalpasti serta mengesan kerosakan , 

berdasarkan kepada pendekatan frekuensi semulajadi dan spektrum kuasa dengan 

ketepatan prestasi melalui isyarat daripada sensor pintar (PZT). Dalam kajian ini, 

indeks Root Mean Square Deviation (RMSD) dan Frequency Reduction Index (FRI) 

dijalankan bagi mendapatkan analisis statistik untuk magnitud kerosakan bagi 

memperbaiki teknik Pemantauan Kesihatan Struktur (SHM) (donation). Didapati Root 

Mean Square Deviation (RMSD) berfungsi meningkatkan aktiviti kenalpasti kerosakan 

dan didapati juga apabila keretakan meningkat, Root Mean Square Deviation (RMSD) 

juga meningkat. Akhir sekali, SHM melalui pendekatan PZT adalah bertambah baik 

dan telah disedari beberapa perubahan dalam frekuensi semulajadi terutamanya apabila 

kedalaman kerosakan meningkat di dalam komposit. Apabila kedalaman keretakan 

meningkat,  frekuensi didapati menurun. Sementara itu, perbandingan juga dibuat di 

antara CFW resin epoksi dengan dua gentian kaca bertetulang epoksi termasuk struktur 

mikro, analisis termoplastik serta sifat-sifat mekanik bagi ketiga-tiga jenis. Umumnya, 

CFW sebagai komposit adalah lebih baik dalam  struktur mikro, analisis terma dan 
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sifat-sifat mekanik serta ketahanan yang lebih tinggi terhadap kesan getaran dimana 

lebih daripada dua jenis gentian kaca telah diujikaji.  
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 General 

 

Civil, aerospace and mechanical structures are the most expensive national assets of 

any country. These structures have long service life and are very costly to maintain and 

replace once they are built. In the past few years, Structural Health Monitoring (SHM) 

technique has been a growing issue, acknowledged as an important consideration and 

outstanding in its extensive applications. SHM is the implementation and procedure of 

damage detection to assess, improve and ensure the integrity, safety and reliability of 

the engineering substructures before they reach a critical state.  Once the life of these 

structures and their substantial usage have started, it becomes crucial to monitor and 

assess their structural integrity.   

 

Damage detection existences in these structures can enhance the safety, security, and 

prolong the structures’ service life, and reduce the operational and maintenance costs.  

Early detection of the damage or structural degradation prior to local failure can 

prevent a catastrophic collapse of those structures. Typical damage in these 

infrastructures might be due to the development of cracks, degradation of structural 

connections, bearing wearing and shearing in rotating machinery, or from excessive 

external loads such as: strong winds, earthquakes, explosions and vehicle impacts. The 

most important structures include high-rise buildings, bridges, power utilities, nuclear 

power plants, and dams, in addition to aircraft and mechanical applications (Figure 

1.1).  
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Figure 1.1 Examples of the Greatest Expensive Infrastructures. 

(Kinematics, 2015) 

 

The goal of SHM is to improve safety and reliability of infrastructure systems by 

detecting damage before it reaches a critical state and allow rapid post-event 

assessment. Tall buildings that materialized in the late nineteenth century have 

developed into a worldwide architectural marvel. Universally, many tall buildings were 

built especially in Asian countries, such as Japan, Malaysia, Korea and China. 

Conventionally, the tall buildings development functions have been as commercial 

office buildings due to rapidly increased or residential, mixed-use, and hotel towers.  

The construction of tall buildings will continue due to their important economic 

suitability in dense urban land use. “Tall building development involves various 

complex factors such as economics, technology, municipal rules, and politics, and 

economics has been the primary governing factor. The new structures types however, 

would not have been possible without supporting technologies”, (Ali & Moon, 2007). 

 

Recently, extensive research work in civil and aerospace applications has been 

extended by using fibre-reinforced plastic composite materials. Composite materials 

are increasingly being used in substructure applications such as reinforcement in 

structural shapes, various hybrid structures, pre-stressing for new concrete structures, 

strengthening for existing concrete as well as for bridge decks. These materials contain 

strong and continuous fibres bound together by a continuous matrix of polymer resin. 

The development of composite materials has been enhanced rapidly because of 

improvements in process technology and economic benefits.  Significant mechanical 
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properties results of composite materials have great advantages ranging from increased 

strength and durability features to weight reduction and lower petroleum ingesting 

compared with conventional and competitive materials. Structural vibration control 

along with smart materials is gradually being used for flexible structures and it has 

achieved impressive development. This is apparently in response to the high demand 

for safer structures and lower costs. For rational structural health monitoring 

applications, the large size of host structures may require innovative sensing 

technologies and use of appropriate software and hardware systems for data acquisition 

or reduction. Novel smart sensors and actuators, such as Piezoelectric Ceramic Lead 

Zirconate Titanate (PZT) transducers have been identified as the method of structural 

health monitoring technology development and it is widely used for monitoring 

requests. PZT materials are utilized as a powerful and innovative tool for local damage 

detection of various structures.  

 

National Instrument and LabVIEW software is a graphical programming environment 

for developing refined measurement, test, and control systems by using intuitive 

graphical icons and wires that resemble a flowchart. LabVIEW software provides a 

small, simple, and affordable system for making vibration measurements in the lab and 

field. LabVIEW offers unrivalled integration with thousands of hardware devices, 

including NI-DAQ, (LabVIEW
TM

 SinalExpress). It provides hundreds of built-in 

libraries for advanced analysis and data visualization as well as analyze data in real 

time, and creates custom reports using the industry standard tool. In general, a typical 

SHM system includes four major components (Dong et al., 2010):  

1. Structure prototype, 

2. A sensor system,  

3. A data processing system including: data acquisition, program, and storage, and  

4. A health evaluation system: including diagnostic information and organization. 

 

1.2 Problem Statement 

 

The maintenance and inspection infrastructures are very critical, and necessary to 

minimize the time period that the structures are out of service. Via SHM, the 

inspection, maintenance time and cost can be reduced. In addition, “SHM systems give 

online details about the structural safety” (Alexopoulos et al., 2010). A robust SHM 

scheme requires the unique characterization of the presence, location and severity of 

the damage. All structures in civil, aerospace and mechanics age and deteriorate with 

time. Vibration effects on structures are due to seismic or/and traffic, and this research 

considers the effect of traffic vibration.  

 

The most common failures in material plate as a component are cracks and it is 

extensively found in civil, aerospace, shipbuilding, and additional productions. 

Quantitative indication of crack size and its location is of principal importance for 

damage identification in order to improve and maintain its life prediction. Frequency 

measurement is used to detect damage located at districts of low stress which might be 

undependable otherwise a shift in natural frequency might provide sufficient 

information for integrity monitoring when the damage is in a significant load bearing 

member (Salawu, 1997).  

 

In structures, one of the critical portions is the mid-span and its up loading which 

creates the maximum bending moment. In a beam with a pin or a roller which supports 

at both ends, the moment is zero, while its maximum is at the load point and in this 
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case it is the mid span (Sozen & Ichinose, 2008).  At the higher load, the moment will 

be distributed to the mid span as shown in Figure 1.2. More attention must be paid to 

this portion to study the crack and negative effects especially in tall buildings. Several 

investigators have contributed to the study of crack detection and identification in 

various structure materials. 

 

 
 

Figure 1.2. Simply Supported Beam under Uniformly Distributed Load. 

(Sozen & Ichinose, 2008) 

 

This research included an evaluation of the mechanical properties, micro structure and 

thermal analysis of the different fabricated composite panels as new materials to assess 

their characterizations. SHM was adopted in this research as a non-destructive 

technique to detect the damage via experimental procedures analysis to identify 

different cases of damages.  

 

Real time monitoring for damage detection and identification of structures utilizing 

simple technique, and inexpensive available hardware connected with active and smart 

sensors is a great challenge. Nevertheless, to the best of the researcher’s knowledge, no 

results have been published on the subject of SHM for damage identification regarding 

the same specification of these composite structures and selected damage parameters 

using smart sensor (PZT) and National Instrument LabVIEW SignalExpress software 

under the effect of mechanical vibration exciter. 

 

1.3 Research Objectives  

 

The aim of this research is damage detection and identification to incorporate a robust 

Structural Health Monitoring (SHM) scheme. This technique is applied on an 

aluminum alloy and composite materials that emulate three-storey structures through 

an application by using smart materials technology such as PZT sensor. This sensor is 

used to capture natural frequency and power spectrum responses to distinguish 

structural status.  The objectives of this research are as follows:  

1. To fabricate a three-storey aluminium frame to be the structure (prototype) for the 

four case studies. Also added is a definition for the materials, sensor and data 

acquisition with suitable software. 

2. To compute the mechanical properties, micro structure and thermo plastic analysis 

of the new fabricated composites as a new material’s components. Based on these 

characterization’s results, these new composites can be evaluated then compared 

with the Al 6061-T6 alloy properties. 
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3. To acquire the real time signals for crack’s damage using a smart system. This 

research consists of four material’s panels in four cases: undamaged as a 1
st
 case 

and considered as a reference, in addition to three cracks formed with lengths of 

10 mm, 15 mm and 20 mm to simulate 2
nd

, 3
rd

 and 4
th

 cases, respectively. 

4. To evaluate and assess the vibration effects on composite structures and to 

provide the significance and efficiency of the SHM system for damage detection 

and identification for composite panels. Statistical analysis according to RMSD 

and FRI equations was performed the results compared to the three composites 

with an Al 6061-T6 panel’s results. 

 

1.4 Research Scope 

 

This research scope included: 

1. Design and Construction: An aluminum frame designed to be the base for the 

structure’s prototype. 

2. Composites Fabrication: Three fibre/epoxy composites fabricated involving 

three types of fibres mixed individually with epoxy resin as a matrix. 

3. Operational Evaluation: Evaluate the new composite materials by computng the 

mechanical properties, micro structure and thermo plastic analysis. 

4. Data Acquisition and Feature Extraction to Identify the Damage: Acquire 

data via SHM technique using PZT sensor and NI LabVIEW SignalExpress 

software. Observation and evaluation of the natural frequency distinction as one 

of the dynamic properties of structures via the specimen’s excitation and from the 

large set of data acquisition. 

5. Statistical Pattern Recognition: To predict the structures integrity, Frequency 

Reduction Index (FRI) and Root Mean Square Deviation (RMSD) index were 

employed to evaluate the collected data. 

 

1.5 Thesis Layout 

 

This thesis organized into seven chapters which can be summarized as follows:  

Chapter 1: This chapter introduces the background of structural health monitoring 

technique and damage detection in structures, composite materials as a part of future 

work in construction materials, and National Instrument and LabView SignalExpress 

related with smart sensor (PZT) to acquire vibration data. The problem statement, 

objectives, scope of the study, and thesis layout are also explained briefly.  

 

Chapter 2: This chapter comprises the literature review of previous research related to 

the subject area including: SHM technique and damage detection contributed in 

monitoring structures, composite materials development and fabrication process, 

sensors types and PZT as a smart sensor and National Instrument and LabView 

SignalExpress as a part of SHM monitoring system to acquire the data. 

 

Chapter 3: Chapter 3 illustrates the flow chart of the research work. In this chapter all 

details of experimental work are presented such as: the composite materials fabrication 

design, tests to measure the mechanical properties, the micro structural and thermo 

plastic analysis of these new composite materials. The application of the proposed 

SHM technique to detect the damage in the proposed structures is presented as: 

national instrument, data acquisition, and software which is used for damage 

identification. Four study cases are used to detect damage in each selected material 
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using aluminum alloy as reference to compare the results with the three fabricated 

composite materials.   

 

This chapter presents the composite materials fabrication by using new technique and 

process to control the thickness of the product and use of different types of reinforced 

composite fibre to improve the best fibres/resin ratio with suitable number of the fibres 

reinforced layers.   

 

Chapter 4: This chapter illuminates the computed results such as: mechanical 

properties, micro structure, thermo plastic analysis for the new fabricated composite 

materials. The properties of aluminum alloy type 6061-T6 are also illustrated. 

 

Chapter 5:  Chapter 5 presents the captured signals via NI USB-9234 DAQ device and 

LabVIEW Signal Process software, damage detection and the data collection.  Four 

case studies (undamaged, crack length 10mm, crack length 15 mm and crack length 

20mm) in four different structure materials are statistically analyzed in this chapter 

based on Root Mean Square Deviation (RMSD) index and Frequency Reduction Index 

(FRI) to realize the damage magnitude. 

 

Chapter 6: The main identification findings of this research are presented in this 

chapter, while the contribution to scientific knowledge is also presented. Moreover, 

recommendations for future work are provided in this chapter. 
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