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SYNTHESIS OF DIFFERENT TYPES OF CARBON NANOSTRUCTURE ON 

CARBON FIBER AND THEIR APPLICATION AS FILLERS IN 

POLYPROPYLENE COMPOSITE 

 

By 

 

FERIAL GHAEMI 

 

July 2015 

 

Chair: Professor Robiah Yunus, Ph.D. 

Faculty: Institute of Advanced Technology  

  

The potential application of carbon nanoparticles such as carbon nanotubes (CNT), 

carbon nanofibers (CNF) and graphene (G) flakes grown on carbon fiber (CF) surface 

as fillers in polypropylene composite is discussed.  Carbon fiber surface must be 

modified before it can be used as fillers in composites. A one-step process using the 

chemical vapor deposition (CVD) method has been used to synthesize CNT, CNF and 

G and also G-CNF and G-CNT on the carbon fiber to modify its surfaces. In this study, 

CFs (Toho Tenax Co. Ltd.) was utilized as a substrate to grow carbon nanostructures 

and also as a filler in polypropylene pellets (PP 600G) polymer matrix. To the best of 

our knowledge, so far nobody has reported any work being widely carried out on 

synthesizing G layers on the CNF and CNT grown on CF by using a bimetallic catalyst 

(Ni/Cu) in a one-step CVD method in order to increase the CF surface area as well as 

to improve its properties. The synthesis of nanostructures on CF was accomplished 

using high purity acetylene (C2H2) as a carbon source, and nitrogen (Air Product, 

99.9995) and hydrogen as carrier gases. Two types of catalysts namely copper nitrate 

trihydrate (Cu(NO3)2.3H2O) and nickel nitrate hexahydrate (Ni(NO3)2.6H2O) were 

utilized as bimetallic catalyst in the synthesis.  

 

All the operating parameters of CVD process for growing the carbon nanostructures 

were optimized in order to obtain uniform and high quality carbon nanostructures. 

These parameters include catalyst concentration (from 50 mM to 150 mM), reaction 

temperature (different for each kind of carbon nanomaterial), reaction time (from 10 to 

50 min) and carbon source flow rate (from 25 sccm to 100 sccm).  Based on the SEM, 

TEM, TGA, BET surface area and Raman spectroscopy results, it was concluded that 

the optimum conditions are at 100mM catalyst concentration at 50sccm acetylene flow 
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rate for 30 min at 550oC, 800 oC and 1050 oC for CNF, CNT and G growth, 

respectively. 

The changes in the surface characteristics of CFs was studied with scanning electron 

microscopy (SEM), transmission electron microscope (TEM), Raman spectroscopy and 

BET surface area analyzer. By analyzing SEM and TEM images, the morphology, 

structure, size and diameter of the resulting carbon nanostructures were obtained. In 

Raman spectra, the ID/IG ratio of the samples decreases when graphene flakes are 

present. When the ratio of CF/catalyst was at the maximum value, the ID/IG ratio 

(≈1.13) coated with CNF, CNT and G, decreased to 0.94, 0.88, and 0.47 respectively. 

The ID/IG ratio of CF-CNF-G (0.85) and CF-CNT-G (0.81) indicates the effect of 

graphene growth on the crystallinity of the substrate.  

 

Based on the results obtained from the surface modification of CF with various 

nanostructures, it is concluded that the carbon fiber coated with CNT-G (CF-CNT-G) 

with 80% yield and 46 m2/g BET surface area is the best method for surface 

modification of CF. Other fillers such as CF-CNF produced 24% yield and 2.31 m2/g 

surface area, CF-CNT with 46% yield and 5.22 m2/g surface area, CF-CNF-G with 

56% yield and 21 m2/g surface area and, CF-G with 54% yield and 10.21 m2/g surface 

area. 

 

Polypropylene (PP) composites with different carbon-based fillers such as G on CF (G-

CF), CNF on CF (CNF-CF), CNT on CF (CNT-CF) and also G-CNF-CF and G-CNT-

CF were prepared by the melt mixed method and the effects of these nanoparticles on 

the mechanical and thermal behavior of the composites were analyzed. The mechanical 

behavior and thermal resistance of the produced composites were evaluated using the 

tensile test and thermal gravimetric analysis (TGA), respectively. The Raman images 

were then used to explain the observed mechanical behavior of the different types of 

fillers/PP composites. The tensile stress and young’s modulus of neat PP are 28MPa 

and 1400MPa.  The values increased when various nanostructures were grown on the 

CF, to about 8.9% and 14.5% for CF/PP, 21% and 30.5% for CF-CNF/PP, 30.7% and 

50% for CF-CNF-G/PP, 58.9% and 58% for CF-CNT/PP, 98.2% and 114.2% for CF-

CNT-G and finally 82.8% and 97% for CF-G. Based on the results, the PP composite 

reinforced with CF-CNT-G showed the highest improvement in tensile stress at 55.5 

MPa, young’s modulus at 2998.9 MPa and enhancement in thermal stability to 130oC. 



© C
OPYRIG

HT U
PM

 

 

iii 

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia 

Sebagai memenuhi keperluan untuk ijazah Doktor Falsafah 

 

SINTESIS PELBAGAI JENIS KARBON BERSTRUKTUR NANO PADA 

SERAT KARBON DAN APLIKASI SEBAGAI PENGISI DALAM KOMPOSIT 

POLIPROPILENA 

 

Oleh 

 

FERIAL GHAEMI 

 

Julai 2015 

 

Pengerusi: Professor Robiah Yunus, Ph.D.  

Fakulti: Institut Teknologi Maju 

  

Potensi partikel nano karbon dalam aplikasi tiub nano karbon (CNT), serat nano karbon 

(CNF) dan serpihan grafin (G) yang dibina dan diperkembangkan di atas permukaan 

gentian karbon (CF), sebagai bahan pengukuh di dalam komposit polipropilena telah 

dibangunkan. Permukaan gentian karbon perlu diubah suai sebelum ia boleh digunakan 

sebagai bahan pengukuh di dalam bahan komposit. Proses satu langkah yang 

menggunakan kaedah pemendapan wap kimia (CVD) telah digunakan untuk 

mensintesis CNT, CNF dan G, berserta G-CNF dan G-CNT pada serat karbon untuk 

mengubah suai permukaannya. Dalam kajian ini, CF (Toho Tenax Co Ltd) telah 

digunakan sebagai substrat untuk menghasilkan struktur karbon nano dan juga sebagai 

bahan pengukuh di dalam matriks polimer bagi pelet polipropilena (PP 600g). Pada 

ketika ini, berdasarkan kajian yang telah dilakukan, masih tiada pihak yang melaporkan 

mengenai kerja-kerja mensintesis lapisan G di atas CNF dan CNT pada CF dengan 

menggunakan pemangkin dwi-logam (Ni/Cu) dengan hanya kaedah CVD satu langkah, 

bagi meningkatkan luas permukaan CF selain daripada menambah baik ciri-cirinya. 

Sintesis struktur nano pada CF telah berjaya dilaksanakan dengan menggunakan 

asetilena berketulenan tinggi (C2H2) sebagai sumber karbon, nitrogen (Air Product, 

99,9995) dan hidrogen sebagai gas pembawa. Dua jenis pemangkin iaitu kuprum nitrat 

trihidrat (Cu (NO3)2.3H2O) dan nikel nitrat heksahidrat (Ni (NO3)2.6H2O) telah 

digunakan dalam sintesis tersebut. 

 

Semua parameter yang terlibat dalam proses CVD untuk pembinaan struktur nano 

karbon dioptimumkan bagi mendapatkan struktur nano karbon yang berkualiti tinggi 

dan seragam. Parameter ini termasuk kepekatan pemangkin (dari 50mm hingga 

150mm), suhu tindak balas (berbeza bagi setiap jenis bahan nano karbon), tempoh 

masa tindak balas (dari 10 hingga 50min) dan kadar aliran sumber karbon (dari 25sccm 
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hingga 100sccm). Berdasarkan maklumat SEM, TEM, TGA, luas permukaan BET dan 

keputusan spektroskopi Raman, kesimpulan bagi keadaan optimum proses ini adalah 

pada kepekatan pemangkin 100mM, kadar aliran asetilena 50sccm selama 30 minit 

dengan suhu masing-masing 550oC, 800oC dan 1050oC untuk pertumbuhan CNF, CNT 

dan G. 

 

Perubahan pada ciri-ciri permukaan CF telah dikaji dengan menggunakan  mikroskopi 

imbasan elektron (SEM), mikroskopi transmisi elektron (TEM), spektroskopi Raman 

dan analisis luas permukaan BET. Melalui dua analisa imej SEM dan TEM, morfologi, 

struktur, saiz dan diameter struktur karbon nano  telah berjaya diperolehi. Spektrum 

Raman menunjukkan nisbah ID/IG sampel berkurangan dengan kehadiran serpihan 

grafin. Apabila nisbah CF/pemangkin berada pada nilai maksimum, nisbah ID/IG 

(≈1.13) yang disaluti dengan CNF, CNT dan G masing-masing menyusut kepada 0.94, 

0.88, dan 0.4. Nisbah IG/ ID CF-CNF-G (0.85) dan CF-CNT-G (0.81) menunjukkan 

kesan pertumbuhan grafin pada hablur substrat. 

 

Berdasarkan keputusan yang diperolehi daripada pengubahsuaian permukaan CF 

terhadap pelbagai struktur nano, kajian mendapati bahawa 80% serat karbon yang 

disaluti dengan CNT-G (CF-CNT-G) yang telah terhasil dengan luas permukaan BET 

46 m2/g adalah kaedah terbaik bagi pengubahsuaian permukaan CF. Bahan pengukuh 

lain seperti CF-CNF memberikan 24% hasil bahan dengan luas permukaan 2.31 m2/g, 

CF-CNT dengan 46% hasil dan luas permukaan 5.22 m2/g, CF-CNF-G dengan 56% 

hasil dan luas permukaan 21 m2/g, dan akhir sekali, CF-G dengan 54% hasil dan luas 

permukaan 10.21 m2/g. 

 

Komposit polipropilena (PP) dengan bahan pengukuh berasaskan karbon yang berbeza 

seperti G pada CF(G-CF), CNF pada CF (CNF-CF), CNT pada CF (CNT-CF) juga G-

CNF-CF dan G-CNT -CF telah dihasilkan melalui kaedah peleburan campuran, 

seterusnya kesan partikel nano ini terhadap ciri-ciri mekanikal dan terma bagi komposit 

telah dianalisa. Ciri-ciri mekanikal dan rintangan haba bagi komposit yang dihasilkan, 

masing-masing telah dinilai dengan menggunakan ujian tegangan dan analisis 

gravimetri haba (TGA). Imej-imej Raman kemudiannya digunakan untuk menerangkan 

tingkah laku mekanikal yang diperhatikan daripada jenis pengukuh/komposit PP. 

Kekuatan tegangan dan modulus Young untuk bahan asas PP adalah 28MPa dan 

1400MPa. Nilai tersebut meningkat apabila pelbagai struktur nano telah dibina pada 

kombinasi bahan yang berbeza atas di atas CF, kepada 8.9% dan 14.5% bagi CF/PP, 

21% dan 30.5% bagi CF-CNF/PP, 30.7% dan 50% bagi CF-CNF-G/PP, 58.9% dan 

58% bagi CF-CNT/PP, 98.2% dan 114.2% bagi CF-CNT-G dan juga 82.8% dan 97% 

bagi CF-G. Keputusan telah membuktikan bahawa komposit PP yang diperkukuhkan 

dengan CF-CNT-G menunjukkan peningkatan tertinggi dalam kekuatan tegangan pada 

55.5 MPa, modulus Young pada 2998.9 MPa dan peningkatan dalam kestabilan terma 

sehingga mencapai 130oC. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1  General background 

 

1.1.1  Polypropylene 

 

Polypropylene (PP) is one of the most widely used polymers in automobiles, 

housewares, packaging, and electronics because of several useful properties like high 

heat distortion temperature, transparency, flame resistance and dimensional stability 

(An et al., 2012a). Since, PP has been used in many applications, it has been mixed with 

various nanofillers in order to improve its mechanical properties (Seo and Park, 2004).  

 

 1.1.2  Carbon Fiber 

 

Carbon fiber is a material consisting of extremely thin fibers about 0.005–0.010 mm in 

diameter and composed mostly of carbon atoms. Carbon fiber (CF) has been widely 

used in various industry fields because of its high strength and low weight, and also its 

ability to be used as filler in polymer matrix to reinforce a composite (Zhang et al., 

2009). A low portion of this filler in the polymer composite has revealed remarkable 

improvement of the thermal and mechanical properties (Rezaei et al., 2008; Aziz et al., 

2014).  

 

1.1.3  Polymer Composite 

 

The area of hybrid fibre-reinforced polymeric composites has received considerable 

interest by the engineering community because of its unique structure and mechanical 

properties (Fu et al., 2009). CF reinforced polymeric composites have a wide range of 

unexplored potential applications in various technological areas such as aerospace, 

automobile, electronic and process industries due to their outstanding properties, such 

as high specific strength and stiffness, lower weight and flexible tailoring (Shazed et 

al., 2014).  

 

1.1.4  Nanostructures and Polymer Nanocomposites 

 

In addition, studies showed that when carbon nanostructure are grown on the carbon 

fiber surface, the mechanical interlocking between polymer matrix and carbon fiber 

was improved (Miranda et al., 2011). Recently, CF reinforced polymer composites 
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incorporating carbon nanoparticles have attracted significant interest due to their 

extensive applications that conventional CF reinforced composites cannot offer 

(Yamamoto et al., 2009). Advanced polymer-based nanocomposites have been 

produced with improved properties such as electrical conductivity, mechanical, and 

thermal stability (Jia et al., 2011).  

 

The properties of composite materials depend not only on the reinforcing fillers and 

polymer matrix but also on the interfacial adhesion between them. High interfacial 

adhesion provides the strong structure of composites with an effective load transfer 

from the polymer matrix to the fiber. Carbon nanomaterials, such as G and CNF, on CF 

have been shown to provide a robust network with a polymer matrix to enhance the 

interfacial properties of composites (Liang et al., 2013a). Today’s, various types of 

carbon nanomaterials such as fullerenes, carbon nanotubes, carbon nanofibers, carbon 

nanospirals, carbon onions (multilayer fullerenes) and graphene have been applied as 

reinforcing materials. Polymeric composites based on carbon nanomaterials, such as 

carbon nanofiber (CNF), carbon nanotube (CNT) and graphene (G) have attracted 

tremendous attention due to their excellent physical and mechanical properties (Kattab 

et al., 2012; Coleman et al., 2006; Ghaemi et al., 2014).  

The CNFs can act as rod-shaped fillers and enhance the polymer properties in the 

polymer composite (Novais et al., 2012). There is broad range of different carbon 

nanofibre types, depending on the size and orientation of the graphene layers within 

their structure. The graphene plates are grown at an angle to the fiber axis in the 

herringbone shape to form carbon nanofiber, and tubular graphene walls are parallel to 

the fiber axis in the carbon nanotube (Teo et al., 2003).  However all types of 

nanofibres are used in scientific studies and commercially, with applications including 

fillers in composites. 

 

CNTs are allotropes of carbon with exceptional mechanical, electrical and thermal 

properties. They are made by graphene sheets, where carbon atoms are arranged in 

hexagonal patterns. Since their discovery by Iijima in 1991 (Iijima, 1991), CNTs have 

become attractive candidates for fundamental engineering applications.  Graphene with 

a two-dimensional structure and honeycomb lattice is the most stable carbon format 

standard conditions, which was discovered by Novoselov et al. (2004). This 

nanomaterial has the potential to be applied in both scientific research and industrial 

applications because of its remarkable characteristics in terms of the mechanical, 

thermal and electrical properties (Zhang et al., 2013b). Additionally, G is also known 

as outstanding reinforcing filler in a composite with good dispersion (Allen et al., 2009; 

Cai and Song, 2010; Kim et al., 2010; Kuilla et al., 2010; Sengupta et al., 2011;). 

 

The incorporation of CNTs into polymer matrix was firstly reported by Ajayan and co-

authors (1994). Since then, polymer composites of carbon nanoparticles have been 

studied in various composite research fields, mostly focusing on their mechanical 

applications (Coleman et al., 2006; Kumar et al., 2002; Shafer and Windle, 1999; Yu et 

al., 2006). Strong interaction between these carbon nanomaterials and the host polymer 

is the key for mechanical strength. The bulk mechanical strength and stiffness of such 

composites is directly dependent on the interface of polymer matrix with carbon 
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nanoparticles. The elongated cylindrical forms of both CNTs and CNFs result in 

anomalously large interface area per particle (Yu et al., 2000,). In recent years, 

polymer/G nanocomposites have drawn more and more attention from both scientists 

and engineers due to their unique behaviors (Kim et al., 2010). 

 

The advantages of hybrid systems include the combined nanomaterials properties of 

each component, more design choices, cost effectiveness, and superior performance 

(Kalaprasad et al., 2004). But the hybrid concept has rarely been considered for 

nanocomposites (Li et al., 2008a). By varying the reinforcement scale, it may be 

possible to tailor the mechanical and physical properties of the composites. The hybrids 

of CNFs and CNTs with graphene may avoid the aggregates of single nanofillers due to 

the high concentration (Sui et al., 2009). 

 

1.1.5  Methods of carbon nanomaterials production 

 

Although there are several methods to obtain carbon nanomaterials, such as arc-

discharge (Iijima, 1991), laser ablation (Yudasaka et al., 1998), chemical vapor 

deposition (CVD) (Cao et al., 2003; Gu et al., 2010), self assembly (Wu et al., 2007), 

mechanical exfoliation and cleavage (Novoselov et al., 2004), chemical methods 

(Choucair et al., 2009) and unzipping CNT (Kosynkin et al., 2009) those based on 

chemical solution are stressed by its practical approach for scale up the production. To 

provide large-scale production with low dimension and high purity is an important 

issue in advanced nanomaterials research, the CVD technique has been investigated 

(Muñoz and Gómez-Aleixandre, 2013) and applied in the production of carbon 

nanoparticles.  

 

CVD method is considered as the most effective method and has been applied to grow 

carbon nanoparticles by many researchers (Liu et al., 2010). Basically, the deposition 

of reactants on the surface of the catalyst involves a balance between diffusion of 

reactant molecules to the catalyst and the kinetics of deposition reaction. The 

deposition reaction, which takes place on the catalyst surface is composed of various 

steps, such as adsorption of the reactants on the active sites, chemical reaction on the 

active sites, and desorption of the products from the active sites. From a heat transfer 

point of view, the particles perform an extra function by carrying the heat, which is 

very important during carbon nanoparticles synthesis.  

 

It is well known that the CVD reaction conversion depends on the extent of heat and 

mass transfer occurring within and between the gas-solid phases. Exothermic CVD 

reaction results in hot spots that frequently lead to catalyst deactivation and adverse 

changes in conversion and/or selectivity of the process. To achieve different structure 

and morphology, some critical parameters of CVD such as growth time, growth 

temperature, flow rate of carbon source gas and catalyst concentration can be varied 

(Thostenson et al., 2002; Zhu et al., 2003; Ghaemi et al., 2015). Synthesis of each 

carbon nanoparticle with CVD method needs to have different conditions. So for 
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growing two 3D carbon nanoparticles (carbon nanofiber and carbon nanotubes and then 

graphene), different conditions are needed. 

 

1.2  Problem statement 

 

Carbon fiber (CF)-reinforced polymer composites have been extensively applied in the 

areas of aerospace, aircraft, rocket, sport and military industries due to the superior 

strength-to-weight, stiffness-to-weight ratio and high service temperature. One problem 

in these composites is that CF typically shows poor interfacial interactions with 

polymer matrix. Another critical drawback is the presence of matrix-rich and free-

volume regions formed in the gaps between the interlaced fiber bundles. The interfacial 

and mechanical properties of a fiber-reinforced polymer composite are significantly 

influenced by interfacial characteristics between the reinforcing fibers and the polymer 

matrix. For improving the mechanical properties of composite material it is necessary 

to optimize the interface between the fiber and matrix using certain methods for 

modification of reinforcing fiber (Dobreva and Nenkova 2006).  

 

Using carbon fibers as reinforcing filler, the surface area is an important factor that 

plays a contributing role in the interfacial behavior with the polymer matrix. The 

defective flow of the polymer matrix around neat carbon fiber causes decreased 

interfacial properties and easily pulls out of carbon fiber from the matrix. Appropriate 

surface-treatment may modify the fiber surface by increasing the surface area and/or by 

growing carbon nanoparticles on the CF surface that may provide high adhesion 

between the fibers and the polymer matrix (Miller et al., 2001).  So one of the key 

points of their properties is the interface between the fibers and matrix, which can be 

modified by nanoparticles growth.  

 

Recently it was suggested that carbon nanoparticles grafting onto carbon fibers might 

be a new method of improving the interface and increasing IFSS (Zhao et al., 2008). 

There are two main routes for adding carbon nano-filler into conventional fiber-

reinforced polymeric materials. The first one is by dispersing carbon nano-fillers 

entirely throughout the polymeric matrix, which afterwards is layered with reinforcing 

fibers. The second route concerns the direct attachment of nano-fillers onto primary 

reinforcing fibers (Miranda et al., 2011).  In this study, G with excellent properties was 

synthsized to not only modify the CF surface but also use as a filler to reinforce 

polymer composite. Besides, the potential of CNT, CNF and G flakes on carbon fiber 

and also the effects of the graphene growth in the CNF-G and CNT-G grown on carbon 

fiber (CF) surface as fillers in composite materials are explored and compared with 

together. In order to modify the CF surface, a one-step process using the chemical 

vapor deposition method, has been used to synthesize CNT, CNF and G and also G-

CNF and G-CNT on carbon fibers surface. 

 

The high cost of carbon nanoparticles (CNF, CNT and G) synthesis, which restricts its 

large-scale production, is the key factor to the development and commercialization of 
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CNF, CNT and G sheet related industrials. It is prudent to note that the carbon 

nanoparticles are currently produced with a relatively high quality but in limited 

quantities. Therefore, future use of this worthwhile material strongly depends on the 

development of the technology for its large-scale production. Accordingly, large-scale 

syntheses of CNF, CNT and G have been the subject of intensive researches, and many 

attempts have been explored to optimize and control the carbon nanoparticles growth.   

 

Chemical vapor deposition (CVD) provides a large contact area among the reactant and 

particle catalyst. The catalyst solution has a critical role to synthesize the CNT, CNF 

and the G layers on CF. Besides; to synthesize high quality graphene flakes on CNF or 

CNT, which were grown on CF, in one step, selecting a proper catalyst is important 

part of the CVD method. The selected catalyst should have the potential to grow CNF, 

CNF and G on CF and also G flakes on CF-CNF or CF-CNT in a large-area and a few-

layer garphene. Among the different catalysts, Fe, Ni and Co are found suitable to 

synthesize CNF and CNT by CVD. On the other hand, for graphene growth Ni, Co and 

Cu have been used as the effective catalysts. Therefore, it is particularly important to 

develop a scalable synthesis method such as CVD method that could effectively control 

the size of fibers and tubes of CNF and CNT as well as the size and number of 

graphene layers, to enable large-scale production of the carbon nanoparticles (Liu et al., 

2013). Consequently, to synthesis two layers of the carbon nanoparticles on the CF 

surface, using proper catalyst (bimetallic) with optimum amount should be found. 

 

1.3  Objectives 

 

In this study four objectives have been identified as follows:  

1. To optimize the condition for CF surface modification by growing different 

carbon nanomaterials (CNF, CNT and G) in the vertical fixed bed CVD reactor 

 

2. To develop one-step method by use of bimetallic catalyst to synthesis two layers 

of carbon nanomaterials (CNF-G and CNT-G) on CF surface. 

 

3. To prepare polymer nanocomposite by mixing different fillers with 

polypropylene matrix and analysis the mechanical and thermal properties. 

 

1.4  Thesis Scope 

 

In this thesis work, we studied the synthesis and compared different kind of carbon 

nanoparticles grown on CF in order to increase the surface area of the CF as well as 

improve its properties. To synthesize high quality graphene, CVD on Cu catalyst is 

considered as one of the most promising methods because of its fabrication in a large-

area and a single-layer graphene.  However, Ni is one of the most widely studied 

catalysts for the synthesis of carbon nanaofibers and also graphene because a strong 
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Ni–C interaction causes a repulsive interaction within the C–C interaction and causes 

the dissolution at the edge of a graphene. However, limited research has been devoted 

to the usage of a bimetallic catalyst (Ni/Cu) to synthesize CNF, CNT and G. The Cu/Ni 

alloy is an excellent bimetallic system to control carbon solubility by tuning the atomic 

fraction of Ni in Cu in order to synthesis two layers of carbon nanostructures (CNF-G 

and CNT-G) in one-step production. To grow small size of CNF/CNT and few layer of 

graphene with high quality, the parameters of CVD method including catalyst 

concentration, reaction temperature, reaction time and acetylene flow rate should be 

optimized. These parameters include temperature, run time, catalyst amount and ratio 

of Ni/Cu, and flow rate of carbon source.  

 

For growing carbon nanofiber on the CF, the operating parameters varied were as 

follows: Temperature, 550-650oC, time: 10-60 min, catalyst amount: 50mM-150mM, 

catalyst ratio of Ni/Cu: 0/100, 30/70. 50/50, 70/30, 100/0 and carbon source flow rate: 

25-150sccm.  For growing carbon nanotubes the parameters varied were as follows: 

Temperature: 700-850oC, time: 10-60 min, catalyst amount: 50mM-150mM, catalyst 

ratio of Ni/Cu: 0/100, 30/70. 50/50, 70/30, 100/0 and carbon source flow rate: 25-

150sccm.  For growing graphene the operating parameters varied were as follows: 

Temperature: 900-1050oC, time: 10-60 min, catalyst amount: 50mM-150mM, catalyst 

ratio of Ni/Cu: 0/100, 30/70. 50/50, 70/30, 100/0 and carbon source flow rate: 25-

150sccm. 

 

Finally, the produced CNF, CNT, G, CNF-G and CNT-G, on CF surface, were 

incorporated into a polypropylene to fabricate the different composites. Furthermore, 

the effects of the carbon nanoparticles as coated phases on the CF surface were 

investigated in terms of the mechanical and thermal properties of the PP composite. 

Therefore, a tensile test as well as thermal gravimetric analysis (TGA) was applied. 

The surface morphology and structural characterization of the samples were analyzed 

through scanning electron microscopy (SEM), transmission electron microscope 

(TEM) and Raman spectroscopy. 

 

1.5  Thesis Layout 

 

This thesis is organized into five chapters. Following this chapter, chapter two begins 

with an extensive literature review. Firstly, it begins with the introduction of the carbon 

fiber and carbon nanoparticles. This chapter also provides description of some common 

characterization techniques for different carbon nanoparticles employed in this 

research. Secondly, the chapter covers the CVD process that is commonly used for 

CNF, CNT and G synthesis on CF. The growth mechanisms of each carbon 

nanoparticles are presented, including descriptions of the roles of the all effected 

parameters namely temperature, time, carbon amount and ratio and flow rate of carbon 

source gas. Then discussion is shifted towards synthesis of CNF-G and CNT-G on CF 

including principles and achievements obtained hitherto.  
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The last part of the literature review section is dedicated to a brief description and 

explanation of the carbon nanoparticles potential application polymer matrix and 

evaluate the mechanical and thermal properties. The considered polymer in this 

research is polypropylene, which was the preferred reinforcing polymer since it is a 

member of the group of commodity thermoplastics synthesized in large quantities and 

not very responsive to chemical stress cracking. This part presents related information 

about PP and its properties, mechanical reinforcement as well as thermal resistance. 

Moreover, the result of researchers who work with PP and add nanofiller in its matrix 

was studied. 

 

After a comprehensive literature review with respect to the dissertation topic, in 

Chapter 2, research methodology and obtained results and discussions are presented in 

the following Chapters, 3 and 4. Research methodology was designed and conducted 

according to the objectives of this dissertation. Chapter 4 begins with results from 

synthesis of Carbon nanofibers on CF and optimize the catalyst concentration, growth 

time and temperature and also hydrocarbon flow rate. After that, CNT and G synthesis 

and optimize their growth parameters. Besides, the CNF-G and the CNT-G on CF are 

produced and analyzed their structures and characterizations. Moreover, the resulting 

nanoparticles are used as fillers in polymer matrix and analysis the thermal and 

mechanical behavior of the different composites. Finally, chapter 5 conducts with 

conclusion and recommendation. 
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