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In radar systems, the problem of recovering the targets reflections has been a major 

concern for system designers for decades. One of the first steps for better signal 

recovery was done by initializing a stable radar signal with high repetition sequence 

of generated pulses. Stabilizing the radar signal and achieving a better recovery for 

the received signal, over the years, took a big part of extensive studies on pulse 

generators and led to the era of analog systems replacement with digital ones. Using 

the microelectronic circuitries have shown reliability prove in terms of signal 

generation stability. Chirp pulses are one of the most popular radar signals that can 

be easily generated using digital technology. In this thesis, Memory Based, and 

Direct Digital Synthesizer (DDS) architectures as the two most popular chirp signal 

generation techniques have been designed, by using Altera StratixIII FPGA by the 

use of Altera QuartusII software. The received signal recording was performed by 

using MATLAB Software code, connected to the FPGA for getting the received 
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reflections from the HSMC FPGA daughter board that worked as an Analog-to-

Digital and Digital-to-Analog converter. Both architectures gave precise results for 

different selections of chirp rate that could fit with system specifications. 

The main contention of this thesis is to investigate the development of new 

optimization technique based on Differential Evolution algorithm (DE), applied for 

radar signal denoising application. The choose of the Differential Evolution was 

mainly made because, of its simplicity, and reliability scheme that can provide 

especially, in the applications that require continuous spaces measurements, which 

was fit to our problem. An improvement to the conventional DE algorithm has been 

made to change it from its classical form to be possibly applied for ambiguous 

targets range detection for radar system. The standard DE algorithm is known as a 

fixed length optimizer, while our problem demands the need for methods that aren’t 

tolerated to a fixed individual size, and that was made by altering the mutation and 

crossover strategies as well as the selection operation. We propose an optimized 

crossover scheme that changes the crossover operation from being fixed-length to 

random-length, which has been designed to fit for the proposed variable length DE. 

We refer to the new DE algorithm as random variable length crossover DE (rvlx-

DE) algorithm. 

The measurement results show high capability for target recognition in terms of 

frequency response and peak forming that has been clearly recognized from noise 

and clutter distortion, and that was shown more clearly when it was compared with 

Wavelet Transform and Hilbert-Huang Transform denoising techniques. 
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Dalam sistem radar, permasalahan untuk mendapatkan isyarat pantulan objek 

sasaran telah menjadi kebimbangan utama bagi pereka sistem selama beberapa 

dekad. Salah satu langkah pertama untuk pemulihan isyarat yang lebih baik adalah 

dengan menghasilkan isyarat radar stabil permulaan dituruti pengulangan berkala 

isyarat menunjukkan. Kajian yang meluas dalam bidang penstabilan isyarat radar 

untuk memulihkan isyarat asal telah dilaksanakan serta membawa kepada era 

penggantian sistem analog kepada digital. Penggunaan litar mikroelektronik dalam 

penjanaan isyarat telah menghasilkan isyarat yang stabil. Isyarat berdecit adalah 

diantara isyarat radar yang popular serta mudah dihasilkan dengan menggunakan 

teknologi digital. Perisian Altera Quartus II telah digunakan untuk mengprogram 



© C
OPYRIG

HT U
PM

 

 

vii 

 

Altera Stratix III FPGA dengan menggunakan dua teknik popular penghasilan 

isyarat berdecit iaitu Berdasarkan Memori dan Pensintesis Terus Digital (DDS). 

Isyarat yang diterima daripada litar HSMC FPGA yang disambung kepada litar 

FPGA akan direkodkan dengan menggunakan kod Perisian Matlab. Litar HSMC 

FPGA ini berfungsi sebagai penukar isyarat analog-kepada-digital dan digital-ke-

analog. Kedua-dua teknik ini memberikan hasil yang tepat dalam penghasilan 

pelbagai isyarat berdecit untuk spesifikasi yang diperlukan. 

 

Penekanan utama tesis ini adalah untuk menyiasat pembangunan teknik 

pengoptimuman baru dengan menggunakan algoritma Evolusi Berbeza (DE) dalam 

aplikasi pembuangan hingar isyarat radar. Pemilihan Evolusi Berbeza dibuat kerana, 

ianya skim yang tidak kompleks serta  kestabilan dalam aplikasi yang memerlukan 

pengukuran ruang yang berterusan selaras dengan masalah semasa. Satu 

penambahbaikan telah dibuat terhadap algoritma Evolusi Berbeza(DE) yang asal 

bagi membolehkan ianya diaplikasikan dalam sistem radar untuk tujuan pengesanan 

kesamaran jarak objek sasaran. Algoritma Evolusi Berbeza(DE) yang asal berfungsi 

dengan menggunakan pengoptima kepanjangan yang tetap; walaubagimanapun, 

masalah kami memerlukan teknik yang tidak bertoleransi terdapat saiz individu yang 

tetap dan ini dilakukan dengan mengubah mutasi serta strategi penyeberangan 

termasuk operasi pemilihan. Kami mencadangkan skim optimum penyeberangan 

yang mengubah operasi penyeberangan daripada kepanjangan yang tetap kepada 

kepanjangan yang rambang yang telah direkabentuk khas untuk cadangan 
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kepanjangan bolehubah DE. Algoritma baru ini dikenali sebagai Algoritma 

Penyeberangan Pembolehubah Kepanjangan Rawak (rvlx-DE). 

Hasil ujikaji yang dilakukan, teknik ini dapat mengenalpasti objek sasaran dengan 

baik dalam respon frekuensi serta pembentukan puncak yang menunjukkkan ianya 

dengan mudah dapat dikenalpasti berbanding isyarat hingar serta isyarat 

persekitaran. Teknik pengasingan isyarat hingar ini lebih jelas apabila dibandingkan 

dengan teknik Wavelet Transform serta Hilbert-Huang Transform. 
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CHAPTER 1 

1                                              INTRODUCTION 

 

1.1 Background 

 

In signal analysis, noise can be defined as an unwanted random addition data that 

holds no meaning to the received signal; since this data has not been used to transmit 

the signal, but randomly produced at the receiving stage. High noise levels can be an 

interference source that may change and distort the received signal. The dominant 

parameter to measure the signal quality is known as the Signal-to-Noise ratio that 

calculates the relation between the useful to the irrelevant information in an 

exchange. 

 

In various fields, related with communications and electronics, scientists are dealing 

with problems of signal recovery, and noise elimination to extract the bases for the 

original signal. In radar systems, one of the solutions to get better recovery of the 

received signal and to get more accurate repetition for the transmitted pulses was 

done by using digital technology. The signal generation in digital form is becoming a 

major method of communications in the modern age; different methods have been 

applied for this purpose, where digital circuitry has proven a reliable stability 

compared with the analog ones. Signal recording in analog or digital devices are not 

immune to the noise, which can be random or white noise with no coherency mainly 

produced in the form of random electrons, and caused by heat, environment, and 
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stray circuitry loses as they influence the output signal voltage thus creating a 

detectable noise, no matter how sophisticated and precise the circuit design, there is 

still an urgency for the received signal to be applied in some signal processing 

techniques before they can be used in applications.  

 

In different fields, of communications engineering, system and electrical 

engineering, and applied mathematics, signal processing plays an important role in 

dealing with signals operations and analysis. Over the years, a large number of 

signal processing techniques have been proposed to reduce the noise, improve the 

signal-to-noise ratio by extracting the overlapping peaks, and to decompose the 

transmitted signals into their components. Many of signal processing techniques are 

base on tiring mathematical operations that were not sufficient to be used before the 

invention of computerized instrumentation. Nevertheless, in each different 

application there should be a decision making to decide the most appropriate 

technique that gives better denoising results.  

 

Signal denoising is directly related to samples estimation of the received signal 

either by estimating the equation parameters for the target reflections or the 

surrounding noise and clutter accompanying the data of interest. Differential 

Evolution algorithm (DE) is one technique proposed by Storn R and Price K in 1996 

[1]. It is a simple, efficient, and fast evolutionary algorithm compared with other 

evolutionary algorithms techniques, and it is suitable for global optimization over 
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continues spaces. It has been implemented to resolve different domains of scientific 

and engineering problems like circuit [2], antenna [3], filter designs [4], intelligent 

machines [5], and many others; which indeed solved the optimization problem for 

parameter estimation in a reliable way. It is currently known that the academics from 

all disciplines have been using Differential Evolution Algorithm for resolving the 

optimization problems emerging in their related fields. This occurs because DE has 

obtained increasing attention as a simple and robust optimizer [6-8].  

 

1.2 Problem Statement 

 

Radar system works on the principle of transmitting the signal and receiving the 

reflections from the targeted objects, this process encountering challenges to be 

solved to get the most possible benefit from the signal reflections. The information 

gathered from reflections is greatly valuable to be used in different radar 

applications. When radar signal reflected back from objects, most of the transmitted 

power doesn’t make it back to the receiver antenna especially in the case when the 

targeted objects, as in most of the applications, are not perfectly formed in its shape 

or in its material to get the best reflections.. Weak radar received signals imposes a 

number of challenges to the design and badly affects the maximum target range for 

detection. Nevertheless, noise caused by heat, environment, and stray circuitry loses 

is another challenge that works as an impediment to the received data. That leads to 

other problems to be dealt with including: 
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i) Traditional signal processing techniques for general use: Different signal 

processing and denoising techniques have been applied, over the years, to 

improve the signal performance in various applications. Some of signal 

denoising techniques were able to reduce some of the noise from the data of 

interest but, still having many challenges in data distortion and noise levels that 

are similar to the frequency of the noisy data i.e. noise in a range different from 

the target’s range can be eliminated easily with traditional denoising and 

filtering techniques like: low pass, band pass, and high pass filters. Having 

denoising techniques that can be applied in different applications might be a 

general solution to the noise problems, even with the thresholds and iterations 

possibility of selection, they still keep the door open for errors of leaving some 

parts of the data not being processed correctly. 

 

ii) DE fixed length chromosomes structure and constraints handling: DE like any 

other types of evolutionary algorithms, is a fixed length chromosome optimizer; 

so it is unsuitable to apply for problems that demand the attribution of non-fixed 

length chromosomes applications. On the other hand, using evolutionary 

algorithms for data estimation is taking place by calculating the fitness function. 

Taking the fitness function into account will try to find the least value for that 

function by changing the number of segments. Repeatedly, the fitness value will 

get lower value each time a new segment is being added. Depending on the 

fitness as the only decision making is not practical since the estimation function 

is going to keep trying to fit itself with actual received signal and that may make 

the noise to be present again at the denoised signal. 
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1.3 Aim and Objectives  

 

The aim of this thesis is to develop a modified method to estimate the received 

signal parameters of the transmitted linear frequency modulated (LFM) radar signal 

to make a noise removal from the valuable data, which leads to better target 

detection. To achieve this aim, the following objectives are to be accomplished: 

 

i) To enhance the transmitted signal performance by digitally generating a stable 

Linear Frequency Modulated signal, with high chirp rate. 

 

ii) To develop a modified optimization technique based on Differential Evolution    

algorithm applied for radar signal denoising. 

 

iii) To conduct a comparison between the modified denoising technique and other 

denoising techniques: 

 

• Wavelet Transform. 

• Hilbert-Huang Transform. 

 

1.4 Thesis Scope 

 

Radar system in its general form can be categorized into stages, and each stage plays 

an important role to complete the full signal transmission and better information 

gathering from target reflections. Radar Signal Generation using Linear Frequency 
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Modulated (LFM) signals was the radar signal type chosen for this study that was 

digitally generated using the microelectronics techniques in two different ways to get 

signal stability rather than the traditional analog signal. Radar circuitry for signal 

transmission and reception is also important, as the circuit components: carrier 

frequency, and amplification will be the deciding factor for the type of targeted 

objects needed to be localized and for the case of the LFM signals, radar circuit 

design is responsible of the pulse compression technique that takes charge for how 

the received reflection should be analyzed to find the target peaks, representing the 

targets location. Stretch processing has been chosen for this study for its circuit 

design simplicity, and the direct proportional frequency offset to the target range. 

After the signal being received, in many cases the data that is necessary to localize 

the targets are affected by noise and signal distortion. Evolutionary algorithm as a 

part of the global optimization methods has been covered in this study by employing 

one of its prominent optimizers called Deferential Evolution (DE), which has been 

identified in literature as a simple and efficient method to tackle various optimization 

applications, and more specifically in radar received signal parameter estimation. 

The problem complexity of denoising the radar received signal for multiple target 

localization, immerge the need to modify the standard DE algorithm from its fixed 

length structure to be variable length structure. Traditional Signal processing 

techniques, over the years, have been used to solve the noisy signal problems. In this 

study a comparison has been established between two well-known denoising 

techniques: Wavelet Transform and Hilbert-Huang Transform to be compared with 

the proposed variable length Differential Evolution algorithm. 
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The study module for this thesis is shown in Figure 1.1.  

 

 

Figure  1-1: Study Module 

 

1.5 Contribution  

 

This thesis is dedicated to find an alternative denoising technique for better targets 

representation of the transmitted linear frequency modulated radar signal and to get 

the most possible benefit from the signal reflections. Therefore, in this thesis, the 

main contributions to attain these objectives are: 
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i) Equation Modification and Threshold:  for the active correlated received 

signal an equation modification has been made for parameter estimation 

of targets reflections with lines of thresholds made to act as a constraint, 

preventing the noise to be present at the estimation function. 

 

ii) An Improved Deferential Evolution Method: The proposed method has 

mainly altered the mutation and crossover strategies, as well as the 

selection operation; which has been amended to deal with the complexity 

of the fitness function and constrains alike. In addition to that, an 

extended representation scheme for the search variables to determine the 

length of the individual based on the number of segments included was 

used. For mutation, two strategies have been proposed, commonly, both 

strategies are based on choosing the best individual in order to maintain 

the principle that the best information will be shared among the 

population. One strategy is applying the standard mutation operation on 

equal length chromosomes. The second is randomly chosen individuals, 

then to perform extension or truncation according to the length of the best 

member among. For both strategies the yield individual will have the 

same length of the best one. For crossover, a new scheme called rand-

length crossover has been designed to fit for the variable length DE. In 

which the length (i.e. the number of segments) of the new individual will 

be determined by a random number generated	J; the value of J should not 

exceed the summation length of the mutant parents and the maximum 
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number of expected targets.  Ultimately, we refer to the new DE 

algorithm as random variable length crossover DE (rvlx-DE) algorithm. 

 

1.6 Thesis Organization 

 

The remaining parts of this thesis are organized as follows: 

 

Chapter 2: A review on several arbitrary waveform generators (AWG) have been 

used to get the digital chirp signal with flexible adjustments to adapt in multiple 

applications with high signal performance, providing a simplified interface to the 

user device. Moreover, some of the most popular denoising algorithm is reviewed. 

Wavelet Transform (WT) and Hilbert-Huang Transform (HHT) are some of the 

signal denoising techniques that gave high performance in various applications. The 

ability to estimate the original signal parameters is a dominant factor that releases 

the signal from its distortion. Finally, the Differential Evolution algorithm as one of 

the most powerful optimization techniques that have shown a well standing efficacy 

in different real-world optimization problems in science and engineering has been 

reviewed with some of its applications. 

 

Chapter 3: The methodology of the design and implementation of chirp signal 

generator using field programmable gate array (FPGA) using the most popular: 

memory based, and Direct Digital synthesizer architectures have been discussed with 

the complete radar system circuitry calculations and match filtering. A discussion on 

some of the well known signal processing techniques: Wavelet Transform and 
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Hilbert-Huang Transform have also been made. The standard DE algorithm and the 

proposed signal denoising algorithm (rvlx-DE) and the specific strategies of the 

proposed algorithm and its applicability for case study have been discussed. 

Moreover, the fitness function and its relative constraints are also discussed in 

details. Finally, the full procedure incorporate the proposed variable DE operations 

to build up the overall scheme of the rvlx-DE in a pseudo-code fashion were written. 

 

Chapter 4: The experimental results of signal denoising using the standard (DE) and 

the developed (rvlx-DE) algorithms have been presented and discussed. A 

comparison in terms of received signal denoising is then established between rvlx-

DE, WT, and HHT.  

 

Chapter 5: This chapter summarizes the objectives addressed and presents the 

conclusions derived from this research. Suggestions for future developments are also 

been made in this final chapter. 
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