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ABSTRACT

Shunt active power filter (SAPF) is the most effective solution for  current harmonics. In its controller, 
DC-link capacitor voltage regulation algorithm with either proportional-integral (PI) or fuzzy logic 
control (FLC) technique has played a significant role in maintaining a constant DC voltage across all 
the DC-link capacitors. However, PI technique performs poorly with high overshoot and significant 
time delay under dynamic state conditions, as its parameters are difficult to be tuned without requiring 
complete knowledge of the designated system. Although FLC technique has been developed to overcome 
limitations of PI technique, it is mostly developed with high complexity thereby increases computational 
burden of the designed controller. This paper presents a fuzzy-based DC-link capacitor voltage regulation 
algorithm with reduced computational efforts to enhance performance of three-phase three-level neutral-
point diode clamped (NPC) inverter-based SAPF in overall DC-link voltage regulation. The proposed 
method is called effort-reduction FLC technique. The proposed algorithm is developed and evaluated 
in MATLAB-Simulink. Moreover, conventional algorithm with PI technique is tested for comparison 
purposes. Simulation results have confirmed improvement achieved by the proposed algorithm in 
comparison to the conventional algorithm.     
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INTRODUCTION

High current harmonics resulting from 
intensive use of nonlinear loads such as 
power converters and adjustable speed drives 
is recognized as a major  issue for a  power 
system. The presence of current harmonics 
not only degrades overall system efficiency 
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by worsening its power factor (PF) performance, but it also causes other associated problems 
such as equipment overheating, failures of sensitive devices and capacitor blowing (Dai & 
Dai, 2008; Kale & Ozdemir, 2005a).  It is compulsory to minimize the harmonics level of a 
power system. Shunt-typed active power filter (SAPF) is the most effective solution to current 
harmonics, where all the undesired current components are eliminated by injecting opposition 
current (simply known as injection current) back to the polluted power system. In addition, 
it also provides reactive power compensation meant for improving PF performances (Jain & 
Gupta, 2014; Kale & Ozdemir, 2005b).

Most of the established SAPFs employ a standard two-level inverter topology in their 
design. However, three-level inverters which have been reported to be more advantageous 
than traditional two-level inverters in term of output voltage quality and power losses are 
accepted as better alternatives (Hoon et al., 2016a, 2016b). The performance of SAPF in 
current harmonics mitigation is  dependent on the performance of its controller. Specifically, its 
controller consists of harmonics extraction, DC-link capacitor voltage regulation and switching 
(current control) algorithms. The DC-link capacitor voltage regulation algorithm plays an 
important role in maintaining a constant overall DC-link voltage for a typical inverter-based 
SAPF. The DC-link voltage must  be maintained at a level  high enough to ensure successful 
generation of injection current. Moreover, in a three-level neutral-point diode clamped (NPC) 
inverter, voltage across the two splitting DC-link capacitors has to equally be maintained as 
half of the overall DC-link voltage so that a balanced injection current can be generated to 
properly mitigate the current harmonics. 

The overall DC-link voltage is often  regulated by manipulating the voltage error 
resulting from the difference between the actual overall DC-Link voltage and its reference 
voltage counterpart to estimate an output, which is assumed to be the main control signal for 
regulating DC-link voltage. Traditionally, the voltage error manipulation and control signal 
estimation processes are done  with  a proportional-integral (PI) controller (Afghoul & Krim, 
2012; Jain et al., 2002; Karuppanan & Mahapatra, 2010, 2012; Suresh et al., 2012) due to its 
simple implementation features. However, it performs poorly with large overshoot (Afghoul 
& Krim, 2012; Jain et al., 2002; Suresh et al., 2012) and serious time delay (Afghoul & Krim, 
2012; Jain et al., 2002; Karuppanan & Mahapatra, 2010, 2012) under dynamic state conditions. 
Moreover, the performance of PI controller is strictly dependent on its tuned proportional 
gain   and integral gain   parameters which are normally obtained through a tedious heuristic 
approach. Besides, the tuning process can be difficult as SAPF does not possess a precise linear 
mathematical model which is needed to accurately tune the gain parameters of PI controller 
(Jain et al., 2002; Karuppanan & Mahapatra, 2012). 

Further improvement based on artificial intelligence (AI) technique using  fuzzy logic 
controller (FLC) is employed to overcome limitations of PI controller. By incorporating 
advantages of FLCs the  performance of SAPF in DC-link voltage regulation  was significantly 
improved (Afghoul & Krim, 2012; Jain et al., 2002; Karuppanan & Mahapatra, 2010, 2012). 
Basically, FLC is an adaptive mechanism which is capable of approximating a function 
based on simple linguistic control (if-then) rules (Belaidi et al., 2012; Suresh et al., 2012; 
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Zainuri et al., 2016). As a result, it is able to work effectively with imprecise inputs, handle 
nonlinear system with parameter variations, and is possible to be designed without knowing 
the exact mathematical model of the system (Belaidi et al., 2012; Karuppanan & Mahapatra, 
2010, 2012; Mikkili & Panda, 2012; Zainuri et al., 2016). However, the FLC technique that 
is used  is  implemented with high complexity: 7×7 fuzzy membership functions (MFs) with 
49 control rules (Afghoul & Krim, 2012; Belaidi et al., 2012; Jain et al., 2002; Karuppanan 
& Mahapatra, 2010, 2012; Mikkili & Panda, 2012; Suresh et al., 2012), and  imposes  great 
computational burden to the controller. Lower numbers of fuzzy MFs and control rules have 
never been considered as they are reported to be incapable of maintaining the overall DC-link 
voltage constant (Mikkili & Panda, 2012). 

This paper presents a DC-link capacitor voltage regulation algorithm with effort-reduction 
FLC technique to efficiently control the overall DC-link voltage of three-phase three-level NPC 
inverter-based SAPF. The proposed effort-reduction FLC technique is developed by considering 
a reduced amount of fuzzy MFs and control rules, thereby reducing both design efforts and 
computational burden of the designed controller. The design concept and effectiveness of the 
proposed algorithm are verified using MATLAB-Simulink. The  paper is organized as follows. 
In Section 2, the proposed SAPF with control strategies is described. Section 3 provides detailed 
descriptions on the proposed algorithm. The simulation findings are presented, and discussed 
in Section 4 showing improvements achieved by the proposed algorithm in comparison to 
the conventional algorithm. A brief summary is provided at the end of the paper, highlighting 
significant contributions of this work.

SHUNT ACTIVE POWER FILTER (SAPF) WITH CONTROL STRATEGIES

The proposed three-phase three-level NPC inverter-based SAPF system and its control 
strategies are shown in Figure 1. The control strategies compose of harmonics extraction, 
DC-link capacitor voltage regulation, synchronizer, neutral-point voltage deviation control, 
and switching control algorithms.
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Figure 1. The proposed three-phase three-level NPC inverter-based SAPF: (a) 

circuit diagram, and (b) control strategies. 

The main focus of this paper is on  the DC-link capacitor voltage 

regulation algorithm. From the literature, in order to ensure proper 

generation of injection current , the overall DC-link voltage  is set 

according to the following requirement (Khadem et al., 2014) 

 (1) 
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The main focus of this paper is on  the DC-link capacitor voltage regulation algorithm. 
From the literature, in order to ensure proper generation of injection current iinjs , the overall 
DC-link voltage Vdc  is set according to the following requirement (Khadem et al., 2014)
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where vs represents the source voltage, and vSAPF_max represents the maximum output voltage 
of SAPF.

The minimum capacitance value Cdc for each capacitor can be calculated as follows (Yao 
& Green, 2005)
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1. Conventional DC-link capacitor voltage regulation algorithm with PI technique 
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where iinj  represents the injection current, and ΔVmax represents the maximum voltage ripple 
allowed on DC-link capacitors. 

For the purpose of the harmonics extraction algorithm, instantaneous power (PQ) theory 
(Belaidi et al., 2012; Hoon et al., 2016b) is used. Meanwhile, a synchronizer is employed to 
provide referencing signal to the DC-link capacitor voltage regulation algorithm. Furthermore, 
voltage balancing of splitting DC-link capacitors is achieved via neutral-point voltage deviation 
control algorithm (Bhalodi & Agarwal, 2010). Finally, the switching control is accomplished 
through 25 kHz Space Vector PWM (SVPWM) switching algorithm (Bhalodi & Agarwal, 
2010). 

PROPOSED DC-LINK CAPACITOR VOLTAGE REGULATION ALGORITHM

Below details of the conventional algorithm utilizing the PI technique is  presented. This is 
followed  with a presentation of the proposed algorithm with effort-reduction FLC technique.  

Conventional DC-Link Capacitor Voltage Regulation Algorithm with PI Technique

Generally, the overall DC-link voltage is regulated by controlling the real power drawn by 
SAPF throughout its switching operation. The voltage regulation process is considered  to 
have accomplished when the real power drawn by the SAPF is made equal to its switching 
losses. To ensure  proper function of SAPF the magnitude of the generated reference current 
must  be adjusted by manipulating  the variable known as instantaneous DC current idc (refer 
to Figure 1). which is generated based on the difference between overall DC-link voltage and 
its desired reference voltage counterpart, so that a precise amount of real power can be drawn 
by SAPF, to compensate its potential losses.  

As mentioned in Section 1, PI technique is the most widely utilized technique in the area 
of DC-link capacitor voltage regulation. Based on this technique, the voltage error   resulting 
from the difference between overall DC-link voltage Vdc (Vdc1 + Vdc2) and its reference voltage  
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Vdc1,ref is directly manipulated by a PI controller to approximate the required amplitude Idc of 
control signal idc. The control approach can be summarized as (5). The control signal idc is made 
available by multiplying Idc with the reference angle delivered by a synchronizer. 
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Figure 2 shows the control structure of conventional DC-link capacitor voltage regulation 
algorithm with PI technique. Meanwhile, the minimum value of the design parameters used in 
the PI technique can be obtained as follows (Hoon et al., 2016a; Zainuri et al., 2016)
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where Kp is the proportional gain, Ki is the integrator gain, Cdc is the capacitance value of each 
splitting capacitor, ξ  is the damping factor fixed at 0.707, and ω is the angular frequency.
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Proposed DC-Link Capacitor Voltage Regulation Algorithm with Effort-Reduction 
FLC Technique

The control structure of DC-link capacitor voltage regulation algorithm with effort-reduction 
FLC technique is shown in Figure 3(a). In this algorithm, FLC is employed to eliminate the 
reliance on PI controller. The FLC technique employed performs by using voltage error E(k) 
and change of voltage error CE(k) with sample time k given in (4) and (8) respectively to 
approximate the required amplitude Idc.
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Generally, FLC operation involves four processes, starting with fuzzification, followed by 
fuzzy rule base and inference interpretation, and end with defuzzification. During fuzzification, 
the formulated numerical E(k)  and CE(k) variables are converted into their corresponding 
linguistic representation, according to their respective fuzzy MFs. All input conditions will 
be processed by Mamdani-style fuzzy inference mechanism (Jain et al., 2002; Karuppanan & 
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Mahapatra, 2012; Suresh et al., 2012; Zainuri et al., 2016) to generate the most appropriate 
fuzzified Idc output value according to the designed fuzzy rule base table which composes a 
collection of simple linguistic “If X and Y, Then Z” control rules. The generated fuzzified Idc 

value is converted back to its corresponding numerical value via the defuzzification process. 
Most FLC techniques use the famous centroid of area (COA) defuzzification method (Suresh 
et al., 2012; Zainuri et al., 2016) as it provides a good average feature in determining the best 
output result. The normalized fuzzy MFs and rule base for proposed effort-reduction FLC 
technique are shown in Figure 3(b) and Table 1 respectively.  
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Table 1 
Fuzzy rule base for effort-reduction FLC technique

CEk E(k)
NB NS ZE PS PB

NB NB NB NB NS ZE
NS NB NB NS ZE PS
ZE NB NS ZE PS PB
PS NS ZE PS PB PB
PB ZE PS PB PB PB

The fuzzy sets were selected according to the degree of voltage error E(k) which may occur 
throughout the operation of SAPF. The selected fuzzy sets must possess certain sensitivity 
(level of fuzziness) which is sufficient enough to represent all the voltage error   conditions. 
Low number of fuzzy sets may be insufficient to describe the characteristics of a signal. In 
contrast, large number of fuzzy sets provides much better results but high amount of fuzzy 
MFs and control rules are difficult to be developed. 

In this study rather than relying on the complex FLC technique (7×7 fuzzy MFs with 49 
control rules) which has widely been accepted as the best FLC design in the area of DC-link 
capacitor voltage regulation (Afghoul & Krim, 2012; Belaidi et al., 2012; Jain et al., 2002; 
Karuppanan & Mahapatra, 2010, 2012; Mikkili & Panda, 2012; Suresh et al., 2012), the  effort-
reduction FLC technique was  developed by considering a reduced amount of fuzzy MFs and 
control rules: 5×5 fuzzy MFs with 25 control rules. 
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Our proposed effort-reduction FLC technique has also considered a combination of triangular 
and trapezoidal MFs. These types of fuzzy MFs are famous for their simple implementation 
features together with minimal computational efforts (Belaidi et al., 2012; Hoon et al., 2016a; 
Jain et al., 2002; Karuppanan & Mahapatra, 2012; Suresh et al., 2012). With utilization of the 
selected 5×5 fuzzy MFs in the proposed effort-reduction FLC technique, the overall DC-link 
voltage can constantly be maintained at desired value. 

SIMULATION RESULTS

The three-phase three-level NPC inverter-based SAPF utilizing the proposed algorithm is 
simulated and evaluated in MATLAB-Simulink. The main specifications of the proposed SAPF 
are tabulated in Table 2. Simulation work is conducted under both steady and dynamic state 
conditions which involve two types of nonlinear loads. The first nonlinear load is constructed 
using a three-phase uncontrolled bridge rectifier feeding a 20 Ω resistor and 2200 μF capacitor 
connected in parallel (capacitive). The second nonlinear load is developed using similar rectifier 
feeding a series connected 50 Ω resistor and 50 mH inductor (inductive). Furthermore, to 
evaluate dynamic behaviour of the proposed algorithm, two dynamic state conditions can be 
created: capacitive to inductive load change and inductive to capacitive load change. However, 
due to limitation of pages, this work only considers dynamic state condition of capacitive to 
inductive load. Besides, evaluation under single dynamic state condition is good enough to 
evaluate the dynamic behaviour of the proposed algorithm. The conventional algorithm with 
PI technique was also tested for comparison purposes. 

Table 2 
Design specifications for SAPF

Parameter Value
Voltage source 400 Vrms, 50 Hz
DC-link capacitor 3300 μF (each)
DC-link reference voltage 880 V
Limiting inductor 5 mH
Switching frequency 25 kHz

The simulation results of SAPF with effort-reduction FLC technique which include three-
phase source voltage vs, load current iL , injection current iinj, and source current is, for both 
nonlinear loads are shown in Figure 4. Meanwhile, THD values of source current is (phase A) 
before and after connecting the SAPF are summarized in Table 3. The findings clearly show 
that the THD values have been reduced to a level complying with the limit of 5 % set by IEEE 
Standard 519-2014 (IEEE, 2014). Moreover, SAPF with effort-reduction FLC technique has 
shown better harmonics mitigation performance as compared to PI technique. Furthermore, it 
can be observed that the mitigated source current is is working in phase with the source voltage  
vs, thereby achieving almost unity power factor.
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Figure 5 shows the simulation results of SAPF which cover overall DC-link voltage Vdc, 
splitting DC-link capacitor voltages (Vdc1 and Vd2), and neutral-point voltage deviation  (Vdc1 - 

Vdc2)for dynamic state condition of capacitive to inductive load. Meanwhile, the performance 
of SAPF in term of overall DC-link voltage regulation is summarized in Table 3. From the 
findings, it is clear that the conventional algorithm with PI technique performs poorly with 
overshoot of 35 V, undershoot of 2 V, and response time of 1.50 s. In contrast, the proposed 

 

 

Parameter Value 

Voltage source 
400 Vrms, 

50 Hz 

DC-link capacitor 
3300 μF 

(each) 

DC-link reference 

voltage 
880 V 

Limiting inductor 5 mH 

Switching frequency 25 kHz 
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Figure 5. Simulation results of SAPF which include overall DC-link voltage Vdc, splitting DC-link capacitor 
voltages (Vdc1 and Vdc2) and neutral-point voltage deviation (Vdc1 - Vdc2)  for dynamic state condition of 
capacitive to inductive load obtained using (a) conventional PI, and (b) proposed effort-reduction FLC 
techniques 
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algorithm with effort-reduction FLC technique performs outstandingly with overshoot of 
15 V, undershoot of 0 V, and response time of 0.05 s. Therefore, in terms of overall DC-link 
voltage regulation, the proposed algorithm with effort-reduction FLC technique shows superior 
dynamic performance by achieving a response time of 30 times faster than the conventional 
algorithm with PI technique. In addition, it is clear that voltage across both splitting DC-link 
capacitors are successfully maintained as half of the overall DC-link voltage with minimum 
neutral-point voltage deviation and thus proving successful control of all DC voltages at their 
respective desired values.

Table 3 
Overall performance comparison of both DC-link voltage regulation algorithms 

DC-link voltage 
regulation 
algorithm

THD of Phase A Source Current is (%) Dynamic Performance (Capacitive to 
Inductive)

Capacitive Inductive Overshoot/
Undershoot (V)

Response Time (s)

Before Connecting SAPF
N/A 43.03 27.43 N/A N/A

After Connecting SAPF
PI technique 1.21 1.66 35 V (Overshoot) 1.50 s

2 V(Undershoot)
Effort-reduction 
FLC technique

1.19 1.63 15 V (Overshoot) 0.05 s
0 V(Undershoot)

CONCLUSION

This paper has successfully demonstrated a DC-link capacitor voltage regulation algorithm 
with effort-reduction FLC technique for three-phase three-level NPC inverter-based SAPF. The 
proposed algorithm with effort-reduction FLC technique provides an insight into developing a 
much simpler yet effective fuzzy-based algorithm for controlling the overall DC-link voltage 
of a typical inverter-based SAPF which was previously only achievable using complex fuzzy-
based algorithm. The algorithm complexity is reduced by considering a reduced amount fuzzy 
MFs and control rules in controller design. As a result, the proposed algorithm is proven to 
provide successful control of overall DC-link voltage with superior dynamic performances. 
Low overshoot, no undershoot, and fast response time clearly show the advantages of proposed 
algorithm over the conventional algorithm especially in dealing with dynamic state condition. 
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