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ABSTRACT

Phasor Measurement Units (PMUs) are an important component in Wide Area Protection (WAP)- based 
operations in power systems. It is needed that a certain placement scheme of PMUs is suggested if 
power system scale gets larger. The optimal placement of PMU in power systems has been considered 
and formulated in order to reduce the number of installed PMUs while accomplishing a desired level of 
reliability of observation.  Optimal PMU Placement (OPP) problem as the combinatorial optimization 
problem has been formulated to determine the minimum PMU location in the power system. In this paper, 
Disparity Evolution-type Genetic Algorithm (DEGA) based on disparity theory of evolution is applied. 
Genetic Algorithm (GA) is  employed for the purpose of comparison  with DEGA. The optimization 
model is solved for IEEE 118 standard bus system. DEGA can find better placement suggestion compared 
with  GA because of the nature of evolution that models the double spiral structure of DNA to hold the 
diversity of population.
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INTRODUCTION

Phasor Measurement Unit (PMU) plays a role 
in acquiring data to estimate the state of power 
system. This role is important in Wide Area 
Protection (WAP), where it provides reliable 
security prediction and optimized coordinated 
actions to mitigate or prevent large area 
disturbances. PMU can measure information 
of phase differences between different points 
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synchronously because it uses GPS (Global Positioning System). The phase value synchronized 
by GPS can be calculated by PMU, and  stored in the server over the internet. Using such data, 
it is analysable for oscillation features and power system characteristics. PMU data such as 
voltages and currents have been used for reliable distance protective relay operation (Othman et 
al., 2014) Synchro-phasor technology has grown from the PMU in the U.S. Pacific Northwest to 
a continental network of almost 2,000 PMUs in the past decade, which has helped to improve 
the reliability of the North American electric power grid since the late 1990s (Rurnett et al., 
1994; Overholt et al., 2015).

However, if the scale of power system gets larger, it is needed that the optimal PMU 
placement scheme is chosen while considering reliability of observability which ensures 
whether the voltage phasor at that bus can be estimated or not in power system. In addition, the 
number of PMUs is needed to reduce in order to plan the placement schedule within limited 
cost. , Ghamsari-Yazdel and Enmaili (2015) reported that the price of a typical base PMU 
without measurement channels is around  USD 20,000 and each measurement channel costs 
about USD 3,000. Thus, PMUs cannot be placed all buses because of limited budget. Therefore, 
Optimal PMU Placement (OPP) problem has been identified as a means  to address the issue 
of  budget constraint, where OPP works  to reduce the number of PMUs placed in the power 
system while at the same time ensuring  reliability of observability.

OPP problem has been proven to be completely NP (Non-deterministic Polynomial-time) 
by Brueni, Heath (2005) and can be defined as  the binary combinatorial optimization problem. 
Hence, many heuristic algorithms and Integer Programming (IP) have been applied on  OPP 
problem (Manousakis et al., 2012). Genetic Algorithm (GA)  is one of the methods that has 
been proposed to solve combinatorial optimization problems.  However, considering realistic 
system scale, e.g. above 100 bus system, normal GA approach might lapse into the evolution 
retardation due to missing the diversity of solution if the large number of evolutions is iterated 
to get better solution. i.e. similar individuals tend to be diffused into population by procedure 
of GA. This paper presents an application of Disparity Evolution-type Genetic Algorithm 
(DEGA) based on Disparity Theory of Evolution. GA is used  for the purposes of comparing  
with DEGA. The optimization model is solved for IEEE 118 bus test system. Simulation shows  
DEGA approach performs better in robustness on 50 iterations. The proposed DEGA approach 
in this study  serves as an important aspect of WAP scheme. 

PROBLEM FORMULATION

In this study, reliability based OPP problem is defined as a single objective optimization 
problem (Khiabani et al., 2014). This section provides the details about single objective PMU 
placement model.
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Objective Function

In this study, the objective function includes minimization of the number of PMUs and 
maximization of reliability of observability. The mathematical objective function model is 
defined as follows:

       				    (1)

where Rmin is the desired minimum system wide reliability level, ROB is the overall system 
reliability of observability,  is the total number of buses to be placed in the system, n is 
the number of buses. w1 and w2 are weight coefficients associated with objective. Equation (1) 
will be modelled as a fitness function on GA and DEGA in later section.

The Range PMU Covers

The range of buses by which PMU covers is given. PMU which is placed at a bus measures the 
voltage phasor of that bus and the current phasors of adjacent lines. PMUs are not necessarily 
placed at all buses because the voltage phasors of adjacent buses can be obtained using Ohm’s 
law. Thus, PMU placement at a given bus allows the measurement of voltage phasor at that 
bus directly, and voltage phasors at immediate neighbouring buses by calculation.

Figure 1 (a) shows the example the covering range of buses that one PMU covers. In 
Figure 1, a PMU which is allocated at bus 3 covers buses 1, 2, 3 and 4 since the PMU makes 
adjacent buses itself observable.

Reliability of observability

None of the PMUs are  redundant, the failure of any PMU would result in  system failure. 
Thus, it is necessary  the reliability of observability is defined. The reliability of observability 
(Ghamsari-Yazdel and Enmaili, 2015) of the i th can be given as:

       							       (2)

where ri represents the reliability of the i th bus, qj is the probability of failure of the PMU, fi 

denotes the total number of PMUs covering the i th bus. Also, (2) can be described as:

       						      (3)
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where, RPMU is a value of reliability that one PMU has. For example, consider the IEEE 5 bus 
system in Figure 1 (b) with PMUs placed at buses 1, 2, and 5. Then it is assumed that one 
PMU has a reliability of RPMU = 0.90. At this time, the reliability of observability of bus 4 will 
be 0.90 because it is observed by one PMU which is placed at bus 5 only. However, bus 1 is 
covered by two PMUs which are placed at bus 2 and bus 1 itself. Therefore, the reliability of 
observability of bus 1 is given as  

Especially, this study is interested in the maximization of overall system reliability. Then, 
it is defined by taking direct product of reliability of observability of all buses as follows:

       					     (4)

where n is the number of the buses in the power system.
The abovementioned reliability index is included into PMU placement constraints as 

follows:

       				    (5)

									         (6)

where xi is defined as a binary decision variable vector which represents whether the PMU is 
placed at i th bus or not, and Aij is called connection matrix which represents the connection 
condition of each bus in the power system. Then, the number of PMUs covering the i th bus 
can be introduced as follows:

       					     (7)

Thus, it can be known how many buses that cover the i th bus from fi.

Figure 1. Covering range of the PMU; (b) Reliability example in case of IEEE 5 bus system
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Figure 1. (a) Covering range of the PMU; (b) Reliability example in case of IEEE 5bus 

system 
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DESCRIPTION OF ALGORITHMS

Disparity Evolution-type Genetic Algorithm

GA is a method  to solve the optimization problem by modeling the evolutional theory. DEGA 
which was first developed by Maeda (2001) is an improved GA modelled on  the disparity 
theory of evolution (Furusawa and Doi 1998). DEGA exploits the concept of gene reproduction 
and different mutation rates by faithfully modelling the double spiral structure of DNA. In the 
disparity theory of evolution, when double DNAs duplicate, they are divided into two kinds of 
chains that is called leading strand with low mutation rate and lagging strand with high mutation 
rate. Different mutation rates make DEGA’s evolution speed improve by maintaining diversity 
of solutions, whereas it is difficult to increase diversity in GA’s procedure. The procedure of 
DEGA for OPP problem is described  in Figure 2. In this solution approach for OPP problem, 
a binary encoding is implemented where  the string of chromosome means the total number of 
buses in the system. For representative value in the chromosome, if the PMU is placed on that 
particular bus, then the representative at that particular bus takes 1, and it takes 0 if otherwise.

Figure 2. Pseudo-code of the DEGA model

 
 

 

Figure 2. Pseudo-code of the DEGA model 

Fitness function 

The fitness function is defined in order to decide the relative merits of the solution. It is 

calculated as: 

            (8) 

where, each term  is defined as: 

(9) 

Algorithm: DEGA (evol, n, pc, pmle, pmla) 
//Initialize of 0th generation 
k ← 0; 
Lek ← a population of n/2 randomly-generated chromosomes (leading strand); 
Lak ← bit reversed individuals of Lek (lagging strand); 
Pk ← Lek + Lak; 
//Evaluate Lek 
Compute fitness (i) for each i  Lek; 
While (k < evol) 
{ //Create generation k + 1; 
 //Crossover (two-point crossover) 
 cp1, cp2 ← Generate two random numbers for each Lek and Lak 

Crossover between cp1 and cp2; Select pc*n members of Lek and Lak in Pk; pair them up; produce 
offspring Lek’, Lak’; 
Ok ← Lek’ + Lak’; 

 //Mutate 
 pm ← Generate random numbers for each gene; 
 Mutate for Lek’ in Ok; If pm < pmle, then invert the bit; occur at low mutation rate; 
 Mutate for Lak’ in Ok; If pm < pmla, then invert the bit; occur at high mutation rate; 
 //Duplicate 
 Lak” ← create new lagging strand by bit inversion of Lek’; 
 Lek” ← create new leading strand by bit inversion of Lak’; 

Ok ← Lek’ + Lak’ + Lek” + Lak”; 
//Evaluate Lek’, Lek” and select the individuals which survive into next generation by roulette 
selection and elitism 
Compute fitness 
Preserve limited number of elites in Pk, Ok; 
Evaluate each leading strand in the individual; Select the individuals Pk+1 within n by roulette 
selection; 
//Increment 
k ← k + 1; 

} 
Return the best solution in population; 
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Fitness Function

The fitness function is defined in order to decide the relative merits of the solution. It is 
calculated as:

      					     (8)

where, each term θi is defined as:

       				    (9)

      				    (10)

       					     (11)

       					     (12)

ω1 denotes corresponding weights coefficients with the criteria that are listed above. Equation 
(8) is customizable by changing each ω1 the summation of all ω1 should be 1. In this study,  
solutions which have high fitness value have a higher chance to be chosen into next generation 
because the roulette selection is used as the selection method. θi means the fraction of buses 
covered by PMUs. θ2 is associated with minimizing  the number of placed PMUs. θ3 denotes 
the required overall reliability of observability in the system, if the solution cannot satisfy 
desired reliability, 0 will be given as penalty in this term. θ4 directly has the value of reliability 
of observability. The weight coefficients ω1 are configured as shown in Table 1, whereby ω1 is 
set as the highest value to have consideration for the complete observability, and   is the second 
highest value to satisfy the required reliability of observability. ω4 is lowest because if solution 
satisfies the minimum reliability of observability, it is not needed that reliability of observability 
is improved keenly. After satisfying the reliability, the number of PMUs are reduced.

SIMULATION STUDY

DEGA and GA are tested on a standard IEEE 118 bus system using MATLAB 2013a. Table 
1 shows the parameters of DEGA and GA in this simulation. GA as the standard approach 
for global optimization is chosen for the purposes of  comparison  with DEGA. The PMU 
placements are proposed with desired reliability Rmin = 0.90, PMU inherent reliability RPMU 

= 0.99 for each method. In order to verify robustness of proposed method, the simulations 
have been tried by 50 iterations using different random numbers. Moreover, this simulation 
considers the concept of zero injection bus. The results proposed by DEGA and GA are shown 
in Figure 3 and Tables 2 and 3. The graph in Figure 3; (a) shows the generation characteristics 
for fitness value in the iterations which get best fitness value in each method, also (b) shows the 
most inferior fitness case. The graphs show the best and average fitness value in the population 
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Table 1 
DEGA and GA parameters

Parameter DEGA GA
Population size 50 50
Generation limit 10000 10000
Crossover probability 0.4 0.8
Mutation probability - 0.01
Mutation probability on leading strand 0.01 -
Mutation probability on lagging strand 0.5 -
Number of preserved elites 3 3
ω1 4/9 4/9
ω2 1/6 1/6
ω3 1/3 1/3
ω4 1/18 1/18

Table 2 
The practical best and most inferior solutions in each method

The best solution The most inferior solution
DEGA GA DEGA GA

Fitness 0.9214 0.9214 0.9163 0.5970
The number of PMUs 52 52 56 33
ROB 0.9071 0.9075 0.9164 0.5843

Table 3 
The fitness average in 50 iterations

DEGA GA
The fitness average 0.9190 0.7659

Figure 3. (a) Generation-Fitness characteristics in the best iterations; (b) Generation-Fitness characteristics 
in the most inferior iterations
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of each generation. DEGA seems to have slower convergence rate and lower average fitness 
value in generations, but finally DEGA got approximately same fitness with GA. However, 
DEGA can also get sufficient fitness even though GA’s evolution stops in the case of Figure 
3(b). GA obviously could not satisfy the minimum desired ROB as shown in Table 2.  DEGA 
has better average fitness value in 50 iterations than GA. It can be considered that DEGA can 
maintain diversity of solution in the progress of evolution because of the procedure. That is 
why DEGA has lower average fitness value in each generation due to diversity of individuals. 
Results prove that in OPP problem, DEGA has good capacity  to solve the problem in several 
cases. In some cases of larger system scale, DEGA is expected to be able to find better PMU 
placement.

CONCLUSION

This paper proposed the novel GA-based algorithm called DEGA to deal with the issue of OPP 
problem. Simulations were  done in DEGA and GA for IEEE 118 bus system. Results indicate 
that DEGA could be potentially useful in  solving the OPP problem.
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