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ABSTRACT

We consider a differential game of one pursuer and one evader. The
game is described by an infinite system of first order differential equa-
tions. Control functions of the players are subject to coordinate-wise
integral constraints. Game is said to be completed if each component of
state vector equal to zero at some unspecified time. The pursuer tries to
complete the game and the evader pursues the opposite goal. A formula
for optimal pursuit time is found and optimal strategies of players are
constructed.
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1. Introduction

There are many works devoted to differential games with integral constraints
in finite dimensional spaces such as Krasovskii (1968), Mezentsev (1971), Ushakov
(1972), Azimov (1974), Subbotin and Ushakov (1975), Okhezin (1977), Gusiat-
nikov et al. (1979), Satimov et al. (1983), Solomatin (1984), Konovalov (1987),
Ukhobotov (1987), Lokshin (1990), Ibragimov (1998), Guseinov et al. (1999),
Azamov and Samatov (2000), Ibragimov (2005), Chikrii and Belousov (2009),
Belousov (2011), Ibragimov and Satimov (2012), Chikrii and Belousov (2013)
and Kuchkarov (2013).

However, there a few works devoted to differential game problems described
by infinite system of differential equations. For example, the following papers
are devoted to such game problems Li (1986), Tukhtasinov (1995), Ibragimov
(2002), Satimov and Tukhtasinov (2005), Satimov and Tukhtasinov (2005),
Tukhtasinov (2005), Satimov and Tukhtasinov (2006), Satimov and Tukhtasi-
nov (2007), Ibragimov and Hussin (2010), Azamov and Ruziboyev (2013),
Ibragimov (2013), Ibragimov et al. (2014) and Ibragimov et al. (2015), Sal-
imi et al. (2015).

In the paper Ibragimov et al. (2015), a pursuit game problem is studied for
an infinite system of differential equations, where control functions of players
are subjected to coordinate-wise integral constraints. In the present paper, we
prove that guaranteed pursuit time found in Ibragimov et al. (2015) is optimal
pursuit time as well.

2. Statement of problem

Consider differential game described by the following first order infinite system
of differential equations

żi + λizi = ui − vi, zi(0) = zi0 i = 1, 2, ..., (1)

where zi, ui, vi ∈ Rni , ni is a positive integer, λi are given positive numbers,
u = (u1, u2, ...) and v = (v1, v2, ...) are control parameters of the pursuer and
evader respectively. Let T > 0 be an arbitrary number.

Definition 2.1. A function u(t) = (u1(t), u2(t), ...), 0 ≤ t ≤ T , with measur-
able coordinates ui(t) ∈ Rni , is called admissible control of the i-th pursuer if
it satisfies the following integral constraint∫ T

0

|ui(s)|2ds ≤ ρ2i , (2)
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where ρi is a given positive number.

Definition 2.2. A function v(t) = (v1(t), v2(t), ...), 0 ≤ t ≤ T , with mea-
surable coordinates vi(t) ∈ Rni , is called admissible control of the evader if it
satisfies the following integral constraint∫ T

0

|vi(s)|2ds ≤ σ2
i , (3)

where σi is a given positive number.

Pursuit starts from the initial positions zi(0) = zi0, i = 1, 2, ... at time
t = 0 where zi0 ∈ Rni , i = 1, 2, ....

Next, we define solution of the system (1). If we replace the parameters ui
and vi in the equation (1) by some admissible controls ui(t) and vi(t), 0 ≤ t ≤
T , then it follows from the theory of differential equations that the initial value
problem (1) has a unique solution on the time interval [0, T ]. The solution

z(t) = (z1(t), z2(t), ...), 0 ≤ t ≤ T,

of infinite system of differential equations (1) is considered in the space of
functions f(t) = (f1(t), f2(t), ...) with absolutely continuous coordinates fi(t)
defined on the interval 0 ≤ t ≤ T .

Define strategy of the pursuer.

Definition 2.3. A function of the form

U(t, v) = ψ(t) + v = (ψ1(t) + v1, ψ2(t) + v2, ...), 0 ≤ t ≤ T,

where Ui(t, vi) = ψi(t) + vi ∈ Rni , i = 1, 2, ..., is called strategy of the pursuer
if for any admissible control of the evader v = v(t), 0 ≤ t ≤ T , the following
inequalities ∫ T

0

|Ui(t, vi(t))|2dt ≤ ρ2i , i = 1, 2, ...,

hold, where ψ(t) = (ψ1(t), ψ2(t), ...), 0 ≤ t ≤ T, is a function with measurable
coordinates ψi(t) ∈ Rni .

Definition 2.4. We say that pursuit can be completed for the time θ > 0 in
the differential game (1)–(3) from the initial position z0 = (z10, z20, ...) if there
exists a strategy of the pursuer U(t, v) such that for any admissible control of
the evader vi(t), 0 ≤ t ≤ θ, the solution z(t), 0 ≤ t ≤ θ, of the initial value
problem

żi + λizi = Ui(t, v(t))− vi(t), 0 ≤ t ≤ θ,
zi(0) = zi0, i = 1, 2, ...,

equals zero at some time τ, 0 ≤ τ ≤ θ, i.e. z(τ) = 0.
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In the sequel, such a time θ is called guaranteed pursuit time.

To define strategy of the evader, we need the variables p(t) = (p1(t), p2(t), ...),
and q(t) = (q1(t), q2(t), ...), which are defined as the solutions of the following
equations

ṗi = −u2i (t), pi(0) = ρ2i , q̇i = −v2i (t), qi(0) = σ2
i , i = 1, 2, ...

Clearly,

pi(t) = ρ2i −
∫ t

0

u2i (s)ds,

and

qi(t) = σ2
i −

∫ t

0

v2i (s)ds.

The quantity
∫ t
0
u2i (s)ds expresses the amount of energy spent by the pursuer

in the i-th component of control ui. The quantity pi(t) is the amount of energy
remained for the i-th component of control ui which the pursuer can use starting
from time t. The quantities

∫ t
0
v2i (s)ds and qi(t) also have similar meanings for

the evader.

Definition 2.5. A function V (t) = (V1(t), V2(t), ...), t ≥ 0, with the coordi-
nates of the form

Vi(t) =

 Vi0(t) 0 ≤ t ≤ τi, qi0(τi) ≥ 0,
0 τi < t ≤ τi + εi,
ui(t− εi) t > τi + εi,

is called strategy of evader, where Vi0(t), t ≥ 0, is a measurable function,

qi0(t) = σ2
i −

∫ t

0

V 2
i0(s)ds,

t = τi is the first time for which pi(t) = qi0(t), u(t) = (u1(t), u2(t), ...) is any
admissible control of pursuer, εi is a positive number.

Definition 2.6. A guaranteed pursuit time θ is called optimal pursuit time if
there exists a strategy of the evader V such that for any admissible control of
the pursuer z(t) 6= 0 for all t ∈ [0, θ).

Problem 1. Find optimal pursuit time in the game (1) – (3), and construct
the strategy for pursuer that enables to complete the game for this time.
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3. Main result

The following theorem presents a formula for optimal pursuit time in the
game (1) – (3).

Theorem 3.1. Let ρi > σi, i = 1, 2, ..., and sup
i∈N

|zi0|
ρi−σi

<∞. Then

T ′ = supTi, Ti =
1

2λi
ln

(
1 + 2λi

(
|zi0|
ρi − σi

)2
)

(4)

is optimal pursuit time in the game (1)–(3).

Proof. Earlier by Ibragimov et al. (2015) was shown that T ′ is guaranteed
pursuit time in the game (1) – (3). Therefore it is sufficient to show that on
the interval [0, T ′) evasion is possible.

3.1 Construction the strategy of the evader.

We construct it in two steps. The first part of strategy is as follows:

vi(s) = −
zi0
|zi0|

· eλis

ϕi(0, Ti)
σi, 0 ≤ s ≤ τi, i = 1, 2, ..., (5)

where τi, τi < Ti, is some time at which qi(τi) = pi(τi),

ϕi(a, b) =

√∫ b

a

e2λisds.

Note that at the time t = 0, pi(0) = ρ2i > σ2
i = qi(0). The evader uses (1)

unless qi(τi) = pi(τi) at some time τi. Starting from the time τi the evader
uses the second part of the strategy. It is as follows:

vi(t) =

{
0, τi ≤ t ≤ τi + εi,
ui(t− εi), t > τi + εi,

i = 1, 2, ..., (6)

where εi is a positive number.

3.2 Proof that evasion is possible.

Show that constructed strategy (5)–(6) guarantees the evasion on the time
interval [0, T ). Let the evader use the first part of its strategy (5). Show that
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zi(t) 6= 0 as long as qi(t) 6= pi(t), or more precisely qi(t) < pi(t). Assume the
contrary. Let there exist a control of the pursuer ui(t) such that zi(τ ′i) = 0 at
some 0 ≤ τ ′i ≤ τi, where qi(τ ′i) ≤ pi(τ ′i). Then substituting (5) into the formula

zi(t) = e−λit

(
zi0 +

∫ t

0

e−λis(ui(s)− vi(s))ds
)

yields

zi0 +

∫ τ ′
i

0

eλisui(s)ds+
zi0
|zi0|

· σi
ϕi(0, Ti)

·
∫ τ ′

i

0

e2λisds = 0.

We have ∫ τ ′
i

0

eλis|ui(s)|ds ≥ |zi0|
(
1 +

σi · ϕ2
i (0, τ

′
i)

|zi0|ϕi(0, Ti)

)
. (7)

Use the Cauchy-Schwartz inequality to estimate left hand side of (7)∫ τ ′
i

0

eλis|ui(s)|ds ≤ ϕi(0, τ ′i) ·
(∫ τi

0

|ui(s)|2ds
)1/2

.

Then from this and (7) we obtain∫ τ ′
i

0

|ui(s)|2ds ≥
|zi0|2

ϕ2
i (0, τ

′
i)

(
1 +

σiϕ
2
i (0, τ

′
i)

|zi0|ϕi(0, Ti)

)2

(8)

According to (5) ∫ τ ′
i

0

|vi(s)|2ds =
σ2
i ϕ

2
i (0, τ

′
i)

ϕ2
i (0, Ti)

. (9)

Combining (8) and (9), we obtain∫ τ ′
i

0

|ui(s)|2ds−
∫ τ ′

i

0

|vi(s)|2ds =
|zi0|2

ϕ2
i (0, τ

′
i)

+ 2 · |zi0|σi
ϕi(0, Ti)

>
|zi0|2

ϕ2
i (0, Ti)

+ 2σi ·
|zi0|

ϕi(0, Ti)

= (ρi − σi)2 + 2σi(ρi − σi)
= ρ2i − σ2

i .

Hence, q2i (τ ′i) > p2i (τ
′
i), which is in contradiction with definition of τ ′i . Thus,

on the interval [0, τi], zi(t) 6= 0. In particular, zi(τi) 6= 0. Starting from the
time τi the evader uses the strategy (6)

vi(t) =

{
0, τi ≤ t ≤ τi + εi,
ui(t− εi), t > τi + εi,

i = 1, 2, ...,
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where εi is a positive number that will be chosen below. Observe that

zi(t) = e−λit

(
zi0 +

∫ t

0

e−λis(ui(s)− vi(s))ds
)

= 0

if and only if

yi(t) = zi0 +

∫ t

0

e−λis(ui(s)− vi(s))ds = 0.

Therefore it suffices to show the inequality yi(t) 6= 0, t ∈ [τi,∞).

Let τi ≤ t ≤ τi + εi. Then

yi(t) = zi0 +

∫ t

0

e−λis(ui(s)− vi(s))ds

= yi(τi) +

∫ t

τi

e−λis(ui(s)− vi(s))ds

= yi(τi) +

∫ t

τi

e−λisui(s)ds.

We have∫ t

τi

e−λis|ui(s)|ds ≤ ϕi(τi, t)
(∫ t

τi

|ui(s)|2ds
)1/2

≤ ρiϕi(τi, τi + εi).

If b− a = εi, a ∈ [0, T ], then

ϕi(a, b) =

√∫ b

a

e2λisds =

√
1

2λi
(e2λib − e2λia)

= eλia

√
1

2λi

(
e2λi(b−a) − 1

)
≤ eλiT

√
1

2λi
(e2λiεi − 1).

Let the number εi be chosen such that

ρie
λiT

√
1

2λi
(e2λiεi − 1) ≤ |yi(τi)|/2. (10)

Then
ρiϕi(τi, τi + εi) ≤ |yi(τi)|/2,

and so

|yi(t)| ≥ |yi(τi)| −
∫ t

τi

e−λis|ui(s)|ds ≥ |yi(τi)|/2, τi ≤ t ≤ τi + εi.
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Let now t > τi + εi. Then

yi(t) = yi(τi) +

∫ τi+εi

τi

e−λisui(s)ds+

∫ t

τi+εi

e−λis(ui(s)− vi(s))ds

= yi(τi) +

∫ t

τi

e−λisui(s)ds−
∫ t

τi+εi

e−λisui(s− εi)ds. (11)

Since ∫ t

τi+εi

e−λisui(s− ε)ds =
∫ t−εi

τi

e−λisui(s)ds,

therefore (11) implies that

yi(t) = yi(τi) +

∫ t

τi

e−λisui(s)ds−
∫ t−εi

τi

e−λisui(s)ds

= yi(τi) +

∫ t

t−εi
e−λisui(s)ds.

Hence, it follows from (10) that

|yi(t)| ≥ |yi(τi)| −
∫ t

t−εi
e−λis|ui(s)|ds|

≥ |yi(τi)| − ρiϕi(t− εi, t) ≥ |yi(τi)|/2,

for all t ≥ τi + εi. Thus, |yi(t)| ≥ |yi(τi)|/2 > 0 for all t ≥ τi. In other words,
evasion is possible on the interval [0, Ti).

Show that evasion is possible on the interval [0, T ′), T ′ = supi=1,2,... Ti. Let
t ∈ [0, T ′) be any time. Then by definition of supremum t ∈ [0, Tj) at some
j ∈ N. As proved above yj(t) 6= 0 for t ∈ [0, Tj), and hence zj(t) 6= 0. In its
turn this inequality implies that z(t) 6= 0 meaning that evasion is possible on
the interval [0, T ′). Thus, T ′ defined by (4) is optimal pursuit time. Proof is
complete.

4. Conclusion

We have studied a differential game of one pursuer and one evader described
by infinite system of first order differential equations. Control functions of
pursuer and evader are subject to coordinate-wise integral constraints. Earlier
we showed that the pursuit time defined by formula (4) is guaranteed pursuit
time. In the present paper, we proved that this time is optimal pursuit time.
Moreover, we have constructed optimal strategies of players. The differential
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game can be extended by studying differential games 1) described higher order
differential equations, or 2) with many pursuers.
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