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ABSTRACT

This paper describes the derivation of a fifth-order diagonally implicit
hybrid method. The method is zero dissipative and has phase-lag of
order six. The method is compared with the existing hybrid method
and the numerical comparisons carried out show that the new method
improves the accuracy of the existing method for solving several special
second order ordinary differential equations.
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1. Introduction

Much interests have been given on the development of numerical methods
for solving special second order ordinary differential equations of the form

y" = f(z,y), y(xo) = yo, ¥'(x0) = ¥ (1)
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where the first derivative does not appear explicitly. The second order initial
value problems often arise in science and engineering field such as celestial me-
chanics, molecular dynamics, semi-discretizations of wave equations and so on.
To solve the initial value problems, many authors proposed Runge Kutta Nys-
trom methods, block methods and multistep methods see for example
(1990, |J. Dormand and Princel [1987, Lambert and Watsonl 1976). Authors such
as (Cash, 1981} Hairer} |1979, M.M. Chawla and Netal [1986} |S.O. Fatunla and|
Otunta, 1999) and (Tsitouras| |2006) proposed hybrid methods which origi-
nate from the ideas between the Runge Kutta and multistep methods. In the
derivation of a hybrid method, it is important to increase the algebraic order
to achieve higher accuracy. In addition, if the solution of is oscillatory in
nature, then we have to consider the phase-lag and the dissipation errors. The
study of phase-lag was introduced by (Brusa and Nigro| 1980) and has been
given much attention by many authors in their derivations of numerical meth-

ods see for example (Chawla and Rao, (1987, [Simos| [1992)) and (S.Z. Ahmad

land N. Senul, 2013).

In this paper, we are interested in the class of hybrid methods:

Yi=(14¢)yn — Ciyn-1 + h2 Z aijf(xn +cjh,Y;),i=1,...,s, (2a)
i=1

Yn+1 = 2yn —Yn—1+ h2 Z bzf(xn + Ciha }/z) (2b)
=1

for the numerical solution of Eq. .This class of methods has been investigated

by (Coleman, 2003). Let A be [a;;],, ., b be [b],,, and ¢ be [¢;],, ;. The

hybrid methods can be represented by

c| A
S (3)

Choosing ¢; = 0, ¢2 = 1, a;; = 0 for j > 7, a;; = v and s = 4, we have the
following form of hybrid methods:

0 0 0 0 0
1 a1 Y 0 0
C3 | as az2 Y 0 (4>
Cq | Qg1 Q42 Q43 7Y
| b1 by b3 by
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These methods are diagonally implicit and have four function evaluations or
stages at each step of integration. The leading term associated with the local
truncation error of a pth-order hybrid method is given by

a(ti)

t;) =
6P+1( Z) (p+2)
where Ty, a(t;) and ¢”(¢;) are as defined in (Colemanl [2003). The quantity

E = />0 e,412(t;) where ny42 is the number of trees of order p + 2, is

[1 + (71)p+2 — bT’L/}//(ti)] st €Ty, p(tz) =p+2 (5)

called the error constant for the pth-order method.

In the following sections, we describe briefly the phase-lag and stability
analysis of the class of methods given by Eq. . Then, the new method
will be derived and applied to several special second order ordinary differen-
tial equations of the form Eq. to provide numerical comparisons with the
existing explicit hybrid method.

2. Phase-lag and Stability Analysis

Let us consider the standard test problem
y' =Ny, A>0 (6)

Applying the hybrid methods as defined in Eq. to the test problem gives
us the following formula which is written in vector form:

Y =(e+¢)y, —cyn_1 — H*AYyp11 = 2y — yn_1 — H*b'Y (7)
where e = (1,1,--- ,1)T and Y = (Y1, Ya,---,Y,)T. This implies

Yn+1 — S(HQ)yn + P(Hz)ynfl =0 (8)
where S(H?) = 2 — H*bT(I + H?A)"'(e + ¢) and P(H?) = 1 — H*b™(I +

H?A)7lc. The characteristic equation that determines the numerical solution

of Eq. is
+® ¢* = S(H*)¢ + P(H?) =0 (9)

According to (van der Houwen and Sommeijer} |1987)), in the phase analysis,
one compares the phase (or argument) of exp iH with the principal root of the
characteristic equation. Thus, the phase-lag (or dispersion error) is given by

= — arccos LHQ)
O(H) = H (2 P(H2)> (10)
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whereas the dissipation (or amplification) error is given by

d(H) =1 — \/P(H?) (11)

A hybrid method corresponding to the Eq. @D is said to have the phase-lag
of order n if ¢(H) = csH"™ + O(H"*3). If d(H) = 0 then the method is
zero dissipative. If d(H) = ¢gH™"! + O(H™"3), then the method is dissipa-
tive of order m. Here, ¢y and ¢4 are the phase-lag and the dissipation constants.

For the stability analysis, the hybrid methods corresponding to the Eq.
is said to have the interval of stability (0, H,) if |[P(H?)| < 1 and |S(H?)| <
1+ P(H?) for all H € (0,H,). If P(H?) = 1 and |S(H?)| < 2 for all H €
(0, Hp), then the interval (0, H,) is called the interval of periodicity of the
hybrid methods.

3. Derivation of the new method

The new method is diagonally implicit and has an algebraic order five.
This method must satisfy 13 equations of order conditions for fifth order hy-
brid methods as listed in (Coleman) [2003]):

Zf=1 bi =1

Zf=1 biCi = 0

Zj:l biCiZ = 1/6

Dot 21 bigij = 1/12

Zle bici® =0

Dlic1 21 biciai; = 1/12

2im1 21 biaije; =0

Z:=1 bici‘l = 1/15

Yot Zj‘:l bici®aij = 1/30

Zf,:l Zj:l biciaijcj = —1/60
Dim1 21 D=1 biaijaik = 7/120
Z:=1 Z;:l biaijCjQ S 1/180

D1 21 2t biaijage = 1/360

Using Maple software, the following equations are obtained:
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oo Doat2 o 25cs® + 7Ty —3
57 T Blea+ 1) 6ea(5es + 2)
b, — 5e42 — 2 b _ 125(cy +1)*
6(ca —1)(10cs +7)" 2~ 6(10cs + 7)(5cs + 2)(5ca® + 10cq + 2)°
R 1
T T 2eu(es — 1)(Beg? + 10¢4 + 2)°
asy = —y +1,
o 1| (2507¢4® + 1250764 + 13007¢4 + 125¢4” + 3907 + 160cy + 44
31 — 250 (04 n 1)3 )
o — 1 [(10y +1)(10cq + 7)(5¢c4 + 2)
37 950 (ca + 1)3 ’
1
a4, = —m[lﬁ)’yc‘f’ + 450ve4* — 5ea® — 307e4® + eyt
— 4507c4? — 36¢4° — 30vcy — 68c4? + 367 — 22¢4],
Q42 =
1 (cq + 1)eq(1507yeq® + 450ycs? — 5eg® — 3307ycq + 25¢42 — 2707y — ¢4 — 19)
18 (10c4 + 7) ’
o 5 (cq + 1)%2c4(150vcs® + 1507ycs? — 5eg® — 240vey — 5e4? — 607y + 8cy + 2)
AEET (10c4 + 7)(5cq + 2) '

It is noted that ¢4 and v are free parameters. To find ¢4 and ~, the strategies
that we use are

1) to nullify the dissipation errors, and 2) to minimize the error constant.

2) to nullify the dissipation error, we solve the following equation

—-3007% +20y —1

0
3600(cs + 1)

giving v = 3—10 and c4 as the free parameter. Now we select ¢4 so that the error
constant F, is as small as possible. Using optimization package in Maple, we
finally choose ¢; = —63/100. Thus, for this method, E = 2.55 x 102 while
other coefficients are given by

o= 2 o = 29 g, — 281340 . 12880 . . _ _ 87869 .  _ 42217
3 = 37y Y21 a0 31 506530 32 19597 “41 375000 42 = 500000
Gun — 0. by = 1675 p ba — 1874161 7" °_ 1000000
43 » Y1 = 928987 Y2 T 13692’ 3 T 8947092 "4 T 47555739°

The interval of periodicity is (0,4.47). The new method is zero dissipative
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and has phase-lag of order 6. The phase-lag quantity is given by ¢(H) =
(13/604800)H™ + O(H?).

4. Numerical examples and discussions

The new method has been coded in Microsoft Visual C++ and applied to
several second-order problems with oscillating solutions to provide numerical
comparisons with the results of the existing explicit hybrid method. In the im-
plementation of the new method, Yj is iterated until |Y; — Yj_1| < € where €
is the chosen tolerance. Below are the abbreviations of the codes:

e DIHM: Fifth-order diagonally implicit hybrid method derived in this pa-
per.

e ETSHMS5: Fifth-order explicit hybrid method proposed by (Franco,2006)).
This method has an interval of absolute stability (0,2.68) and is given by
the following formula

Yl = yn—la}/Q = Un
Y3 = (1+c3)yn — C3Yn—1 + hZ(a31fn—1 + asa fn)
Yi=(1+ ca)yn — cayn—1 + h? [as1 foo1 + aao fn + ass f(zn + c3h, Y3)]

Ynt1 = 2Un—Yn—1+th? [b1 fa1 + bafn + b3 f(zy + c3h, Y3) + baf(xn + cah, Ya)]

with
63 23 126651

C3 = 1002 €4 = —37, Q31 = 3 )
o 090240 37 000000
32 = 2000000’
a4y = — A3347640

- b
oy — _94]8664465427329 _ 213026000 _ 31
42 50602347 “43 — 8248182561’ 1 13692
b, — 1675
2 — ]
ba — 75950000 b — 1874161
3 = 47555739 V4 T 8947092°

The numerical comparisons are based on maximum global errors produced by
each code when solving each problem. Formula for the maximum global error
and the notation used are given by
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Maximum global error=max(||y(x,) — ynl)
Notation : For example 1.06226E—04 means 1.06226 x 10~4

where y(z,,) is the exact solution and y,, is the numerical solution. Table 1 to
3 display the maximum global errors for the following test problems:

Problem 1 (non-homogeneous linear problem)
y" = —100y + 99 sinz, y(0) = 1,4'(0) = 11,0 < z < 100.
Exact solution: y(z) = cos 10z + sin 10z + sin z.

Problem 2 (almost periodic problem)

2" (x) + z(x) = (1/1000) exp iz, z2(0) = 1,2’ = 0.9995¢, z € C,0 < z < 100.

Exact solution: z(z) = (1 — 0.0005iz) expiz. In this paper, we assume that
z(x) = y1(x) + iy2(x), y1, y2 € R, then solve the following equivalent problem
y1” = —y1 + (1/1000) cos z,y1(0) = 1,4,'(0) = 0

! = —y + (1/1000) sin z, y2(0) = 0, y2'(0) = 0.9995

with the exact solution: y;(x) = cos +0.0005x sin z, y2(z) = sin —0.0005x cos .

Problem 3 (nonlinear oscillatory problem)
"= —day — 22— 41(0) = 1,11/(0) =0
hn oY1 mayl( ) ,y1'(0)
Yo = —dayy + T’@T y2(0) = 0,45/(0) = 0,0 < = < 10

Exact solution: y;(z) = cosz?,y2(z) = sinz2.

Table 1: Maximum Global Errors for Problem 1

Step-size DIHM ETSHMb5

0.1 1.06226E-04 2.80419E-01
0.05 1.99504E-06 7.70632E-03
0.025 5.19021E-08  2.36599E-04
0.0125  1.55025E-09 7.39372E-06
0.00625  4.81606E-11 2.30867E-07

From the numerical examples, DIHM gives smaller error compared to ETSHM5
code. This shows that the numerical solution by DIHM approximates the exact
solutions better than the numerical solution by ETSHM5 code.
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Table 2: Maximum Global Errors for Problem 2

Step-size DIHM ETSHMb

0.5 1.59350E-06  5.45857E-04
0.25 4.06247E-08  1.68505E-05
0.125 1.19357E-09  5.24871E-07
0.0625  3.66882E-11 1.63853E-08
0.03125 1.16941E-12 5.11886E-10

Table 3: Maximum Global Errors for Problem 3

Step-size DIHM ETSHM5

0.1 6.05791E-03  2.70440E-01
0.05 4.02130E-05  5.55132E-03
0.025 7.10976E-07  1.55348E-04
0.0125 1.77682E-08  4.64342E-06
0.00625  5.17788E-10 1.42237E-07

5. Conclusions

In this paper, we derive the new fifth-order diagonally implicit hybrid
method with four stages. The performance of this method is evaluated based
on its accuracy compared to the existing fifth-order explicit hybrid method
derived by (Franco| |2006). Several special second order initial value problems
with oscillating solutions are used for the numerical comparisons. We conclude
that the new method improves the accuracy of the existing explicit hybrid
method with the same algebraic order.
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