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ABSTRACT

It is very important to make sure that a statistical data is free from out-
liers before making any kind of statistical analysis. This is due to the fact
that outliers have an unduly affect on the parameter estimates. Circular
data which can be used in many scientific fields are not guaranteed to be
free from outliers. Often, the relationship between two circular variables
is represented by the simple circular regression model. In this respect,
outliers might occur in the both response and explanatory variables of
the circular model. In circular literature, some researchers show interest
to identify outliers only in the response variable. However, to the best
of our knowledge, no one has proposed a method which can detect out-
liers in both the response and explanatory variables of the circular linear
model. Thus, in this article, an attempt has been made to propose a new
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method which can detect outliers in both variables of the simple circular
linear model. The proposed method depends on the robust circular dis-
tance between the response and the explanatory variables in the model.
Results from the simulations and real data example show the merit of
our proposed method in detecting outliers in simple circular model.

Keywords: Circular data, circular regression, outlier, masking and swamp-
ing

1. Introduction

Circular data can be applied to various branches of scientific fields. It can
be represented on the circumference of the circle and they are measured either
by degree [0o-360o) or radians [0-2π). However, the statistical analysis and any
measures which are used in linear data cannot be used with the circular data
due to the circular geometry theory.

The existence of outliers may cause interpretative problems of the statis-
tical analysis as the presence of outliers misleads the statistical results and
the conclusions. Hence, researchers try to improve the ways to detect them.
There are mainly three causes to occur outliers in the statistical data, which
are miss-recording, unwitting sampling from another population and vagaries
of sampling resulting in the occasional isolated value Fisher (1993). Outliers
have large effect on the research results, especially if their percentage of oc-
currence is high. There are generally three types of outliers in a regression
model. First, X- space outliers or referred to as high leverage point (one or
more observations that lie far away from the group of observations at the X
axis ). Second, Y-space outliers (one or more observations that lie far away
from the group of observations at the Y axis). Finally, X-Y-space outliers (one
or more observations that lie far away from the group of observations at the X
axis and the Y axis) (see,Barnett and Lewis (1994)). Several work have been
done to identify outliers in the response variable (Y- space direction) in the
simple circular regression model. However, less attention is made in detecting
outliers in both Y and X axis.

To predict the mean direction µ of the response variable y of the circu-
lar regression model from a set of linear covariates x = x1, x2, ..., xn ,where y
follows von Mises distribution, Gould (1969) explained that it is important
to use different statistical techniques for circular data from the classical tech-
niques for linear data because the circumference is a bounded closed space.
He was the first researcher who introduces the circular linear model as µ
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= µ0 + Σβixi, by assuming that there is a set of circular independent and
identically observations ϑ1, ϑ2, ..., ϑn that follow von Mises distribution with
mean direction µ1, µ2, ..., µn and unknown concentration parameter k. Mar-
dia (1972) extended Gould’s model and his model is given by µi = µ0 + βti,
for some known numbers t1, t2, ..., tn and unknown parameters µ0, β. Jam-
malamadaka and Sarma (1993), proposed a regression model when both of
response and explanatory variables are circular. Their model is given by
E(eiy|x) = ρ(x)eiµ(x) = g1(x) + ig2(x) , where µ(x) is the Conditional mean di-
rection of y given (x), ρ(x) is Conditional concentration, 0 ≤ ρ(x) ≤ 1. Hussin
et al. (2004), extended Gould’s and Mardia’s models and suggested a simple
circular regression model when both of the response variable y and explanatory
variable x are circular. The model is given as :

yi = α+ βxi + εi(mod2π) (1)

where α, β are model parameters, ε is a circular random error follow von Mises
distribution with circular mean 0 and concentration parameter κ [vM(µ, κ)].
Now, it is obvious that the angles ϑ and ϑ+ 2π give the same point on the
circle. All arithmetic should therefore be modulo 2π, which is represented as
mod 2π Mardia and Jupp (2000).

It is noted that the previous models proposed by the several authors bypass
the effect of outliers on their models even though it has huge effect on the
models. Later, Abuzaid et al. (2011) suggested COVRATIO statistic to de-
tect outliers in the response variable y of the simple circular regression model.
Nonetheless, they did not try to identify outliers for the both response and
explanatory variables. Hussin et al. (2013) proposed the complex linear regres-
sion model to detect outliers based on the complex residuals. Abuzaid et al.
(2013), proposed the Mean Circular Error (MCE) statistic to identify outliers
in the response variable of the simple circular regression model by using a row
deletion approach.

In the same year, Abuzaid (2013) compared the COVRATIO statistic be-
tween simple circular regression model with the complex linear regression model
to investigate the outliers in Y direction. He concluded that the performance of
COVRATIO statistic for the simple circular model is better than for the com-
plex linear circular model. Nonetheless, none of them studied the detection of
outliers in both response and explanatory variables of the simple circular regres-
sion model. Therefore, we aim to propose a statistical test to identify outliers in
both response and explanatory variables of the simple circular regression model.
To date, with the best of our knowledge, no work has been published to detect
outliers in the both response and explanatory variables. Thus, we cannot com-
pare the results of our proposed statistic with any other statistics. However,
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we evaluate our suggestion by considering three robust measurements such as
the proportion of detection outliers, masking and swamping rates. It can be
noted that the masking is an inability of the statistic test to detect outliers and
swamping represent detection of clean observations as outliers Rousseeuw and
Leroy (1987).

This paper is arranged into the following sections.Section 2 explains the
proposed robust circular distance statistic and also find the cut-off points for
the proposed statistic. In Section 3, the performance of the proposed statistic
is evaluated by using simulation study. A real data example of the use of
the proposed statistic in a real-life situation is given in Section 4. Finally, in
Section 5, on the basis of all the numerical results we draw a conclusion in
favour of using the proposed statistic to detect outliers in the both response
and explanatory variables in the simple circular regression model.

2. Proposed Robust Circular Distance RCDxy

The proposed robust circular distance RCDxy statistic to detect outliers
in both of the response variable yi and the explanatory variable xj of the
simple circular regression model Hussin et al. (2004). According to the circle
geometry theory, the circular data are bounded and the outliers in the circular
regression model may not be extreme values. Therefore, we propose to cal-
culate the circular distance [dist]xy between the observations of the response
variable and the explanatory variable, then calculate robust circular distance
RCDxy between [dist]xy and its mean direction as a statistic to detect outliers.
The circular distance between any two data points is not as the linear dis-
tance. Jammalamadaka and SenGupta (2001) suggested the following formula
(ϕij=π − |π − |ϕi − ϕj ||) to calculate the circular distance between ϕi and ϕj .
In this section, we consider the following steps: first, we propose a new formula
to calculate the circular distance between y and x, as following :

If {(yi ≥ xi)} :

[disti]xy =

{
yi − xi if yi − xi ≤ π
2 ∗ π − yi + xi if yi − xi > π

If(yi < xi) :

[disti]xy =

{
xi − yi if xi − yi ≤ π
2 ∗ π − xi + yi if xi − yi > π
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where : 0 ≤ [disti]xy ≤ π

Second, we calculate the trimmed mean direction from the calculated circu-
lar distance, [disti]xy , to avoid the effect of contaminated and extreme circular
distances. Because of the circular distance is [0, π], we trim the largest and
smallest circular distance. The trimmed mean is one of the robust meth-
ods to estimate the location parameter by eliminating a proportion of the
largest and smallest values, where the proportion of trimming is δ ∈ [0, 0.5)
[0, 0.5) Maronna et al. (2006). Then, we calculate the circular distance be-
tween [disti]xy and trimmed mean direction as following :

disti =| [disti]xy −meant | (2)

where :
meant : trimmed mean direction of [dist]xy.
The observation ith is identified as an outlier if disti is greater than the cut-off
point. Where, the cut-off point can be calculated by

RCDxy = max(dist) (3)

We depend on three measures to evaluate our procedure: the proportion of
detection of outliers and rate of masking and swamping.

2.1 Calculate Cut off Points of The RCDxy

A series of a simulation studies of the simple circular regression model (1)
were carried out to determine the cut-off points of the RCDxy statistic. It is de-
signed to determine the cut-off points (percentage points) of the null hypothesis
for the distribution of no outliers in both the response and explanatory vari-
ables.This procedure is similar to the procedure that has been used by (Pearson
and Hartley 1966) and (Collett 1980). Random circular errors were generated
from VM [0, κ] distribution and Samples of von Mises distribution VM(π/4, 10)
with corresponding size n are generated to represent the values of X variable.
The parameters are fixed at α = 0 and β = 1. Observed values of the response
variable Y are calculated based on model (1). In each experiment, we consider
twenty-one different sizes of samples (n = 10(10)200 and 250), nine values of
concentration parameter κ = 2, 3, 5, 6, 8, 10, 12, 15, 20 are used. In this step,
we consider the mean direction of [dist]xy instead of trimmed mean direction
because the data are clean (without any contamination). By replicating these
processes 5000 times for each combination of sample size n and concentration
parameter κ, we calculate the RCDxy statistic. Finally, the 10% and 5% upper
percentile values are tabulated in Tables 1 and 2 respectively. We can notice
that the cut off points is increasing function of sample sizes and decreasing
function of the concentration parameter κ.

Malaysian Journal of Mathematical Sciences 403



Rana, S. et al.

Table 1: The 10% points of the null distribution of RCDxy

n\ κ 2 3 5 6 8 10 12 15 20 25
10 1.91 1.30 0.83 0.76 0.62 0.54 0.49 0.44 0.38 0.33
20 2.19 1.64 1.02 0.89 0.74 0.65 0.59 0.52 0.45 0.39
30 2.31 1.86 1.11 0.97 0.80 0.78 0.64 0.56 0.48 0.43
40 2.35 1.99 1.16 1.02 0.86 0.74 0.67 0.59 0.50 0.45
50 2.39 2.1 1.20 1.07 0.87 0.76 0.69 0.60 0.52 0.46
60 2.41 2.15 1.26 1.09 0.90 0.79 0.70 0.63 0.53 0.47
70 2.42 2.2 1.30 1.15 0.92 0.80 0.72 0.64 0.54 0.48
80 2.43 2.26 1.33 1.16 0.94 0.83 0.74 0.65 0.55 0.50
90 2.45 2.30 1.35 1.17 0.96 0.84 0.75 0.66 0.56 0.50
100 2.45 2.33 1.38 1.18 0.97 0.85 0.76 0.67 0.57 0.51
110 2.46 2.35 1.40 1.20 0.98 0.85 0.77 0.67 0.58 0.51
120 2.46 2.39 1.42 1.22 1.01 0.86 0.77 0.68 0.58 0.52
130 2.47 2.40 1.43 1.24 1.00 0.88 0.78 0.69 0.59 0.53
140 2.47 2.41 1.46 1.25 1.01 0.88 0.80 0.70 0.59 0.53
150 2.48 2.44 1.48 1.26 1.02 0.89 0.80 0.71 0.60 0.53
160 2.48 2.45 1.49 1.27 1.03 0.90 0.81 0.71 0.60 0.53
170 2.48 2.46 1.5 1.28 1.04 0.91 0.81 0.72 0.62 0.53
180 2.48 2.47 1.52 1.29 1.05 0.91 0.82 0.71 0.61 0.54
190 2.49 2.47 1.55 1.29 1.05 0.92 0.82 0.73 0.61 0.54
200 2.49 2.48 1.56 1.30 1.06 0.93 0.83 0.73 0.62 0.55
250 2.49 2.50 1.59 1.35 1.10 0.95 0.85 0.75 0.64 0.57

2.2 Performance of RCDxy Statistic by Simulation Study

In this simulation study, model (1) is used where we select 5 concentration
parameters namely κ = 3, 5, 6, 8 and 10 for three sample sizes n=60, 100
and 160. We study three ratios of contamination (α=5%, 10% and 20%). y
outliers were created such that in the first α/2 clean observations are replaced
with contaminated data. While outliers in x were created by replacing the last
α/2 of clean observations with contaminated data. We contaminated y and x
according to the following formula :

ycont = yclean + λπ(mod(2π))

xcont = xclean + λπ(mod(2π))
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Table 2: the 5% points of the null distribution of RCDxy

n\ κ 2 3 5 6 8 10 12 15 20 25
10 2.14 1.64 0.96 0.87 0.71 0.62 0.56 0.49 0.43 0.38
20 2.34 1.90 1.17 1.00 0.83 0.73 0.65 0.57 0.50 0.44
30 2.40 2.17 1.26 1.10 0.89 0.71 0.70 0.62 0.53 0.47
40 2.43 2.25 1.30 1.14 0.94 0.82 0.73 0.65 0.55 0.49
50 2.46 2.33 1.35 1.21 0.97 0.84 0.76 0.66 0.57 0.51
60 2.47 2.38 1.41 1.20 0.99 0.86 0.77 0.69 0.58 0.52
70 2.48 2.39 1.45 1.23 1.01 0.88 0.78 0.70 0.60 0.52
80 2.49 2.45 1.49 1.30 1.03 0.90 0.81 0.71 0.60 0.53
90 2.49 2.46 1.52 1.30 1.05 0.91 0.82 0.71 0.61 0.54
100 2.50 2.47 1.55 1.31 1.06 0.93 0.82 0.72 0.62 0.55
110 2.50 2.50 1.56 1.32 1.07 0.92 0.83 0.73 0.62 0.55
120 2.50 2.51 1.58 1.34 1.10 0.94 0.84 0.74 0.63 0.56
130 2.50 2.53 1.61 1.36 1.09 0.95 0.85 0.75 0.64 0.57
140 2.51 2.53 1.63 1.39 1.10 0.95 0.87 0.75 0.64 0.57
150 2.51 2.54 1.67 1.39 1.12 0.96 0.87 0.76 0.65 0.57
160 2.51 2.55 1.66 1.40 1.11 0.97 0.87 0.76 0.65 0.58
170 2.51 2.55 1.68 1.41 1.12 0.99 0.87 0.77 0.65 0.58
180 2.50 2.55 1.68 1.42 1.14 0.99 0.89 0.77 0.66 0.58
190 2.51 2.56 1.72 1.41 1.13 1.00 0.89 0.78 0.66 0.59
200 2.51 2.57 1.75 1.41 1.15 1.00 0.89 0.79 0.66 0.59
250 2.51 2.57 1.76 1.49 1.20 1.02 0.91 0.81 0.69 0.60

where λ : Degree of the contamination, such that (0 ≤ λ ≤ 1).

If λ = 0 , there is no contamination while if λ = 1, the circular observation
is located at the anti-mode of its initial location. We replicate these processes
5000 times for all combination of the sample sizes and concentration parameter
to calculate disti. Figures 1-3 show the proportion of detected outliers and rate
of masking at different degrees of contamination, λ , for the different percentage
of outliers. The upper percentile value of 10% is used as a cut-off point of the
RCDxy statistic for sample sizes 60, 100 and 160 respectively in these Figures
1-3. The results are consistent with the other sample sizes which are not shown.
The interested readers can request whole results from the corresponding author.
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Figure 1: Performance of RCDxy statistic for n = 60

We notice from the Figures 1-3, as expected, the proportions of detected
outliers are high for all combination of κ and n except κ = 3. Besides, our
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Figure 2: Performance of RCDxy statistic for n = 100
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Figure 3: Performance of RCDxy statistic for n = 160
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proposed method has high proportions of detected outliers for all ratios of con-
taminations except when n=60 with 5% of contamination. This is because of
the observations are more spread around the mean direction when κ is small,
in this case; it is very difficult to identify outliers. Collett (1980) As a second
measure of performance for the proposed method, the rate of masking is con-
sidered. As seen from the Figures 1-3, the rate of masking is low and decreasing
function of the concentration parameter up to reach 0% with λ > 0.5 and κ
= 10. This is the second measure to esteem the proposed test. As a third
measure of performance for the proposed method, the rates of the swamping
are considered. However, the results are not shown here due to they are equal
to zero for all combinations. At all, the performance of the proposed method is
an increasing function of sample size. Our proposal RCDxy statistic succeeds
to identify outliers with concentration parameter greater than 5 and λ > 0.5 for
different sample sizes with low and the high ratio of contamination for the both
response and explanatory variables of the simple circular regression model.

3. Practical Example

We detect outliers of the wind directions data which have been considered by
Abuzaid et al. (2013). In this data, a sample of 129 represent the measurements
by radians were recorded along the Holderness coastline (the Humberside coast
of North Sea, United Kingdom) by using (HF radar) system (x) and anchored
wave buoy (y). The observations 38 and 111 are found to be outliers of the
original data set Abuzaid et al. (2013). In order to see the effect of more than
2 outliers as is done in the simulation study, we deliberately contaminate the
data with 5%, 10% and 20% in x and y variables with λ = 0.6. Figures 4
(a-d) show the circle plots of [disti]xy of the original wind directions data, with
contamination 5%, 10% and 20% , respectively.

The estimated concentration parameter is κ=7.34. Therefore, the cut off
point is equal to 1.1, according to the results in Table 1 with upper percentile
10%. The RCDxy statistic is calculated and the results are plotted in Figure
5 for original wind directions data and with 5% of contamination. Figure 6
shows the RCDxy statistic for 10% and 20% of contamination. Figure 5 (Orig-
inal Data) shows that dist38 and dist111 exceed the cut-off point, so they are
classified as outliers. These detections correspond with those given by Abuzaid
et al. (2013). In other Figures , our statistic can identify 5%, 10% and 20% of
the contaminated data as outliers, respectively. As a result, RCDxy statistic
can be used to detect outliers for the low and high ratios of contamination for
the both response and explanatory variables in the simple circular regression
model.
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Figure 4: circle plots of [disti]xy
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Figure 5: RCDxy statistic of the original wind data and with 5% of contamination
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Figure 6: RCDxy statistic of the wind direction data with 10% and 20% of contamination
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4. Conclusion

This research focuses on the identification method of outliers in both the re-
sponse and explanatory variables in the simple circular regression model. New
robust method for diagnostic outliers is proposed. The statistical measures,
proportion of detected outliers and rate of masking and swamping are consid-
ered to evaluate our proposed statistic. We investigate the performance of our
proposed statistic with a real and simulated data. Results obtained from both
numerical examples indicate that RCDxy statistic was very successful in iden-
tifying outliers with different ratios of contamination. Monte Carlo simulation
also supports the merit of our proposed method under a variety of situations
with rate of swamping equal to zero.
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