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ABSTRACT

In this paper, weighted block Runge-Kutta (WBRK) method is derived
for solving stiff ordinary differential equations (ODEs). Implementation
of weights on the method and its stability region are shown. Numerical
results of the WBRK method are presented and compared with the ex-
isting methods to prove the ability of the proposed method to solve stiff
ODEs. The results show that the WBRK method has better accuracy
than the comparing methods.
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1. Introduction

A differential equation (DE) is an equation that involves one or more deriva-
tives of some unknown functions. Many problems in engineering, physical and
social sciences are reduce to quantifiable form through the process of mathe-
matical modelling which involved DEs. An example of modelling a real world
problem using DE is in population change which is affected by births, death,
immigration, and emigration. In most applicable situations, the exact solution
of the DEs that model the problem is too complicated to be solved analytically.
Hence, it is convenient to make approximations of the solution by numerical
methods.

There are two main approaches for numerical techniques, namely, linear
multistep method (LMM), and the one-step method. Adams method is widely
known for the LMM users, while RK method has been used extensively in a
one-step algorithm. The interest of using the one-step method, specifically RK
method, over LMM is due to the advantage of RK method which requires no
additional starting values and ability to readily change the steplength during
computation. We use the explicit RK method which exhibits smaller computa-
tional cost than the implicit one which obtained through Taylor series as shown
in Lambert (1973). Previously, it is known that implicit RK is more suitable
to solve stiff problems however, Wu (1998) developed a sixth order A-stable
explicit one-step method to show that an explicit method is efficient to solve
stiff problems too.

A weighted fifth-order RK formulas for second-order differential equations
proposed by Evans and Yaakub (1998) is an extension from Evans and Yaakub
(1996) who introduced a new fifth order five stage Arithmetic Mean (AM)
weighted RK (WRK) method. The implementation of weights on the method
improves the efficiency of the method to solve problem of DEs. RK formula
based on variety of means for solving the system of initial value problems
(IVPs) as suggested by Murugesan et al. (2001) is then extended by Push-
pam and Dhayabaran (2011) to solve stiff non-linear system. Ababneh and
Rozita (2009) derived a weighted third order RK method based on Contrahar-
monic Mean (WRK3CoM) that is suitable to solve stiff problem. Sharmila and
Amirtharaj (2011) used a modified weighted RK method based on Centroidal
Mean (MWRK3CeM) for solving stiff IVPs, and shows that it is more effective
than WRKCoM.

Many researchers especially mathematicians have extended the existing
method or developed a new method to solve the problem efficiently by re-
ducing the computational cost and obtained smaller error. The method that is
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capable to evaluate functions in block of several of steps at once instead of one
step at a time is a block method. Milne (1953) introduced a block method for
numerical solutions of the first and higher order ODEs to be used as a start-
ing value for a predictor-corrector algorithm. A block diagonally implicit RK
(BDIRK) method by Cash (1983) is used to solve stiff and non-stiff problems
of IVPs in ODEs. Then, Cash (1985) extended the method to form a block em-
bedded explicit RK method which has the characteristics of standard explicit
RK formula except for the function evaluation that is done in several steps at
once. The derivation of BDIRK is also available in Rahim (2004). Majid and
Suleiman (2007) developed a four-point fully implicit block method fo solving
first order ODEs by using variable stepsize. A block backward differentiation
formula (BBDF) of variable step for solving stiff ODEs proposed by Ibrahim
et al. (2007) have better accuracy with reduction of total steps and lesser com-
putational time when compared with classical BDF by Suleiman (1979). The
BBDF method is then improved in terms of its accuracy by several researchers,
such as Yatim et al. (2011), Zawawi et al. (2012) and Ismail et al. (2014).
Technique of partitioning introduced by Othman et al. (2007) which is based
on BBDF proposed by Ibrahim et al. (2007) is proved to reduce the cost of the
iteration scheme.

In this paper, we consider the following first order ODE of the form

y’ = Ay+ φ(x) (1)

where yT = (y1, y2, ..., ym) and A is an m × m matrix with eigenvalues λt,
t = 1, 2, ..,m. According to Lambert (1993),

Definition 1: The system of first order ODE as shown in 1 is said to be
stiff if
1) Re(λt) < 0, t = 1, 2, ...,m.
2) maxt|Re(λt)| >> mint|Re(λt)| where λt are the eigenvalues of A.

As shown in Lambert (1973), stiffness is dependent only on the large ratio
of the magnitudes of the negative real parts of the largest eigenvalue to that
of the smallest one. Stiffnes ratio is defined as S = maxt|Re(λt)|

mint|Re(λt)| , hence stiff
problem has S >> 1.

Derivation of the WBRK method is shown in Section 2. The stability of
WBRK is provided in Section 3. Section 4 presents the numerical results of
the proposed method when tested with problems of stiff ODEs. Finally, we
conclude findings of this research in Section 5.
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2. Derivation of WBRK

Murugesan et al. (2001) extended the RK method based on variety of means
which include AM, Geometric Mean (GM), Harmonic Mean (HaM), Heronian
Mean (HeM), Root Mean Square (RMS), CeM, and CoM for solving system of
IVPs. As shown in the paper, general form of CeM in terms of AM and GM
used to derive the WBRK method is presented as follows.

4(AM)2−(GM)2

3(AM)

or in general form of
2

3

(x21 + x1x2 + x22
x1 + x2

)
(2)

Since WBRKmethod is based on third order RK, we will use the MWRK3CeM
method by Sharmila and Amirtharaj (2011) as a foundation of our proposed
method. Standard form of MWRK3CeM with implementation of weights is
shown as follows

yn+1 = yn +
2

3
h
(
w1
k21 + k1k2 + k22

k1 + k2
+ w2

k22 + k2k3 + k23
k2 + k3

)
(3)

where

k1 = f(xn, yn),

k2 = f(xn + a1h, yn + ha1k1),

k3 = f(xn + (a2 + a3)h, yn + h(a2k1 + a3k2)).

Equation (3) can be transformed into a block method by integrates forward
over a step 2h on the Taylor series expansion of ki with i = 1, 2, 3 which yields

k1 =f,

k2 =f + 2ha1ffy + 2h2f2a21fyy +
4

3
h3f3a31fyyy,

k3 =f + 2h(a2 + a3)ffyy + 4h2
(
a1a3ff

2
y +

1

2
(a2 + a3)

2
f2fyy

)
+

8h2
(1
2
a21a3f

2fyfyy + a1a3(a2 + a3)f
2fyfyy +

1

6
(a2 + a3)

3
f3fyyy

)
(4)
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Figure 1: Block explicit RK method of constant stepsize

Figure 1 shows the computation works of WBRK method.

By substituting Equation (4) into Equation (3), we obtain an expression
yn+2 in terms of the function with parameter ai for i = 1, 2, 3, and its deriva-
tives. The formula obtained involves a division of two series as follows

2∑
i=1

k2i + kiki+1 + ki+1

ki + ki+1
(5)

These problems can be solved by cross multiplying the series with the com-
mon denominator (k1 + k2)(k2 + k3). Hence, it can be written as

yn+1 = yn +
U

L
(6)

with

U = 2(2h)(w1(k
2
1 + k1k2 + k22)(k2 + k3) + w2(k

2
2 + k2k3 + k23)(k1 + k2))

and

L = 3(k2 + k3)(k1 + k2)

The Taylor series expansion of y(xn+2), T , can be written as such

T = yn + (2h)f + 1
2 (2h

2
ffy +

1
6 (2h)

3
(ff2y + f2fyy)

The error of the method, E, is measured by the following expression

E = y(xn+2)− yn+1.
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This yields

E = T − U

L
. (7)

Then, by comparing the coefficients of like terms for Equation (7) up to
term h3 yields the following

hf3 : 24w1 + 24w2 − 24 = 0 (8)

h2f3fy :72w1a1 + 24w1a2 + 24w1a3 + 72w2a1 + 48w2a2 + 48w2a3

− 48a1 − 24a2 − 24a3 − 24 = 0
(9)

h3f3f2y :80w1a
2
1 + 80w2a

2
1 + 32w2a

2
2 + 32w2a

2
3 + 48w1a1a2+

96w1a1a3 + 80w2a1a2 + 176w2a1a3 + 64w2a2a3 − 24a21−
24a1a2 − 72a1a3 − 48a1 − 24a2 − 24a3 − 16 = 0

(10)

h3f4fyy :72w1a
2
1 + 24w1a

2
2 + 24w1a

2
3 + 72w2a

2
1 + 48w2a

2
2 + 48w2a

2
3+

48w1a2a3 + 96w2a2a3 − 48a21 − 24a22 − 24a23 − 48a2a3 − 16

= 0

(11)

Equations (8), (9), (10) and (11) are solved for the chosen weights to obtain
a set of parameters. Following Evans and Yaakub (1998), the set of weights
chosen must satisfy

∑2
i=1 = 1. Hence, we randomly choose weights, w1 = w2 =

1
2 . On that account, we obtain the following set of parameters

a1 = 2
3 , a2 = − 2

9 , a3 = 8
9 .

By substituting the weights and the set of parameters into Equation (3)
results the following equation

yn+1 = yn +
1

3
h
(
w1
k21 + k1k2 + k22

k1 + k2
+ w2

k22 + k2k3 + k23
k2 + k3

)
,

yn+2 = yn +
2

3
h
(
w1
k21 + k1k2 + k22

k1 + k2
+ w2

k22 + k2k3 + k23
k2 + k3

)
,

(12)

where
k1 = f(xn, yn),

k2 = f
(
xn +

2

3
h, yn +

2

3
hk1

)
,

k3 = f
(
xn +

2

3
h, yn + h(−2

9
k1 +

8

9
k2)).

(13)

This completes the derivation.
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3. Stability of WBRK

In this section, we analyze the stability of WBRK method. As referred in
Rahim (2004), absolute stability can be defined as follows.

Definition 2: By letting z = hλ, then R(z) is known as the stability function
of the method. Hence yn → 0 as n→ 0 if and only if

|R(z)| < 1 (14)
and the method is absolutely stable for those value of z for which Equation (14)
holds. The region RA of the complex z−plane which the equation holds is the
region of absolute stability.

In order to construct the stability region of the method, we have to find the
stability polynomial. By considering the following test equation,

y′ =f(x, y)

=λy
(15)

We substitute Equation (15) into Equation (13) which gives us the following

k1 = f(xn, yn) = λyn,

k2 = f
(
xn +

2

3
h, yn +

2

3
hk1

)
= λyn

(
1 +

2

3
hλ
)
,

k3 = f
(
xn +

2

3
h, yn + h(−2

9
k1 +

8

9
k2)) = λyn

(
1 +

2

3
hλ+

16

27
h2λ2

)
.

(16)

By substituting Equation (16) into Equation (12), and letting yn+1

yn
= R(hλ),

we obtain the following

R(hλ) =(13122 + 26244hλ+ 26487h2λ2 + 16848h3λ3 + 6804h4λ4+

1920h5λ5 + 256h6λ6)
1

162(3 + hλ)(27 + 18hλ+ 8h2λ2)

(17)

Then, we let z = hλ into Equation (17) to obtain

R(z) =(13122 + 26244z + 26487z2 + 16848z3 + 6804z4+

1920z5 + 256z6)
1

162(3 + z)(27 + 18z + 8z2)

(18)

Equation (18) is known as stability function or stability polynomial of the
method. Clearly, yn → 0 as n → 0 if and only if when |R(z)| < 1 which
satisfies the condition mentioned in Definition 2. Hence, the WBRK method
is absolute stable. By using MAPLE, the stability regions of the method are
presented as follows.
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Figure 2: Stability region of WBRK method

Figure 2 shows that the stability regions of the method lies inside the
closed region. We find the interval of absolute stability of the method by
using MAPLE which is approximately [-1.94,0]. According to Burden et al.
(2015), a method can be applied effectively to a stiff equation only if hλ is in
the region of absolute stablity of the method.

4. Numerical Results

In this section, we present the numerical results of WBRK method to check
on the accuracy of the method. The method is tested with three ODEs of
stiff type and we compare the maximum error (MAXE) and computational
time (TIME) of the method with MWRK3CeM as shown in Sharmila and
Amirtharaj (2011) and the third order RK method in Lambert (1973).

Table 1-3 tabulate the results while Figure 3-8 illustrate the graphical form
between the Log(MAXE) versus Log(h) and Log(TIME).

The methods are tested with stepsize, h=0.01, 0.0001, and 0.000001. λ
shows the eigenvalue(s) of the following test problems.
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Problem 1:
y′ = −15y, y(0) = 1, 0 ≤ x ≤ 1
with exact solution
y = e−15x, λ = −15
Source: Berland (2007).

Problem 2:
y′ = −20(y − x) + 1, y(0) = 1, 0 ≤ x ≤ 10
with exact solution
y = e−20x + x, λ = −20
Source: Gear (1971).

Problem 3:
x′ = 42y − 43x, x(0) = 8, 0 ≤ x ≤ 1
y′ = −8y + 7x, y(0) = 1,
with exact solution
x = 2e−t + 6e−50t, λ = −1
y = 2e−t − e−50t, λ = −50
Source: Huang (2005).

Table 1: Comparison of WBRK of weights, w1 = w2 = 1
2 with MWRK3CeM and RK3 for solving

Problem 1

Stepsize, h Method MAXE(yn+1)
WBRK 7.111898824E-05

10−2 MWRK3CeM 1.536057468E-03
RK3 2.184967940E-02

WBRK 5.949740700E-11
10−4 MWRK3CeM 1.381024156E-07

RK3 1.842618470E-04
WBRK 7.438494265E-15

10−6 MWRK3CeM 1.380451309E-11
RK3 1.839429394E-06
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Table 2: Comparison of WBRK of weights, w1 = w2 = 1
2 with MWRK3CeM and RK3 for solving

Problem 2

Stepsize, h Method MAXE(yn+1)
WBRK 2.271357959E-04

10−2 MWRK3CeM 2.803610572E-03
RK3 2.840716293E-02

WBRK 2.966545146E-08
10−4 MWRK3CeM 2.430198235E-07

RK3 2.250360654E-04
WBRK 7.684324288E-10

10−6 MWRK3CeM 7.684324288E-10
RK3 2.244994309E-06

Table 3: Comparison of WBRK of weights, w1 = w2 = 1
2 with MWRK3CeM and RK3 for solving

Problem 3

Stepsize, h Method MAXE(yn+1)
WBRK 2.467754126E-02

10−2 MWRK3CeM 1.331770888E-01
RK3 2.966907540E-01

WBRK 6.934759966E-08
10−4 MWRK3CeM 9.247600947E-06

RK3 1.859830420E-03
WBRK 1.375306535E-10

10−6 MWRK3CeM 9.214335961E-10
RK3 1.849920277E-05

From Table 1-3, we can observed that the WBRK method obtained smaller
MAXE when compared with the MWRK3CeM method and RK3 method. In
comparison of the stepsize used, it shows that stepsize, h=0.000001 obtained
smaller MAXE.
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Figure 3: Graph of Log(MAXE) vs Log(h) of WBRK method is compared with MWRK3CeM
and RK3 for solving Problem 1

Figure 4: Graph of Log(MAXE) vs Log(TIME) of WBRK method is compared with
MWRK3CeM and RK3 for solving Problem 1
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Figure 5: Graph of Log(MAXE) vs Log(h) of WBRK method is compared with MWRK3CeM
and RK3 for solving Problem 2

Figure 6: Graph of Log(MAXE) vs Log(TIME) of WBRK method is compared with
MWRK3CeM and RK3 for solving Problem 2
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Figure 7: Graph of Log(MAXE) vs Log(h) of WBRK method is compared with MWRK3CeM
and RK3 for solving Problem 3

Figure 8: Graph of Log(MAXE) vs Log(TIME) of WBRK method is compared with
MWRK3CeM and RK3 for solving Problem 3
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Figure 3-8 illustrate the efficiency of WBRK method based on its execution
time and stepsize used when compared with the MWRK3CeM and the RK3
method.

5. Conclusion

The derivation of WBRK based on CeM for solving stiff ODEs is shown in
this paper. From the stability regions of the WBRK method, we can conclude
that the method is absolute stable. The numerical results prove that WBRK
method has better accuracy than the comparing methods. The results also
show better accuracy when smaller stepsize is used. From the efficiency graph
shown in Figure 3-8, we can observe that WBRK method performs better in
terms of its execution time when compared with the MWRKCeM and the
RK3 method. Hence, we can conclude that WBRK method can serve as an
alternative solver for solving stiff ODEs problems.
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