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ABSTRACT

Pell equation is a special type of Diophantine equations of the form
x2 −my2 = 1, where m is a positive non-square integer. Since m is not
a perfect square, then there exist infinitely many integer solutions (x, y)
to the Pell equation. This paper will discuss the integral solutions to the
simultaneous Pell equations x2 −my2 = 1 and y2 − pz2 = 1, where m is
square free integer and p is odd prime. The solutions of these simultane-
ous equations are of the form of (x, y, z,m) = (yn

2t±1, yn, zn, yn
2t2±2t)

and (
y2
n
2
t ± 1, yn, zn,

y2
n
4
t2 ± t) for yn odd and even respectively, where

t ∈ N.
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1. Introduction

The fundamental solution, which is denoted by ε1 = x1 + y1
√
m is the

smallest integer solution for the Pell equation x2 − my2 = 1. Tekcan (2011)
gave the formula of finding the fundamental solution based on the continued
fraction expansion of

√
m for m = u2 ± 1, u2 ± 2, and u2 ± u, where u ∈ N.

The fundamental solution can be used to generate all other solutions (xn, yn)
of Pell equation which is given by the following formula

xn + yn
√
m = (x1 + y1

√
m)n, (1)

where n ∈ N. Nagell (1964) provided a formula to find the value of xn and yn
which are of the form

xn = xn1 +
∑
k=1

(
n
2k

)
xn−2k1 y2k1 mk,

yn =
∑
k=1

(
2

2k−1
)
xn−2k+1
1 y2k−11 mk−1.

Anglin (1996) had considered the simultaneous Pell equations x2−Ry2 = 1
and z2 − Sy2 = 1 with R < S ≤ 200 and all the positive solutions are given by{

x = ur =
Ar+A−r

2 , y = vr =
Ar+A−r

2
√
R

, for x2 −Ry2 = 1,

z = wn = A
′n+A

′−n

2 , y = tn = A
′n+A

′−n

2
√
S

, for z2 − Sy2 = 1,

where A and A′ is the fundamental solution of x2 −Ry2 = 1 and z2 − Sy2 = 1
respectively and r, n = 0, 1, 2, . . .. Anglin conclude that there are no solutions
(x, y, z) to the simultaneous Pell equations for both r and n are greater than
2. The only solution for the case of either r or n more than 2 is when r = 3
and n = 1. There are no solution for y > 120.

By considering the method of simultaneous Padé approximation to hyper-
geometric functions with a gap principle, Bennett (1998) studied the number
of solutions to the simultaneous Pell equations x2 − az2 = 1 and y2 − bz2 = 1,
where a and b are distinct nonzero integers and proved that there exist at most
three positive integral solutions (x, y, z). Bennett also managed to prove that
the number of integral solutions to the simultaneous Pell equations x2−ay2 = 1
and y2 − bz2 = 1 is at most three.
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By assuming a = 4m(m + 1) with m is nonzero positive integer, Yuan
(2004) proved that the simultaneous Pell equations x2 − 4m(m+1)y2 = 1 and
y2 − bz2 = 1 has at most one positive integral solution (x, y, z).

Ai et al. (2015) provided the complete solutions to the simultaneous Pell
equations in Yuan (2004) for m = 2 and b is prime, denoted by p. The solutions
of simultaneous equations x2 − 24y2 = 1 and y2 − pz2 = 1 are (x, y, z, p) =
(49, 10, 3, 11) and (485, 99, 70, 2).

Let m be positive square free integer and p be odd prime. In this paper, we
will study the integral solutions for the simultaneous Pell equations

x2 −my2 = 1 and y2 − pz2 = 1. (2)

In order to find the solutions, we need the following definition.

Definition 1.1. (Divisibility) An integer a is said to be divisible by an integer
d 6= 0, denoted as d|a if there exist some integer c such that a = dc.

2. Main Result

The following theorem will give the integral solutions to the simultaneous
Pell equations x2 −my2 = 1 and y2 − pz2 = 1 based on parity of yn.

Theorem 2.1. Let x, y, z,m be positive integers and p odd prime. The integral
solutions to the simultaneous Pell equations x2 −my2 = 1 and y2 − pz2 = 1 is
of the form

(x, y, z,m) =

{
(
y2n
2 t± 1, yn, zn,

y2n
4 t

2 ± t), if yn is even
(y2nt± 1, yn, zn, y

2
nt

2 ± 2t), if yn is odd

for n, t ∈ N.

Proof. From (1), n-th solution is given by εn = yn + zn
√
p. We will consider

two cases, in which yn is even or odd.

CASE A: Suppose, yn is even.
In this case, we will consider another two cases as follows:

Case I: Suppose, m even and x odd integer.
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Let m = 2αk and x = 2γs + 1, where (2, k) = (2, s) = 1 and α, γ ≥ 1. By
substituting the values of x and m into x2 −my2n = 1, we will obtain

22γs2 + 2γ+1s = 2αky2n. (3)

In order to get the expressions ofm, we will consider another three cases, α = γ,
α < γ and α > γ.

(i) The first case if α = γ:
From (3), we obtain

k =
2γs2 + 2s

y2n
. (4)

We substitute (4) into m = 2αk, we will have

m =
22γs2 + 2γ+1s

y2n
. (5)

We consider two possibilities of factorization, which are

m =
2γ+1s(2γ−1s+ 1)

y2n
, (6)

or

m =
s(22γs+ 2γ+1)

y2n
. (7)

From (6) and m is integer, clearly that y2n|2γ+1s or y2n|(2γ−1s+ 1).

From Definition 1.1, y2n|2γ+1s then, there exists t ∈ N such that 2γ+1s =
y2nt. Hence,

m =
2γ+1s(2γ−1s+ 1)

y2n
=
y2nt(y

2
nt · 2−2 + 1)

y2n
=
y2n
4
t2 + t. (8)

For the value of x, we will have

x = 2γs+ 1 = y2nt · 2−1 + 1 =
y2n
2
t+ 1. (9)

Next, we consider for the case y2n|(2γ−1s + 1). Since y2n is even, it only
divides even number. So, 2γ−1s+ 1 is even if γ = 1. We have y2n|(s+ 1),
then there exists t ∈ N such that s+ 1 = y2nt.

Thus,

m =
22s(s+ 1)

y2n
=

4(y2nt− 1)y2nt

y2n
= 4(y2nt

2 − t). (10)
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For the value of x, we will have

x = 2s+ 1 = 2(y2nt− 1) + 1 = 2y2nt− 1. (11)

Let t = t1
4 for some t1 ∈ N, equations (10) and (11) become

m =
y2n
4
t21 − t1 and x =

y2n
2
t1 − 1

respectively.

From (7), since s is odd, then y2n - s. Clearly that y2n|(22γs + 2γ+1),
then there exists t ∈ N such that

s =
y2nt− 2γ+1

22γ
. (12)

By substituting (12) into (7), we obtain

m =
y2n
22γ

t2 − 21−γt. (13)

Then, substitute (12) into x = 2γs+ 1, we will have

x =
y2n
2γ
t− 1 (14)

with γ ≥ 1.
Let t = 2γ+1t2

4 for some t2 ∈ N, equations (13) and (14) become

m =
y2n
4
t22 − t2 and x =

y2n
2
t2 − 1

respectively.

(ii) Now, we consider the second case if α < γ, as follows:
From (3), we obtain

k =
22γ−αs2 + 2γ−α+1s

y2n
. (15)

Substitute (15) into m = 2αk and we will obtain (5). Next, we will con-
sider (6) and (7).

The factorization of (6) with m integer, will have γ > 1 and clearly
that y2n|2γ+1s since y2n - (2γ−1s+ 1).

Malaysian Journal of Mathematical Sciences 65



Sihabudin, N. A., Sapar, S. H. and Johari, M. A. M.

Then, there exists t ∈ N such that

2γ+1s = y2nt. (16)

By substituting (16) into (6) and x = 2γs + 1, then we will obtain (8)
and (9) respectively.

Now, we consider (7) with m is integer. Since y2n - s, we will have (12).
The solutions for m and x are of the form (13) and (14) with γ > 1 since
our case is γ > α ≥ 1.

(iii) Lastly, we consider the case, if α > γ:
From (3), we obtain

2γ−1s2 + s = 2α−γ−1ky2n. (17)

Right-hand side of (17) is always even, then the left-hand side will be
even when γ = 1. Then we will have

k =
s2 + s

2α−2y2n
. (18)

We substitute (18) into m = 2αk, and obtain

m =
4s(s+ 1)

y2n
. (19)

Since m is integer, then clearly that y2n|4s or y2n|(s+ 1).

From Definition 1.1, y2n|4s implies that there exists t ∈ N such that
4s = y2nt. Hence we will obtain (8) and (9) from (19) and x = 2γs + 1
respectively.

Next, we consider for the case y2n|(s+1). From Definition 1.1, y2n|(s+1)
implies that there exists t ∈ N such that s + 1 = y2nt. Hence, from (19)
and x = 2γs+ 1 we obtain (10) and (11) respectively.
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Now, we consider the second case.

Case II: Suppose, m and x are odd integers.

Let m = 2αk + 1 and x = 2γs+ 1, where (2, k) = (2, s) = 1 and α, γ ≥ 1.
Substituting the values x and m into x2 −my2n = 1, we obtain

22γs2 + 2γ+1s− y2n = 2αky2n. (20)

We will consider the same cases as Case I, that is α = γ, α > γ and α < γ .

(i) For the case α = γ, we have as follows:
From (20), we have

k =
22γs2 + 2γ+1s− y2n

2γy2n
. (21)

Substituting (21) into m = 2αk+1, we obtain (5). Then we consider the
factorizations of (6) and (7).

By using the same argument as in Case I, we obtain the solutions as
(8), (9), (10), (11), (13) and (14).

(ii) For the case if α < γ and α > γ, we have as follows :
By simplifying (20), we have

k =
22γs2 + 2γ+1s− y2n

2αy2n
. (22)

Substitute (22) into m = 2αk+1, we have (5), (6) and (7). By using the
same argument as in Case I, we obtain (8), (9), (13), and (14) for case
α < γ and for case α > γ, we obtain (8), (9), (10), (11), (13) and (14).

CASE B: Suppose, yn is odd.
We will consider two cases. That is:
Case I: m is even, x is odd
Case II: m is odd, x is even

Case I: Let m = 2αk and x = 2γs+ 1, where (2, k) = (2, s) = 1 and α, γ ≥ 1.
Substituting the values of m and x into x2 −my2n = 1, we obtain (3). From
this equation, we consider another two cases. That is, α ≤ γ or α > γ.
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(i) Now, we consider the first case. That is α ≤ γ.
From (3), we obtain

22γ−αs2 + 2γ−α+1s = y2nk. (23)

From (23), it is contradiction since yn is odd yield the right-hand side is
always odd but the left-hand side is always even.

(ii) For the second case which is α > γ, we have the following:
From (3), we obtain (17). On the right-hand side of (17) is even when
α−γ− 1 > 0 and left-hand side is even when γ = 1. Then we will obtain
the values of k and m as (18) and (19).

We will consider two possibilities of factorization, which are (19) or

m =
2s(2s+ 2)

y2n
. (24)

From (24) and m integer, clearly that y2n|2s or y2n|(2s+ 2).
From Definition 1.1, y2n|2s implies that there exists t ∈ N such that
2s = y2nt. Thus, we have

m = y2nt
2 + 2t and x = y2nt+ 1. (25)

Now, we consider for the case y2n|(2s + 2), then exists t ∈ N such that
2s+ 2 = y2nt. We obtain

m = y2nt
2 − 2t and x = y2nt− 1. (26)

Next, we focus on (19). It is clear that y2n|4s or y2n|(s+1). From Definition
1.1, y2n|4s implies that there exists t ∈ N such that 4s = y2nt. Then, we
will obtain (8) and (9). Let t = 2t3 for t3 ∈ N, (8) and (9) become

m = y2nt
2
3 + 2t3 and x = y2nt3 + 1

respectively which has similar pattern as (25).

Now, suppose y2n|(s+ 1) which implies that there exists t ∈ N such that
s+ 1 = y2nt. For this case, we obtain (10) and (11). Let t = t4

2 for some
t4 ∈ N, (10) and (11) become

m = y2nt
2
4 − 2t4 and x = y2nt4 − 1

respectively which has similar pattern as (26).
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From (17), the right-hand side is odd when α = γ + 1 and the left-hand
side is odd when γ > 1. Then, we will obtain

k =
2γ−1s2 + s

y2n
. (27)

Substituting (27) into m = 2αk, we obtain m of the form (5). Next, we
consider two possibilities as in (6) or

m =
2γs(2γs+ 2)

y2n
. (28)

By Definition 1.1, we yield the solutions of the form (25) and (26) for
(28) and x = 2γs+ 1.

For equation (6) and x = 2γs + 1, we obtain the similar results as (25)
and (26).

Consider Case II: Let m = 2αk + 1 and x = 2γs, where (2, k) = (2, s) = 1 and
α, γ ≥ 1.

We substitute the values of m and x into x2 − y2nm = 1, we obtain

22γs2 − (1 + y2n) = 2αk · y2n. (29)

For this case, we consider three cases as follows:

(i) The first case if α = γ.
From (29), we have

2γs2 − 2−γ(1 + y2n) = y2nk. (30)

Right-hand side of (30) is always odd and left-hand side will be odd if
2−γ(1 + y2n) is odd.

Let yn = 2βj + 1, with (2, j) = 1 and β ≥ 1. Then,

y2n + 1 = 2(22β−1j2 + 2βj + 1). (31)

Substituting (31) into (30), we get

2γs2 − 21−γ(22β−1j2 + 2βj + 1) = y2nk. (32)

The left-hand side of (32) is odd when γ = 1. Then,

k =
4s2 − y2n − 1

2y2n
. (33)
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Substituting (33) into m = 2αk+1, we have m = (2s−1)(2s+1)
y2n

and obtain
(25) and (26).

(ii) For the second case, we consider if α < γ.
Substituting (31) into (29), we have

22γ−αs2 − 21−α(22β−1j2 + 2βj + 1) = y2nk. (34)

Left-hand side of (34) will be odd if α = 1. Then,

k =
22γs2 − y2n − 1

2y2n
. (35)

Substituting (35) into m = 2αk + 1, we have m = (2γs−1)(2γs+1)
y2n

and
obtain (25) and (26).

(iii) Lastly, if α > γ.
Substituting (31) into (29), we obtain

22γ−1s2 − 22β−1j2 − 2βj − 1 = 2α−1ky2n. (36)

It is contradict since right-hand side of (36) is even but the left-hand side
is always odd.

3. Conclusion

By considering the parity of y,m and x, the solutions to the simultaneous
Pell equations x2 −my2 = 1 and y2 − pz2 = 1, where m is square free integer
and p is odd prime is of the form

(x, y, z,m) =

{
(
y2n
2 t± 1, yn, zn,

y2n
4 t

2 ± t), if yn is even
(y2nt± 1, yn, zn, y

2
nt

2 ± 2t), if yn is odd

for n, t ∈ N.
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