AFFECTS OUR

AFFECTS OUR

PROFESSOR DR. AZMI ZAKARIA

Ph.D (Swansea), M.Sc (Belfast), B.Sc (Hons) (UKM)

7 JUNE 2013

Dewan Phillip Kotler Universiti Putra Malaysia

Universiti Putra Malaysia Press Serdang • 2013 http://www.penerbit.upm.edu.my

© Universiti Putra Malaysia Press

First Print 2013

All rights reserved. No part of this book may be reproduced in any form without permission in writing from the publisher, except by a reviewer who wishes to quote brief passages in a review written for inclusion in a magazine or newspaper.

UPM Press is a member of the Malaysian Book Publishers Association (MABOPA) Membership No.: 9802

Typesetting	: Sahariah Abdol Rahim @ Ibrahim
Cover Design	: Md Fairus Ahmad

Design, layout and printed by Penerbit Universiti Putra Malaysia 43400 UPM Serdang Selangor Darul Ehsan Tel: 03-8946 8855 / 8854 Fax: 03-8941 6172 http://www.penerbit.upm.edu.my

Contents

ABSTRACT	1
INTRODUCTION	1
WHAT IS THERMAL WAVE	3
APPLICATIONS OF PHOTOTHERMAL EFFECT	11
THE FUTURE CHALLENGE	28
REFERENCES	30
BIOGRAPHY	39
ACKNOWLEDGEMENT	41
LIST OF INAUGURAL LECTURES	43

ABSTRACT

The photothermal effect of solid was first discovered by Alexander Graham Bell in 1880 while its application on determining the type of gaseous was recognized in 1903. However the application on solid only began in 1973 after Parker discovered it accidently during the characterizing of gas with photoacoustic cell. Following this, the research activities on solid have exploded by its flexibility in photothermal detections and can be applied in various applications. Here the review on photothermal research activities on sample characterizing in UPM and others are presented. Also included are the future direction and challenges in photothermal research.

INTRODUCTION

The photothermal (PT) effect of solid was first discovered by Alexander Graham Bell in 1880 during his experimentation with long-distance sound transmission. Through his invention, called "photophone", he transmitted vocal signals by reflecting sun light from a vibrating reflector or mirror to a solar cell receiver, selenium (Bell, 1880). As a result of this observation, he noticed that sound waves were generated directly from a solid sample when exposed to sunlight beam that was rapidly interrupted or modulated with a rotating slotted disc (Bell, 1881), see Figure 1. Here he heard sound with a *stethoscope* contacting the sample. He observed that the resulting acoustic signal was dependent on the kind of the material and reasoned that the effect was caused by the absorbed light energy, which subsequently heated the sample.

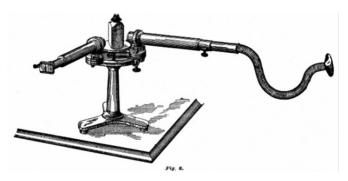


Figure 1 Bell's instrument for observing the photothermal effect. (http://fys.kuleuven.be/atf/Research_themes/rt_photoacoustic/rt_photo_pha)

Nowadays, this effect can be explained as an excitation upon receiving an electromagnetic radiation (light) energy and de-excitation of electron between energy levels in atom. In the de-excitation the electron can go either through non-radiative or radiative transition. The non-radiative route transition can produce vibration or heat in the solid surface atoms; i.e. as happened on black motorcycle seat as it turns hot when it is exposed under the sun.

The utilization of PT effect on gas had started since 1903, where most of type of gasses can be detected by using the microphone as a detector and therefore known as photoacoustic (PA) technique as microphone is used for detection. Here they utilized the sensitivity of certain gas with certain light wavelength. However its application to solid had not really begun until 1973 when Parker (1973) discovered that in the PA measurement of gas, even for gas of non infra-red absorbing the sound was produced. He concluded that it came from the PT effect of solid PA cell glass window. Later researchers discovered that other than microphone detector, a series of PT detectors can be employed such as piezoelectric detector,

pyroelectric PVDF film detector, and various means to detect changes of material refractive index caused by PT effect.

After this discovery, the PT study on solid was suddenly exploding because apart of being detected by various means, it can be applied to many fields of study such as nondestructive evaluation, thermal study, chemical reaction, spectroscopy for analytical chemistry and semiconductor materials, thermophysical properties and characterization of materials, optical material, thin films and devices, nonlinear phenomena, instrumentations, biological and medical, and agricultural and environmental applications. Following the discovery also, there was a bi-yearly conference set-up to report its progress and was named as "The International Conference on Photoacoustic and Photothermal Phenomena", and photoacoustic journals to report many research activities related to this effect.

WHAT IS THERMAL WAVE?

How one can hear the sound with hearing aid when a chopped or modulated light illuminate the solid? The answer is as follows; (i) the PT effect produces the conversion of the absorbed modulated light into heat energy, (ii) then the temporal changes of the temperatures at the point where radiation is absorbed, i.e. rising as radiation is absorbed and falling when radiation stops and the system cools, (iii) expansion and contraction in air that in contact to solid occurs following these temperature changes, which are "transferred" to pressure changes. The pressure variations, which occur in the particular wavelength where light is absorbed, propagate within the sample body and can be sensed by a hearing sensor attached to it. While in the solid at the same time the heat diffusion occurs and varies because of light modulation. Both air pressure and heat diffusion variations are like wave and therefore it is termed as thermal wave. The thermal wave can be detected by PT detector or microphone. In the transient regime, a short duration light pulse (in particular laser or flash light) is illuminated onto a particular liquid or solid surface and the radiated infra-red is detected by PT detector such as pyroelectric films, infra-red detector such as cooled HgCdTe.

Mathematically the thermal wave can be expressed as Eq. (1).

$$Y(x,t) = Ae^{-\mu x} \cos(\omega t - \mu x) \tag{1}$$

Here μ is the thermal diffusion length (cm), ω is the frequency (rad s⁻¹), *t* and *x* are time and distance respectively. For an opaque sample, the thermal diffusion length or the depth of the heating section can be altered by changing the chopper frequency; i.e. the faster the chopper the shorter the heating section is. For transparent or semi-transparent sample, the light can penetrate the sample (solid or liquid) to a certain length depending on its transparency and during penetration the light is also producing thermal wave.

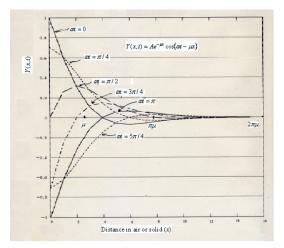
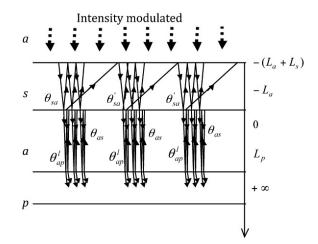
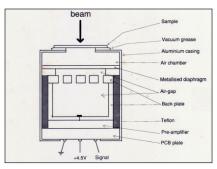


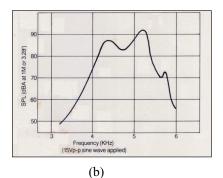
Figure 2 The profile of thermal wave as time progresses (or as phase ωt changes)

■ 4

The profile of thermal wave can be presented as in Figure 2. Here it can seen that by continuosly changing the time which changes the phase ωt of cosine term, its profile moves to the right but with extremely reduced amplitude.

For a layered sample subjected to a modulated light, the signal produced by a detector normally obtained by solving heat diffusion equation of each layer of the sample plus the continuity equation at every interface of layers (Delenclos et al, 2001). The other method is by using thermal wave interferometry (see Figure 3) similar like treating a light beam when it crossing many semitransparent layers of material (Bennett and Patty, 1982; Minamide et al, 1988; Azmi et al, 2006). The later approach is much easier because it does not need to solve difficult heat transfer equations of many layers in order to reach the final expression for the average PE signal voltage.


Figure 3 One-dimensional configuration of photopyroelectric cell with the route of thermal wave showed; s is sample, a is air, p is PVDF film, b is backing. (Azmi et al, 2006)

Detection Methods

For the PA detection, as mentioned earlier on, it can be measured with a microphone attached to a PA cell that contains gas, liquid or solid sample. The microphone can be from a very highly sensitive and expensive to a reasonably sensitive and low cost microphone. The later can be a small electret microphone as can be seen in Figure 4(a) and its response is from a few Hz up to 6.5 kHz, Figure 4(b). The example of simple "closed cell" and "small volume" PA cell for detection can be seen in Figure 5. The electret microphone also can be used directly for detection where the sample is located on top of it, and in this situation it is termed as an "open cell" detection, Figure 4(a).

Figure 4 Electret microphone (a) and its typical response (b)

Azmi Zakaria

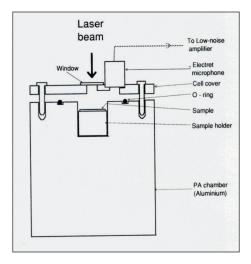


Figure 5 The small volume PA cell

For PA spectrometer, the light source is varied with a monochromator before illuminating the sample of either gas, liquid and solid in the cell. If monochromatic beam is used then PA cell can be used to detect certain gas concentration in the chamber that resonance with the gas. For liquid and solid it used to detect trace element as well as to determine sample thermal diffusivity.

For other PT detectors; piezoelectric, polyvinelydine defluride (PVD) film, they can be arranged as in Figure 6 for thermal wave detection. Referring to the illuminating light direction, the sample; gas, liquid or solid, can be coupled to the front or the back of the detector. Therefore the detection holder or cell is termed as either "Front-" or "Back-" configuration systems.

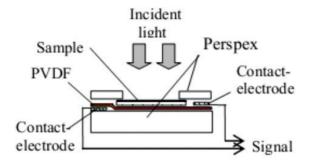
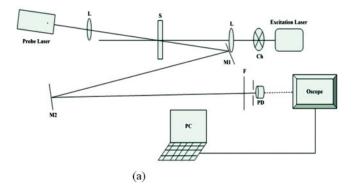



Figure 6 Schematic diagram of sample-PVDF holder

The PT also affects the refractive index of sample. To measure this change, the detection method utilizes the bending of probe or detection beam when passes through the vicinity of the area hit with the excitation beam. Among the method used with reference to this phenomenon are thermal lens, PT beam deflection, Z-scan, mirage set-up, etc (see Figures 8, 9, 10, 11.).

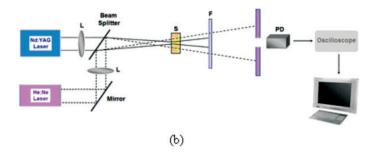


Figure 7 Schematic diagram of Thermal lens experimental set up using (a) CW excitation beam (Reza et al, 2011), (b) pulsed excitation beam. (L = lens, S = sample; F = filter; PD = photodiode detector)(Reza et al, 2012).

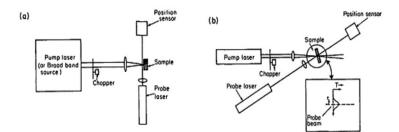


Figure 8 Photothermal Beam Deflection method (a) transverse, (b) collinear. (Jackson et al, 1980)

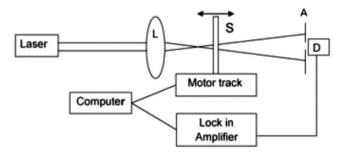


Figure 9 Z-scans setup. L = lens, S = sample, A = aperture, D = detector. (Shahriari et al, 2010)

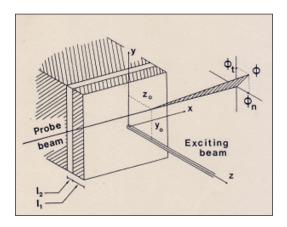


Figure 10 Geometry employed in mirage detection of semi-infinite slab. (Salazar et al., 1991)

On the second category, transient heat regime, the detection is via infra-red wave which is produced by the laser pulse or camera flash and the detectors are CdHgTe (Moksin et al, 1999), PVDF detectors (Moksin et al (2013).

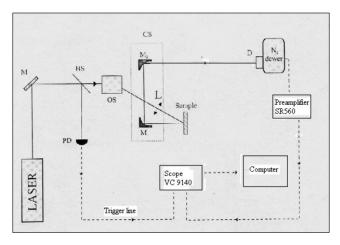
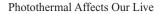



Figure 11 Schematic diagram of transient heat detection. D=CdHgTe detector, BS = beam splitter, OS = optical system, PD = photodetector, CS = signal collection system. (Moksin et al, 1999).

APPLICATIONS OF PHOTOTHERMAL EFFECT

Spectroscopy

In spectroscopy, normally a high power light source up to 1 kW is used. The light beam is passed through a monochromator then to sample, and the detection is via a sensitive microphone, or other PT detectors. The detector, as previously mentioned, can be in the Front- or Back-configurations.

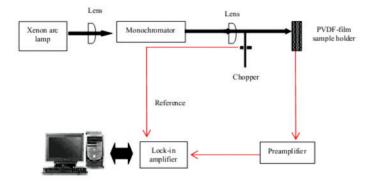


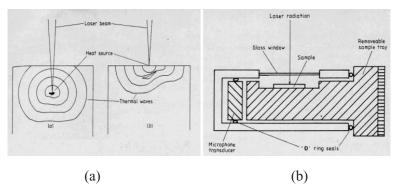
Figure 12 Schematic diagram of photopyroelectric spectrometer. (Azmi et al., 2004)

The advantage of the system over the conventional spectrometer is that it can be used for partially opaque solid sample. Here carbon spectrum from the source is used as a reference spectrum and therefore needs to be divided with sample spectrum to obtain the true spectrum. In UPM we have developed this photopyroelectric spectrometer by using a high power 1 kW Xenon arc source, using both motor control and automated monochromators, and interchangeable photopyroelectric cell detector, see Figure 12. It can be used to investigate the photochemistry of leave (Liaw and Azmi, 2008), and doped polymer (Azmi et al, 2001; Azmi et al, 2002(a)). Here it can be seen that for normal green leave the spectrum is highly absorbed from UV to nearly green region. Trace element such as tellurium in liquid can be detected as low as 3 ppm in liquid can be detected in PA spectroscopy (using microphone) (Nomura et al, 1982). Through a certain manipulation of the semiconductor spectrum it can be used to determine optical band gap of semiconductor due to dopping in ZnO based varistor ceramic (Azmi et al, 2002(b); Azmi et al, 2004; Azmi et 2005(a); Azmi

et al, 2005(b); Azmi et al, 2006(a); Azmi et al, 2006(a); Zahid et al, 2008(a); Zahid et al, 2008(b); Zakaria et al, 2008; Zahid et al, 2009; Zahid et al, 2011(a); Zahid et al, 2011(b)). Here the band-gap increases or decreases depending on the dopping involved in the ZnO ceramic. It also can be used to obtained the spectrum of laser active component such as neodymium oxide (Liaw 2007) and it is noticed that the based line of the spectrum decreases with the increase of light chopping frequency.

Nondestructive Evaluation

Imaging is one of the way to inspect the defect in solid sample and among the earliest attempt for imaging by using PA method done by Kirkbright et al (1984). Here a modulated laser was focused onto a sample placed in a PA cell by and the sample was raster scanned relative to the beam. The thermal wave is scattered when hitting a defect in transparent or opaque solid, see Figure 13(a) and the typical arrangement of sample in PA cell can be seen in Figure 13(b). The raster scanning is normally by moving the sample or the cell with respect to sample, and the typical image formed from an opaque sample with circular subsurface damage can be seen in Figure 14. Other method is by raster scanned the beam with respect to sample by a combination of two controlled moving mirrors for x and y direction (Wang et al, 1990).



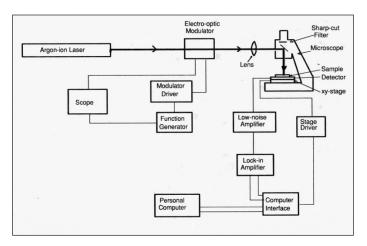

Figure 13 (a) The generation of imaging information by the interaction of thermal waves with physical structures for transparent and opaque samples, (b) Schematic diagram of a photoacoustic gas cell. (Kirkbright et al, 1984)

Figure 14 Phase image of a subsurface defect in an opaque sample with modulation frequency 100 Hz. (Kirkbright et al, 1984)

Among the interested sample is a gold coated polymer film subjected to atomic oxygen (ATOX) in laboratory (Azmi et al, 1994). Here, it is placed onto a piezoelectric (PZT) detector in the scanning system, see Figure 15. To create an "undercut" damage, before exposed to ATOX the gold coating was deliberately scratched to allow ATOX to attack the polymer (Williams et al, 1993), see Figure 16. The possible undercut mechanism on polymer (alkanes and alkenes) by ATOX can be through abstraction, replacement, and insertion followed by recombination and fragmentation to become volatile materials (Banks and Rutledge, 1988; Azmi Zakaria, 2001). In the image, it displays the undercut defect underneath the metal coating that cannot be seen optically as shown in Figure 17 (William et al, 1993. The scanning by incorporating the electret microphone (Figure 4(a)) instead of piezoelectric also can be done in the system (Azmi et al, 1995; Azmi et al, 1997).

The light beam can be replaced by an electron beam. The easiest way to conduct this is by using a scanning electron microscope but by modulating the electron beam and fitting a PT detector underneath the scanned sample. Also, the scanning depth in the sample can vary by changing the modulation frequency and this means that the researcher can see the sample images at various depths (Salazar et al, 1991). By having both PT and electron beam detectors, researchers can study the surface SEM image as well as the sub-surface PT image.

Photothermal Affects Our Live

Figure 15 Scanning photothermal microscopy system

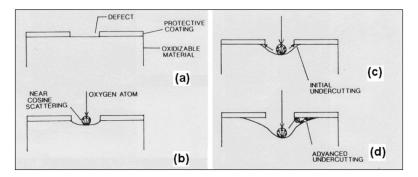
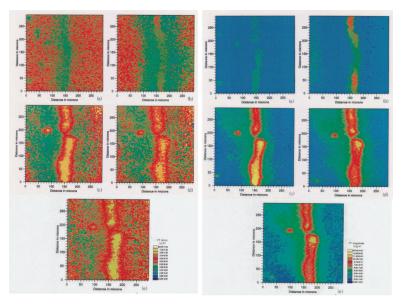
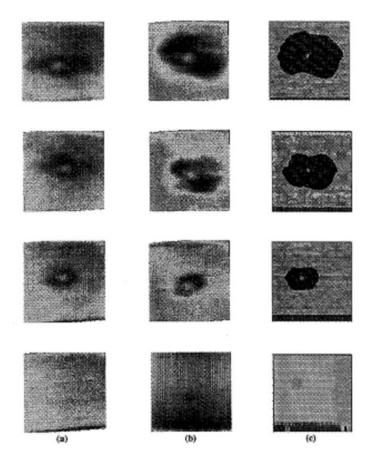



Figure 16 A possible scenario for undercutting of a defect coating in an ATOX environment. (Banks and Rutledge, 1988)


(A) PZT phase images of a deliberately scratched gold-coated Kapton sample scanned at 2 kHz: (a) unexposed, (b) exposed to a fluence of 24.6×10^{20} atom/ cm². The phase images of the last exposure sample exposed to a fluence of 28.3×10^{20} atom/cm² and scanned at different light chopping frequencies (c) 2.0 kHz, (d) 1.3 kHz, (e) 0.9 kHz.

(B) PZT magnitude images of a deliberately scratched gold-coated Kapton sample scanned at 2 kHz: (a) unexposed, (b) exposed to a fluence of 24.6×10^{20} atom/cm². The magnitude images of the last exposure sample exposed to a fluence of 28.3×10^{20} atom/cm² and scanned at different light chopping frequencies (c) 2.0 kHz, (d) 1.3 kHz, (e) 0.9 kHz.

Figure 17 PZT phase and magnitude image (Williams et al, 1993)

The other way of imaging for non-destructive evaluation is by using a camera (InSb detector) that is sensitive to infra-red radiation. The light source can be expanded laser or a high power light source. For a typical sample black coloring material of low conductivity, e.g. bakelite, with back drilled hole defect. After flashing with radiation the image taken by camera and by using a frame grabber software the image can be seen Figure 18 (Almond et al, 1997).

With this technique one can inspect delamination on paint coating on metal painted surface.

Figure 18 Transient thermograph images of 5J, 3J, 2J and 1J impact damage, [column (a)] from impact face, [column (b)] from back face compared with ultrasonic C-scan images [column (c)]. Image area is about 40×40 mm. (Almond et al, 1997).

Aircraft fuselages are assembled using a variety of different materials and fasteners such as aluminum and rivets, honeycomb structures, carbon-fiber-reinforced plastics, and other composite materials. Subject to constant temperature changes, pressurization and depressurization, vibration, and high wind loads, material fatigue occurs. This can cause deriveting, impact damages, cracking, and body delamination.

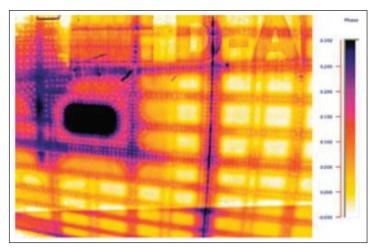
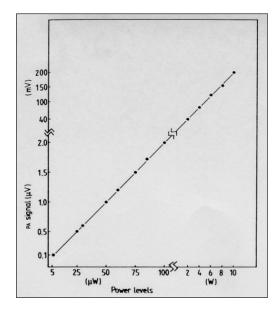



Figure 19 Fuselage inspection of a Boeing 737 using lock-in thermography shows the skin lap joints, stringers, doublers, and rivets. This image shows no defects. The frame station and the frame Tithe window appear in a darker color, an indication that they are made out of thicker material. (Vision Systems Design)

To check for these defects, the thermograph system that utilized PT effect is used to inspect several surface areas of the fuselages. This is by heating the exterior to about 40°C using an array of high-power modulated halogen lights scan not to cause damage to the fuselage. The system measures and evaluates differences in the temporal behavior of the heat at the object surface, and defects

appear. The typical image of fuselage inspection by thermograph can be seen in Figure 19. PT image can reveal the mark or stamping on metal surface even it has been removed. This is because the change in density due to stamping pressure still exists and thus can be detected in PT image. Scanning image can be taken at different depths by varying the thermal diffusion length or the modulation frequency to inspect faults solid, layers in layered material, and homogeneity in ceramic.

By illuminating a carbon black sample in a PA cell by a modulated laser beam laser power can be measured. A good linearity between known laser power and PA signal can be seen in Figure 20. The percentage of deviation laser power measured is small (less than 5%) for power up to 10 watt if the beam modulated at high frequency (300 Hz) (Satheeshkumar and Vallabhan, 1985).

Figure 20 PA signal with power level. (Satheeshkumar and Vallabhan, 1985)

Thermophysical properties and Characterization of Materials

Here thermal properties such as thermal diffusivity, thermal conductivity and thermal effusivity are measured. By laser flash method, i.e. transient method, the transient signal PT signal is analysed to obtain thermal diffusivity. By laser modulation method, i.e. the laser is chopped continuously by a rotating blade and is illuminating the sample. By plotting PT signal (amplitude or phase) versus frequency the thermal diffusivity can be determined. Materials normally used are conductors, insulators, ceramics, semiconductors, liquids and gaseous.

For solid, the thermal wave can be measured at various lateral distances on the sample between laser illuminated line and pyroelectric sensor position, see Figure 21. Here, the solid thermal diffusivity is obtained from the gradient of the plot of PT signal versus the lateral distance. The example metal samples that have been tried are aluminium, copper and spray paint with values 0.809, 1.128 and 1.547×10^{-3} cm²s⁻¹, respectively.

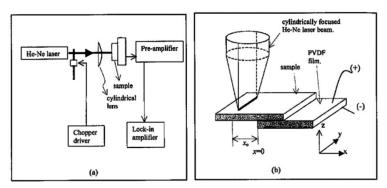


Figure 21 Experimental setup. (Azmi et al., 2002)

Normalisation of the PT signal in measuring thermal diffusivity eliminates the number of media parameters of pyroelectric cell that otherwise need to be known before one can determine the thermal diffusivity of sample. With the appropriate sample-pyroelectric detector dimension, the thermal diffusivity of any solid sample is readily being determined by this procedure and the apparatus for it can be seen in Figure 22. The method is tested for aluminum, copper, and nickel (Azmi et al, 2004).

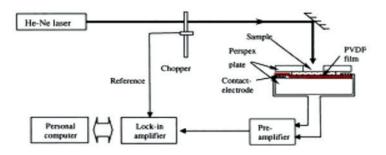
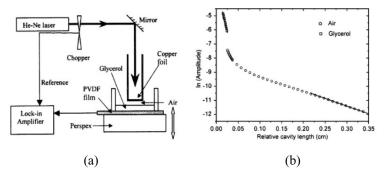



Figure 22 Schematic diagram of pyroelectric experimental setup. (Azmi et al, 2004)

The thermal-wave interferometry is a simple way of obtaining a model to evaluate thermal diffusivity of two media by using a thermal-wave resonator cavity (TWRC) technique, see Figure 23. This kind of thermometry for thermal wave was firstly employed by Bennett and Patty (1982) and in this technique the scanning is carried out by distance rather than by modulation frequency. In the scanning the copper foil that acts as thermal wave generator is moved towards the PVDF film detector. By using the model the thermal diffusivity of air and glycerol have been measured in single scanning and the values obtained close to the literature values (Azmi et al, 2006).

Figure 23 (a) Schematic diagram of the experimental setup. (b) The amplitude of the pyroelectric signal on the cavity length for the two layer fluids: air and glycerol. The solid lines are the best-fit results of the experimental data. (Azmi et al., 2005)

In the normal PT technique, a precise control of thermal coupling fluid between the solid sample and the sensor is sometimes difficult, and yet an important factor in sample characterization. By using a non-contact pyroelectric configuration for solid thermal diffusivity measurement by considering the thermal wave interference was carried out, Figure 24. Here the thermal wave interferometry, Figure 3, to pyroelectric signal generation has been adopted in a thermally thick regime for a nondestructive testing. The normalization procedure has been used to eliminate a number of media parameters of pyroelectric cell that otherwise needed to be known before one can determine thermal diffusivity of the sample. The thermal diffusivities obtained for Al, Cu, and Ni samples (Azmi et al, 2006).

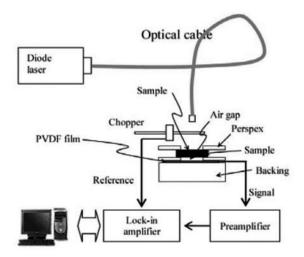


Figure 24 Measurement of thermal diffusivity using Non-Contact pyroelectric method. (Azmi et al, 2006)

From the previous idea, Figure 24, of using fiber optic, the TWRC technique then has been modified to replace the metal (copper) foil with metalized fiber optic tip to generate thermal wave. By this means the cumbersome in optical alignment in free space can be avoided. The system is termed as fiber optic-TWRC, or shortly as FO-TWRC, Figure 25. To obtain liquid thermal diffusivity the scanning, as in the conventional TWRC technique, was done by varying the distance or cavity length, i.e. by moving the fiber tip with respect to pyroelectric detector in liquid media (in a thermally thick regime). The thermal diffusivity value of water obtained by this technique agrees well with the values obtained by the conventional TWRC technique. This technique has a potential to be used in thermal diffusivity measurement of small liquid volume (Azmi et al., 2007) and its reliability for various liquids has been tested (Noroozi et al, 2010).

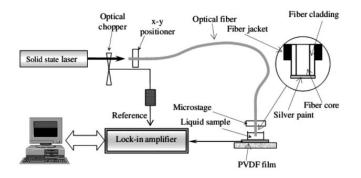
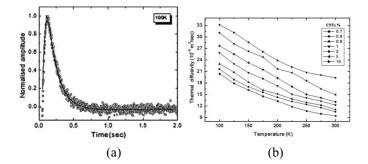
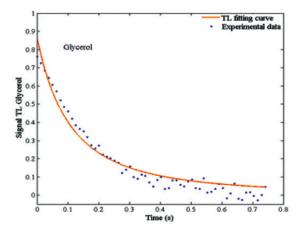



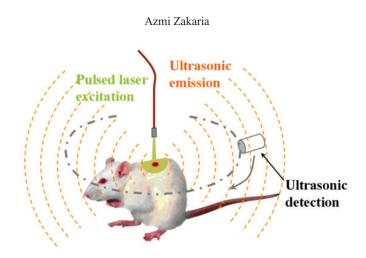
Figure 25 Schematic diagram of FO-TWRC technique. (Azmi et al., 2007)

On the example of transient technique, the thermal diffusivity can be obtained by a simple photoflash technique using a PVDF film detector. The sample is carbon nanotube (CNT) composites and the effect of low temperature on thermal diffusivity has been observed. The transient PT signal and thermal diffusivity values of sample at various temperatures can be seen Figure 26 (a) and (b), respectively. The results showed that thermal diffusivity of CNTfilled PVDF film composites is found to have consistently increased with increasing the CNT concentration or decreasing temperature. For the case of insulators with dominant thermal carrier is phonon, as expected.

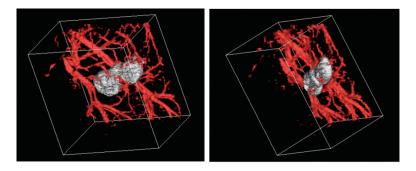
Figure 26 (a) The transient signal by PVDF detector at the back of sample after photoflashing (b) The thermal diffusivity curves of sample at various temperature. (Moksin et al, 2013)

The pulsed laser thermal lens technique was used to study the thermal diffusivity of fluids containing copper nanoparticles prepared by γ -irradiation method. The samples were prepared for the different concentrations of Cu precursor at 20 KGy dose. A Q-switched Nd-YAG pulsed laser of wavelength 532 nm was used as an excitation source and He-Ne laser was used as a probe beam in the present thermal lens experiment. The typical thermal lens signal of sample of nanoparticles in glycerol can be seen in Figure 27. It was found that the thermal diffusivity of the solution depends on the density of Cu nanoparticles (Reza et al, 2012). Thermal diffusivity of fluid containing silver nanoparticles, that was prepared similarly, with CW diode laser (514 nm, 80 mW) excitation (Figure 7(a)) also was carried out (Reza et al, 2011).




Figure 27 The thermal lens signal obtained by pulsed excitation. (Reza et al, 2012)

Application in Biology and Agriculture


The FTIR Infrared PA spectroscopy is used to determine the mid-infrared vibrational modes of biodiesel and vegetable oils to find the ability of separating glycerol from bio-diesel and to find the degradation effect after frying (Lima el al, 2008). The effect of radiance levels of sunlight in growth such as height, leaf area and number of leaves and photosynthetic activity of plant *Costa spicatus*. PA measurements are performed in order to evaluate comparatively the photosynthetic activity rate of plant submitted to different light intensities. The PA signal is related to the conversion of absorbed radiation into heat by using a white light light source (tungsten lamp, 250 W) modulated at 17 Hz. The measurements are performed *in vivo* using an open PA cell (Compos et al, 2008).

THE FUTURE CHALLENGE

The most important challenge ahead is on the Photoacoustic Tomography which is not yet fully developed for routine biomedicine application. The advantage of it is that it leaves no damage to the subject as no high energy em radiation is used and thus leaves no damage to the subject. In PA imaging, non-ionizing laser pulses are delivered into biological tissues. Some of the delivered energy will be absorbed and converted into heat, leading to transient thermoelastic expansion and thus ultrasonic emission in the order of MHz. An ultrasonic transducers then detect the generated ultrasonic waves. It is known that optical absorption is closely related with physiological properties, such as hemoglobin concentration and oxygen saturation (Grinvald, 1986). As a result, the magnitude of the ultrasonic emission or PA signal, which is proportional to the local energy deposition, reveals physiologically specific optical absorption contrast. 2D or 3D images of the targeted areas can then be formed (Xu and Wang, 2006). Figure 28 is a schematic illustration showing the basic principles of PA imaging. The optical absorption in biological tissues can be due to endogenous molecules such as hemoglobin or melanin, or exogenously delivered contrast agents. Since blood usually has orders of magnitude larger absorption than surrounding tissues, there is sufficient endogenous contrast for PA imaging to visualize blood vessels, Figure 29. Recent studies have shown that PA imaging can be applied in vivo for monitoring tumor related to blood vessel, mapping of blood oxygenation, imaging functional brain, and detection of skin melanoma etc. (Xu and Wang, 2006)

Figure 28 Photoacoustic tomography performed on rat. (http://en.wikipedia.org/wiki/Photoacoustic_imaging_in_biomedicine)

Figue 29 Photoacoustic tomography image of rat brain (http:// en.wikipedia.org/wiki/File:Melanoma3DMovie.gif)

REFERENCES

- Almond D.P., Hamzah R., Delpech P., Peng Wen, Beheshty M.H. and Saintey M.B. (1997). Experimental investigations of defect sizing by transient thermography. Proc. Quantitative Infrared Thermography (QIRT 97) 233.
- Azmi B.Z., Noroozi M., Sulaiman Z.A., Wahab Z.A. and Moksin M.M. (2010). *Thermal wave interferometry of gas-liquid using OF-TWRC technique*. Journal of Physics: Conference Series 214, 012066.
- Azmi Zakaria, Zahid Rizwan, Mohd Sabri Mohd Ghazali, Abdul Halim Shaari, W. Mahmood Mat Yunus, Mansor Hashim (2008). Determination of the Energy Band-Gap of the Ceramic ZnO -xTiO₂ Using Photopyroelectric Spectroscopy. Solid St. Sci. and Technol. 16(1), 85.
- Azmi B.Z., M. Noroozi, Zahid Rizwan, Z.A. Sulaiman, Z.A. Wahab and M.M. Moksin (2008). *Simple TWRC Technique By Using Optical Fiber*, Infrared Phys Technol. 51(3), 270.
- Azmi Zakaria, Zahid Rizwan, Mansor Hashim, Abdul Halim Shaari,
 W. Mohmood Mat Yunus (2007). Effect of sintering time on the photothermal spectrum of the ceramic MnO-Y₂O₃-ZnO. J. Fiz. Mal. 28(3&4), 50.
- Azmi Zakaria, Zahid *Rizwan*, Mansor Hashim, Abdul Halim Shaari, W. Mohmood Mat Yunus (2006). *Photothermal study of ceramic ZnO doped with* Y₂O₃. Proceedings of 2006 IEEE International Conference on Semiconductor Electronics, 397.
- Azmi Zakaria, Zahid Rizwan, Mansor Hashim, Abdul Halim Shaari, W. Mohmood Mat Yunus (2006). *Photopyroelectric spectroscopy of the MnO-ZnO ceramics doped with the ratio of Dy₂O₃ to Er₂O₃*, Journal of Solid State Science and Technology Letters 13(1), 198.
- Azmi B.Z., Zahid Rizwan, Hashim M., Shaari A.H, and Yunus W.M.M. (2006). *Photopyroelectric study of Dy*₂O₃ *doped MnO- ZnO ceramics*, J. Fiz. Mal. 27(2), 71.

- Azmi B.Z., Sing L.T., Saion E.B., and Wahab Z.A. (2006). Thermal wave resonant cavity technique in measuring thermal diffusivity of sucrose solution, Pertanika J. Sci. & Technol. 14(1), 13.
- Azmi Zakaria, Liaw Hock Sang, Zulkifly Abbas, Wan Mahmood Mat Yunus and Jumiah Hassan (2006). *Measurement of Thermal Parameter* using Non-Contact Photopyroelectric Method, ScienceAsia 32(1), 47.
- Azmi B.Z., Liaw H.S., and Abbas Z. (2005). *Thermal wave interferometry* of gas-liquid applied to thermal wave resonator cavity technique, Rev Sci Instrum 76(7), 074901 (5 pages).
- Azmi Zakaria, Zahid Rizwan, Mansor Hashim, Abdul Halim Shaari, W. Mohmood Mat Yunus, Elias Saion (2005). Determination of the bandgap energy of ceramic ZnO doped with MnO by Photopyroelectric technique, Solid St. Sci. and Technol. 13(1&2) 226.
- Azmi B.Z., Zahid Rizwan, Hashim M., Shaari A.H., Yunus W.M.M. and Saion E. (2005). *Photopyroelectric Spectroscopy of MnO Doped Ceramic ZnO at Different Sintering Temperatures*, Am. J. Applied Sci. (Sp. Issue): 25.
- Azmi B.Z., Liaw H.S., Yunus W.M.M., Hashim M., Moksin M.M., and Yusoff W.M.D.W. (2004). Normalisation procedure in thermal wave approach of thermal diffusivity measurement of solids using pyroelectric sensor, Infrared Phys Technol 45, 315.
- Azmi Zakaria, Zahid Rizwan, and Abdul Halim Shaari (2004). Photothermal study of ceramic ZnO doped with MnO, Proceedings of 2004 IEEE International Conference on Semiconductor Electronics, pp: 503.
- Azmi B.Z., Shapee S.M., Hashim M., Yunus W.M.M., Hassan Z.A.and Halim S.A. (2004). *Photopyroelectric Spectroscopy Of Bi*₂O₃-Doped ZnO Powder, J. Fiz. Mal. 25(1&2), 117.
- Azmi Zakaria and Liaw Hock Sang (2004). *Phase Normalisation For Accurate Photopyroelectric Technique*, Science Putra Research Bulletin, 12(2), 34.

- Azmi B.Z., Shapee S.M., Hashim M., Halim S.A. and Yunus W.M.M. (2004). Thermal Diffusivity Measurement of ZnO Doped with Bi₂O₃ in KBr Matrix Using Photopyroelectric Technique, Journal Solid State Science and Technology Letters 10(2), 145.
- Azmi B.Z., Shapee S.M., Hashim M., Halim S.A.and Yunus W.M.M. (2004). Thermal Diffusivity Measurement of ZnO Doped with Bi₂O₃ in KBr Matrix Using Photopyroelectric Technique, Journal Solid State Science and Technology Letters 10(2), 145.
- Azmi B.Z., Liaw H.S., Moksin M.M., Hashim M., Yunus W.M.M.and Yusoff W.M.D.W. (2003). Photopyroelectric Measurement of Thermal Diffusivity of Solids Based on the Theory of Thermal Wave Interferometry Solid St. Sci. and Technol. 11(1), 66.
- Azmi B.Z., Liaw H.S., Moksin M.M., Hashim M., Yunus W.M.M., and Yusuf W.M.D.W. (2002(a)). *Photopyroelectric spectra of methyl red doped poly(methyl methacrylate)*, Journal of Solid State Science Technology Letters 9(1), 226.
- Azmi B.Z., Ling Y.K., Hashim M. Yunus W.M.M.and Moksin M.M. (2002). Thermal diffusivity measurement using pyroelectric sensor, ASEAN J Science Technology and Development 19(1), 91.
- Azmi B.Z., Liaw H.S., Hashim M., Moksin M.M., Yunus W.M.M. and Yusoff W.M.D.W. (2002(b)). Effects of CoO impurities in ZnO semiconductor on photopyroelectric spectra and band-gap energy determination, J. Fiz. Mal. 23(1-4), 110.
- Azmi Zakaria (2001). Atomic oxygen in Lower Earth Orbit, Magazine of Physics, Science & Ideas 3(1999), 19.
- Azmi B.Z., Ling Y.T., Hashim M., Yunus W.M.M., Moksin M.M. and Senin H.B. (2001). *Photopyroelectric Spectroscopy of Poly (Methyl)-Methacrylate Doped Rhodamine B and Methylene Red*, Solid St. Sci. and Technol. 9(1&2), 137.
- Azmi Zakaria, Ling Yoke Ting, Mohd. Maarof Moksin, W. Mahmood Mat Yunus and Mohd. Yusof Sulaiman (2000). *Thermal diffusivity measurement of paint by photoacoustic technique*, Journal of Solid State Science Technology Letters 7(7&8), 171.

- Azmi B.Z., Moksin M.M., Yunus W.M.M. and Talib Z.A. (1997). Scanning Photothermal Microscopy of a Gold-coated Kapton, Solid St. Sci. and Technol. 5, 32.
- Azmi B.Z., Moksin M.M., Yunus W.M.M., Talib Z.A., Wahab Z.A. and Senin H.B. (1995). Scanning Photothermal Microscopy Using an Electret Microphone, Bulletin Sains & Teknologi Keadaan Pepejal Malaysia 5(2), 107.
- Azmi B.Z., Moksin M.M., Yunus W.M.M., Talib Z.A., Wahab Z.A., Senin H.B. and Williams A.W. (1994). An Atomic Oxygen Source for Simulation of Lower-Earth Orbit Environment, Journal of Solid State Science Technology Letters 1(2), 5.
- Banks B.A.and Ruthledge S.K. (1988). Low Earth Orbit atomic oxygen simulation for materials durability evaluation, Proceedings of Fourth International Conference on Space Material in Space Environment, Toulouse, France, 1988.
- Bell A.G. (1881), Philos. Mag. 11, 510.
- Bell A.G. (1880), Am. J. Sci 20, 305.
- Bennett C.A. and Patty R.R. (1982). *Thermal wave interferometry: a potential application of the photoacoustic effect*. Appl Optics 21, 49
- Campos V.M., Pasin L.A.A.P. and Barja P.R. (2008). *Photosynthetic activity* and growth analysis of the plant Costus spicatus cultivated under different light conditions. Eur Phys J. Special Topics 153, 527.
- Delenclos S., Chirtoc M., Sahraoui A.H., Kolinsky C., and Buisine J.M. (2001). A new calibration procedure for the determination of thermal parameters and their temperature dependence using the pyroelectric method. Analytical Sciences 17, s161
- Esmaeil Shahriari, W.Mahmood Mat Yunus, Elias Saion (2010). Braz. J. Phys. 40(2). doi.org/10.1590/S0103-97332010000200021
- Grinvald A. et al. (1986). Functional architecture of cortex revealed by optical imaging of intrinsic signals. Nature 324 (6095), 361.

Jackson W., Ameer N.A. (1980). *Piezoelectric photoacoustic detection: Theory and experiment.* J. Appl. Phys. 51, 3343.

- Kirkbright G.F., Miller R.M. and Rzadkiewicz A. (1984). A low-cost laboratory thermal wave imaging system. J. Phys. E: Sci. Instrum. 17, 526.
- Lima S.M., Bannwart E.S., Oliveira R.G., Andrade L.H.C., Del Re P.V., Jorge N., Pedroci F., Constantini R., Medina A.N. and Baesso M.L.: (2008). Evaluation of the thermal diffusivity of vegetable oils during frying by Thermal Lens Spectrometry. Eur Phys J. Special Topics 153, 531.
- Liaw Hock Sang and Azmi bin Zakaria (2008). *Photopyroelectric Spectra* of Intact Green Leaf, COE Research Bulletin 5(1 & 2) Oct 20007-June 2008; 3
- Liaw Hock Sang (2007). UPM Master Thesis.
- Liaw Hock Sang and Azmi Zakaria (2006). *The Application of Thermal wave interferometry in Thermal diffusivity Measurement of Air-Crude Palm Oil Sample*, COE Research Bulletin, 3(1), 7.
- Moksin M.M., Haydari M., Husin M.S., Yahya N., Azmi B.Z. (2013). Photoflash thermal diffusivity measurement of carbon nanotube-filled PVDF composite at low temperature. Nondestructive Testing and Evaluation doi.org/10.1080/10589759.2012.740043
- Monir Noroozi, Azmi Zakaria, Mohd Maarof Moksin, Zaidan Abd Wahab (2012). An Investigation on the Thermal effusivity of nanofluids containing Al₂O₃ and CuO nanoparticle. Int. J. Mol. Sci. 13, 10350.
- Monir Noroozi, Azmi Zakaria, Mohd Maarof Moksin, Zaidan Abd Wahab, Alam Abedini (2012). Green Formation of Spherical and Dendritic Silver Nanostructures under Microwave Irradiation without any Reducing Agent. Int. J. Mol. Sci. 13, 8086.
- Mohd Sabri Mohd Ghazali, Azmi Zakaria, Zahid Rizwan, Halimah Mohamed Kamari, Mansor Hashim, Mohd Hafiz Mohd Zaid and Reza Zamiri (2011). Use of a Reflectance Spectroscopy Accessory for Optical Characterization of ZnO-Bi₂O₃-TiO₂ Ceramics. Int. J. Mol. Sci. 12, 1496.

- Monir Noroozi, Azmi Zakaria, Mohd Shahril Husin, Mohd Maarof Moksin, Zaidan Abd Wahab. *Investigating thermal parameters of PVDF sensor in the front pyroelectric configuration*. Will be published in Int. Journal of Thermophysics.
- Monir Noroozi, Azmi B.Z., Wahab Z.A., Moksin M.M. and Mamat M.H. (2009). Thermal Diffusivity Measurement of Liquid Through thermal Diffusion Length Measurement, Solid St. Sci. and Technol. 17(1), 44.
- Moksin M.M., Grozescu I.V., Wahab Z.A. and Yunus W.M.M. (1999). Thermal diffusivity measuremet of black and metallic graphite paint coatings. Meas. Sci. Technol. 10, 7
- Minamide A., Shimaguchi M. and Tokunaga Y. (1998). *Study on* photopyroelectric signal of optically opaque material measured by polyvinlydene difluoride film sensor. Jpn J Appl Phys 37, 3144.
- Moksin M.M., Grozescu V.I., Wahab Z.A., Yunus W.M.M. and Azmi B.Z. (1997). Effect of Boron Carbide Composition in SiC/B₄C Composite on surface temperature decay as revealed by thermal wave method, Nondestructive Testing and Evaluation 13, 239.
- Moksin M.M., Grozescu V.I., Yunus W.M.M., Azmi B.Z., Talib Z.A. and Wahab Z.A. (1996). Pulsed Laser Induced Change in Thermal Radiation From a Single Spherical Particle Thermally Bad Conducting surface: an Analytical Solution, ASEAN J Science Technology and Development 13(1), 127.
- Moksin M.M., and Almond D.P. (1995). *Non-destructive examination* of paint coatings using the thermal wave interferimetry technique. Journal of Material Science 30, 2251.
- Moksin M.M., Imhof R.E., Yunus W.M.M., Talib Z.A., Wahab Z.A. and Azmi Z. (1994). Preliminary Application of Photothermal Technique to Corrosion Study, Journal of Solid State Science Technology Letters 1(2), 14.
- Noroozi M., Azmi B.Z., Moksin M.M. (2010). The Reliability Of Optical Fiber-TWRC Technique In Liquids Thermal Diffusivity Measurement, Infrared Phys Technol. 53, 193.

- Parker J.G. (1973). Optical absorption in glass: Investigation using an acoustic technique. Appl. Opt. 12, 2974.
- Reza Zamiri, B.Z. Azmi, M. Shahril Husin, Zahid Rizwan (2012). Thermal diffusivity measurement of copper nanofluid using pulsed laser thermal lens technique. J. Europ. Opt. Soc Rap Public 7, 12022.
- Reza Zamiri, Azmi B.Z., Shahriari E., Kazim Naghavi, Saion E., Zahid Rizwan and Husin M.S. (2011). *Thermal Diffusivity Measurement* of Silver Nanofluid by Thermal Lens Technique. J Laser Appl 23(4), 042002/1-4.
- Rutledge S.K. and Mihelcic J.A. (1989). Surf. And Coat. Technol. 39/40, 607
- Sidek H.A.A., Rosmawati S., Azmi B.Z. and Shaari A.H. (2013). Effect of ZnO on the Thermal Properties of Tellurite Glass. Advances in Condensed Matter Physics, vol 2013, ID 783207, 6pages, doi:10.1155/2013/783207.
- Sabri M.G.M., Azmi B.Z., Zahid Rizwan, Halimah M.K., Hashim M. and. Sidek H.A.A. (2009). Application of Direct Current and Temperature Stresses of Low-Voltage ZnO Based Varistor Ceramics, Am. J. Applied Sci. 6(8), 1591.
- Sabri M.G.M., B.Z Azmi, M. Hashim, Zahid Rizwan, Halimah M.K., Sidek H.A.A., Warid S.A., Fauzana A.N. (2009). Effect of DC and Temperature Stresses on Nonlinear Coefficient of ZnO Ceramics Varistors, Solid St. Sci. and Technol. 17(2), 175.
- Salazar A., Sanchez-Lavega A., Fernandez J. (1991). Photothermal detection and characterization of a horizontal buried slab by mirage technique. J. Appl. Phys. 70(6), 3031.
- Satheeshkumar M.K. and Vallabhan C.P.G. (1985). Use of photoacoustic cell as a sensitive laser power meter. J. Phys. E: Sci. Instrum. 18, 434.
- Vision System Design: www.vision-systems.com
- Williams A.W., Wood N.J., and Zakaria A.B. (1993). Atomic oxygen damage characterization by photothermal scanning, Proceedings of LDEF Materials Results for Spacecraft Applications – NASA Marshall Space Flight Center (SEE N94-31012 09-12), pp: 547.

- Wang Y.Q., Kuo P.K., Favro L.D., Thomas R.L. (1990). Review of Progress in Quantitative Nondestructive Evaluation 9A, 511.
- Xu M. and Wang L.H. (2006). *Photoacoustic imaging in biomedicine*. Review of Scientific Instruments 77 (4): 041101.
- Yunus W.M.M., C.Y.J. Fanny, I.V. Grozescu, A. Zakaria, Z.A. Talib and M.M. Moksin (1999). *Photoacoustic technique as a tool for measuring thermal diffusivity of materials*, Acta Physica Sinica 8, 241.
- Zahid Rizwan, Azmi Zakaria, M.G.M. Sabri, Fashi ud Din (2011). Optical Characterization of the Bi₂O₃, TiO₂ and MnO₂ doped ZnO Ceramics.
 J. Optoelectron Adv M 13(4), 395. (
- Zahid Rizwan, Azmi Zakaria and Mohd Sabri Mohd Ghazali (2011). *Photopyroelectric Spectroscopic Studies of ZnO-MnO*₂-Co₃O₄-V₂O₅ *Ceramics*. Int. J. Mol. Sci. 12, 1625.
- Zahid Rizwan, M.G.M. Sabri, B. Z. Azmi (2011). Photopyroelectric Characteristics of Pr₆O₁₁ – ZnO Ceramic Composites. Int. J. Phys. Sci 6(1), 79.
- Zahid Rizwan, Azmi Zakaria, Abdul Hafeez (2009). *Photopyroelectric Spectroscopy of ZnO MnO₂ TiO₂ Bi₂O₃ –Based Varistor Ceramics, Proceedings of The Pakistan Institute of Physics (PIP) International Conference, pp: 158-162, ISBN 969-9013-00-2.*
- Zahid Rizwan, Azmi Zakaria, W. Mahmood Mat Yunus, Mansor Hashim, Abdul Halim Shaari (2008). *Photopyroelectric Spectrum of MnO₂ Doped Bi₂O₃ – TiO₂ – ZnO Ceramic Combination*. Pertanika Journal Science & Technology 16(2), 265.
- Zakaria A., Z. Rizwan, M. Hashim, A. Halim Shaari, W. Mohmood Mat Yunus (2008). *Photopyroelectric spectroscopy of Sb*₂O₃-ZnO *ceramics*. Eur Phys J Special Topics 153(1), 33.
- Zakaria A., Zahid Rizwan, Abdul Halim Shaari, W. Mohmood Mat Yunus, Mansor Hashim (2007). *Photothermal study of ceramic ZnO doped with TiO*₂. Solid St. Sci. and Technol. 15(2), 34.
- Zhang, H.F. et al. (2006). Functional photoacoustic microscopy for highresolution and noninvasive in vivo imaging. Nature Biotechnology 24(7), 848.

BIOGRAPHY

Azmi Zakaria is a Professor of Applied Optics at the Physics Department, Universiti Putra Malaysia (UPM), Serdang, Selangor Darul Ehsan, Malaysia. He was born in 1954, Pasir Mas, Kelantan and received his early education in his home town and in Kuala Lumpur. For undergraduate study he attended Universiti Kebangsaan Malaysia, received a B.Sc (Hons.) in Physics in 1978, and for postgraduate studies, he received his M.Sc in Optoelectronics from Queen's University of Belfast in 1981 and PhD in Photothermal Physics in 1994 from the University College of Swansea, UK.

Since then he has been teaching in Physics Department, UPM for 32 years until now. He was the Head of Advanced Materials and Nanotechnology Laboratory at Institute of Advanced Technology for three years. For more than ten years he had acted as Chief Students Academic Advisor for Physics Department where it involved administrative as well as advising students in academic and general affairs. He was awarded a 2005 Excellence Award by UPM and has been awarded Certificate of Excellence Service Award by Science Faculty consecutively since 1999.

During his academic career, Prof. Azmi has authored four books, and has published over 140 journal articles and 80 conference proceedings. A few of his articles had been selected to be the top 25 Hottest Articles and his book entitled *Mechanics and Waves* being his major contributions for undergraduate studies on mechanics. For three years since 2005, he was the Chief Editor of Info-Science for Science Faculty.

In his areas of expertise, Applied Optics and Material Science, he has devoted much of his research work in photothermal physics and spectroscopy, solar energy, zinc oxide based varistor and nanomaterials. He has supervised to successful completion of a total of 15 doctoral students and 34 master students. Currently he supervises students at various stages of which six for PhD level, eight for M.Sc level. He has been awarded Faculty's Excellence Scientist Award consecutively since 2003.

Prof. Azmi has been awarded eleven research grants totaling RM1,000,000 to lead and conduct research in photothermal physics and material science, and four research grants with a of total RM600,000 as research collaborator to conduct research in magnetic materials, surface plasmon, solar energy and nitrogen pumped dye laser. He had completed ten research projects and the ongoing researches are An elucidating study of nanofluids by using photothermal techniques, The Study of Degradation Phenomena of Zinc Oxide Varistor Prepared by Wet Chemical Method, and New Transient Converging Thermal Wave Technique. Previously, at UPM Institute of Advanced Technology (ITMA) he had been acting as Research Program Chief for Alternative and Renewable Energy Laboratory (AREL) for three years from 26th June 2006 and following, he had been promoted to Head for Advanced Material Nanotechnology Laboratory (AMNL) until 31st January 2012, and has been an associate member of the Laboratory until now.

He had involved as a subject matter expert for Open University of Malaysia for physics subject; served as paper reviewer of numerous international and local journals; as an examiner to more than twenty PhD students, fourty Master of Science students; and chairing more than fourty postgraduate examinations. Prof. Azmi had also been involved in conducting low cost laboratory apparatus courses where academics and laboratory staffs of local universities and research institutions learned to develop their own low cost scientific equipments. His professional affiliations include the Optical Society of America (OSA) as a member, and Malaysian Solid State Society (MASS) as a fellow member.

ACKNOWLEDGEMENT

In the name Allah the Most Gracious and the Most Mercifull.

I am most grateful to Allah SWT for His Blessings and Guidance. My sincere appreciation and gratitude to my late supervisor Dr. Aled Williams, Prof. Tan Sri Datuk Dr. Nik Mustapha bin R. Abdullah (former Vice Chancellor), to all staff in particular Prof. Dr. Sidek Abd Aziz (former Dean), Prof. Dr. Mohammad Yusof Sulaiman, Assoc. Prof. Dr. Mansor Hashim, Prof. Dr. W. Mahmood Mat Yunus, Prof. Dr. Mohd Maarof Moksin, Prof. Dr. Abd. Halim Shaari, Prof. Dr Elias Saion, Dr. Mahdi Abd. Wahab, Assoc. Prof. Dr. W. Mohd. Daud W. Yussof, Assoc. Prof. Dr. Zaidan Abd. Wahab, Assoc. Prof. Dr. Zulkifly Abbas, Assoc. Prof. Dr. Zainal Abidin Sulaiman, Dr. Raba'ah Syahidah Aziz, Assoc. Prof. Dr. Mohammad Alghoul, Prof. Dato' Dr. Burhanuddin Yatim (former lecturer), Dr. Abu Bakar Rejab (former teacher). My sincere appreciation and gratitude in particular to Dr. Zahid Rizwan, Dr. Reza Zamiri, Dr. Rosidah Alias, Dr. Woon Hai Song, Ling Yoke Ting, Liaw Hock Sang, Sabrina Mohd Shapee, Atefeh Jafari, Mohd Norizam Mohd Daud, Nor Fauzana Adnin; to current postgraduate students Mohd. Sabri Mohd Ghazali, Monir Noroozi, Mohd Shahril Husin, Wan Rafizah Wan Abd Rahman; and to postdoctoral Dr. Yadollah Abdollahi.

Lastly to my mother Wan Fatimah Wan Yussof, late father Zakaria Hassan for motivation and undying love, and to my wife Rosmah Mohd Amin, sons Mohd Hafizi, Mohammad Sallehuddin, Muhammad Kamil, and daughter Nur Naqiyah for their patient and understanding.

To All, may Allah SWT bless all of you.

LIST OF INAUGURAL LECTURES

- Prof. Dr. Sulaiman M. Yassin *The Challenge to Communication Research in Extension* 22 July 1989
- Prof. Ir. Abang Abdullah Abang Ali Indigenous Materials and Technology for Low Cost Housing 30 August 1990
- Prof. Dr. Abdul Rahman Abdul Razak Plant Parasitic Nematodes, Lesser Known Pests of Agricultural Crops 30 January 1993
- Prof. Dr. Mohamed Suleiman *Numerical Solution of Ordinary Differential Equations: A Historical Perspective* 11 December 1993
- Prof. Dr. Mohd. Ariff Hussein *Changing Roles of Agricultural Economics* 5 March 1994
- Prof. Dr. Mohd. Ismail Ahmad Marketing Management: Prospects and Challenges for Agriculture 6 April 1994
- Prof. Dr. Mohamed Mahyuddin Mohd. Dahan The Changing Demand for Livestock Products 20 April 1994
- Prof. Dr. Ruth Kiew Plant Taxonomy, Biodiversity and Conservation 11 May 1994
- Prof. Ir. Dr. Mohd. Zohadie Bardaie Engineering Technological Developments Propelling Agriculture into the 21st Century 28 May 1994
- Prof. Dr. Shamsuddin Jusop Rock, Mineral and Soil 18 June 1994

- Prof. Dr. Abdul Salam Abdullah Natural Toxicants Affecting Animal Health and Production 29 June 1994
- Prof. Dr. Mohd. Yusof Hussein Pest Control: A Challenge in Applied Ecology 9 July 1994
- Prof. Dr. Kapt. Mohd. Ibrahim Haji Mohamed Managing Challenges in Fisheries Development through Science and Technology 23 July 1994
- Prof. Dr. Hj. Amat Juhari Moain Sejarah Keagungan Bahasa Melayu 6 Ogos 1994
- Prof. Dr. Law Ah Theem Oil Pollution in the Malaysian Seas 24 September 1994
- Prof. Dr. Md. Nordin Hj. Lajis Fine Chemicals from Biological Resources: The Wealth from Nature 21 January 1995
- Prof. Dr. Sheikh Omar Abdul Rahman Health, Disease and Death in Creatures Great and Small 25 February 1995
- Prof. Dr. Mohamed Shariff Mohamed Din Fish Health: An Odyssey through the Asia - Pacific Region 25 March 1995
- Prof. Dr. Tengku Azmi Tengku Ibrahim *Chromosome Distribution and Production Performance of Water Buffaloes* 6 May 1995
- Prof. Dr. Abdul Hamid Mahmood Bahasa Melayu sebagai Bahasa Ilmu- Cabaran dan Harapan 10 Jun 1995

- Prof. Dr. Rahim Md. Sail Extension Education for Industrialising Malaysia: Trends, Priorities and Emerging Issues 22 July 1995
- Prof. Dr. Nik Muhammad Nik Abd. Majid *The Diminishing Tropical Rain Forest: Causes, Symptoms and Cure* 19 August 1995
- 23. Prof. Dr. Ang Kok Jee The Evolution of an Environmentally Friendly Hatchery Technology for Udang Galah, the King of Freshwater Prawns and a Glimpse into the Future of Aquaculture in the 21st Century 14 October 1995
- Prof. Dr. Sharifuddin Haji Abdul Hamid Management of Highly Weathered Acid Soils for Sustainable Crop Production 28 October 1995
- Prof. Dr. Yu Swee Yean Fish Processing and Preservation: Recent Advances and Future Directions 9 December 1995
- Prof. Dr. Rosli Mohamad *Pesticide Usage: Concern and Options* 10 February 1996
- Prof. Dr. Mohamed Ismail Abdul Karim Microbial Fermentation and Utilization of Agricultural Bioresources and Wastes in Malaysia
 March 1996
- Prof. Dr. Wan Sulaiman Wan Harun Soil Physics: From Glass Beads to Precision Agriculture 16 March 1996
- Prof. Dr. Abdul Aziz Abdul Rahman Sustained Growth and Sustainable Development: Is there a Trade-Off 1 or Malaysia 13 April 1996

- Prof. Dr. Chew Tek Ann Sharecropping in Perfectly Competitive Markets: A Contradiction in Terms 27 April 1996
- Prof. Dr. Mohd. Yusuf Sulaiman Back to the Future with the Sun 18 May 1996
- Prof. Dr. Abu Bakar Salleh *Enzyme Technology: The Basis for Biotechnological Development* 8 June 1996
- Prof. Dr. Kamel Ariffin Mohd. Atan *The Fascinating Numbers* 29 June 1996
- Prof. Dr. Ho Yin Wan *Fungi: Friends or Foes* 27 July 1996
- 35. Prof. Dr. Tan Soon Guan Genetic Diversity of Some Southeast Asian Animals: Of Buffaloes and Goats and Fishes Too 10 August 1996
- Prof. Dr. Nazaruddin Mohd. Jali Will Rural Sociology Remain Relevant in the 21st Century? 21 September 1996
- Prof. Dr. Abdul Rani Bahaman Leptospirosis-A Model for Epidemiology, Diagnosis and Control of Infectious Diseases 16 November 1996
- Prof. Dr. Marziah Mahmood *Plant Biotechnology - Strategies for Commercialization* 21 December 1996
- Prof. Dr. Ishak Hj. Omar Market Relationships in the Malaysian Fish Trade: Theory and Application 22 March 1997

- Prof. Dr. Suhaila Mohamad Food and Its Healing Power 12 April 1997
- Prof. Dr. Malay Raj Mukerjee *A Distributed Collaborative Environment for Distance Learning Applications* 17 June 1998
- Prof. Dr. Wong Kai Choo Advancing the Fruit Industry in Malaysia: A Need to Shift Research Emphasis
 15 May 1999
- Prof. Dr. Aini Ideris Avian Respiratory and Immunosuppressive Diseases- A Fatal Attraction 10 July 1999
- 44. Prof. Dr. Sariah Meon Biological Control of Plant Pathogens: Harnessing the Richness of Microbial Diversity 14 August 1999
- 45. Prof. Dr. Azizah Hashim The Endomycorrhiza: A Futile Investment? 23 Oktober 1999
- Prof. Dr. Noraini Abdul Samad Molecular Plant Virology: The Way Forward 2 February 2000
- 47. Prof. Dr. Muhamad Awang Do We Have Enough Clean Air to Breathe? 7 April 2000
- Prof. Dr. Lee Chnoong Kheng Green Environment, Clean Power 24 June 2000
- Prof. Dr. Mohd. Ghazali Mohayidin Managing Change in the Agriculture Sector: The Need for Innovative Educational Initiatives 12 January 2002

- Prof. Dr. Fatimah Mohd. Arshad Analisis Pemasaran Pertanian di Malaysia: Keperluan Agenda Pembaharuan 26 Januari 2002
- Prof. Dr. Nik Mustapha R. Abdullah Fisheries Co-Management: An Institutional Innovation Towards Sustainable Fisheries Industry 28 February 2002
- Prof. Dr. Gulam Rusul Rahmat Ali Food Safety: Perspectives and Challenges 23 March 2002
- 53. Prof. Dr. Zaharah A. Rahman Nutrient Management Strategies for Sustainable Crop Production in Acid Soils: The Role of Research Using Isotopes 13 April 2002
- Prof. Dr. Maisom Abdullah *Productivity Driven Growth: Problems & Possibilities* 27 April 2002
- 55. Prof. Dr. Wan Omar Abdullah Immunodiagnosis and Vaccination for Brugian Filariasis: Direct Rewards from Research Investments 6 June 2002
- Prof. Dr. Syed Tajuddin Syed Hassan Agro-ento Bioinformation: Towards the Edge of Reality 22 June 2002
- Prof. Dr. Dahlan Ismail Sustainability of Tropical Animal-Agricultural Production Systems: Integration of Dynamic Complex Systems 27 June 2002
- Prof. Dr. Ahmad Zubaidi Baharumshah *The Economics of Exchange Rates in the East Asian Countries* 26 October 2002
- Prof. Dr. Shaik Md. Noor Alam S.M. Hussain Contractual Justice in Asean: A Comparative View of Coercion 31 October 2002

- Prof. Dr. Wan Md. Zin Wan Yunus Chemical Modification of Polymers: Current and Future Routes for Synthesizing New Polymeric Compounds 9 November 2002
- Prof. Dr. Annuar Md. Nassir Is the KLSE Efficient? Efficient Market Hypothesis vs Behavioural Finance 23 November 2002
- Prof. Ir. Dr. Radin Umar Radin Sohadi Road Safety Interventions in Malaysia: How Effective Are They? 21 February 2003
- Prof. Dr. Shamsher Mohamad *The New Shares Market: Regulatory Intervention, Forecast Errors and Challenges* 26 April 2003
- 64. Prof. Dr. Han Chun Kwong Blueprint for Transformation or Business as Usual? A Structurational Perspective of the Knowledge-Based Economy in Malaysia 31 May 2003
- 65. Prof. Dr. Mawardi Rahmani Chemical Diversity of Malaysian Flora: Potential Source of Rich Therapeutic Chemicals 26 July 2003
- 66. Prof. Dr. Fatimah Md. Yusoff
 An Ecological Approach: A Viable Option for Aquaculture Industry in Malaysia
 9 August 2003
- Prof. Dr. Mohamed Ali Rajion *The Essential Fatty Acids-Revisited* 23 August 2003
- Prof. Dr. Azhar Md. Zain *Psychotheraphy for Rural Malays - Does it Work?* 13 September 2003

- Prof. Dr. Mohd. Zamri Saad *Respiratory Tract Infection: Establishment and Control* 27 September 2003
- Prof. Dr. Jinap Selamat Cocoa-Wonders for Chocolate Lovers 14 February 2004
- Prof. Dr. Abdul Halim Shaari High Temperature Superconductivity: Puzzle & Promises 13 March 2004
- Prof. Dr. Yaakob Che Man Oils and Fats Analysis - Recent Advances and Future Prospects 27 March 2004
- Prof. Dr. Kaida Khalid *Microwave Aquametry: A Growing Technology* 24 April 2004
- 74. Prof. Dr. Hasanah Mohd. Ghazali Tapping the Power of Enzymes- Greening the Food Industry 11 May 2004
- Prof. Dr. Yusof Ibrahim *The Spider Mite Saga: Quest for Biorational Management Strategies* 22 May 2004
- Prof. Datin Dr. Sharifah Md. Nor The Education of At-Risk Children: The Challenges Ahead 26 June 2004
- 77. Prof. Dr. Ir. Wan Ishak Wan Ismail Agricultural Robot: A New Technology Development for Agro-Based Industry 14 August 2004
- Prof. Dr. Ahmad Said Sajap Insect Diseases: Resources for Biopesticide Development 28 August 2004

- 79. Prof. Dr. Aminah Ahmad The Interface of Work and Family Roles: A Quest for Balanced Lives 11 March 2005
- Prof. Dr. Abdul Razak Alimon *Challenges in Feeding Livestock: From Wastes to Feed* 23 April 2005
- Prof. Dr. Haji Azimi Hj. Hamzah Helping Malaysian Youth Move Forward: Unleashing the Prime Enablers 29 April 2005
- Prof. Dr. Rasedee Abdullah In Search of An Early Indicator of Kidney Disease 27 May 2005
- Prof. Dr. Zulkifli Hj. Shamsuddin Smart Partnership: Plant-Rhizobacteria Associations 17 June 2005
- Prof. Dr. Mohd Khanif Yusop From the Soil to the Table 1 July 2005
- Prof. Dr. Annuar Kassim Materials Science and Technology: Past, Present and the Future 8 July 2005
- Prof. Dr. Othman Mohamed Enhancing Career Development Counselling and the Beauty of Career Games 12 August 2005
- Prof. Ir. Dr. Mohd Amin Mohd Soom *Engineering Agricultural Water Management Towards Precision Framing* 26 August 2005
- Prof. Dr. Mohd Arif Syed Bioremediation-A Hope Yet for the Environment?
 9 September 2005

- Prof. Dr. Abdul Hamid Abdul Rashid *The Wonder of Our Neuromotor System and the Technological Challenges They Pose* 23 December 2005
- Prof. Dr. Norhani Abdullah Rumen Microbes and Some of Their Biotechnological Applications 27 January 2006
- Prof. Dr. Abdul Aziz Saharee Haemorrhagic Septicaemia in Cattle and Buffaloes: Are We Ready for Freedom? 24 February 2006
- 92. Prof. Dr. Kamariah Abu Bakar Activating Teachers' Knowledge and Lifelong Journey in Their Professional Development
 3 March 2006
- 93. Prof. Dr. Borhanuddin Mohd. Ali Internet Unwired 24 March 2006
- Prof. Dr. Sundararajan Thilagar Development and Innovation in the Fracture Management of Animals 31 March 2006
- Prof. Dr. Zainal Aznam Md. Jelan Strategic Feeding for a Sustainable Ruminant Farming 19 May 2006
- Prof. Dr. Mahiran Basri Green Organic Chemistry: Enzyme at Work 14 July 2006
- Prof. Dr. Malik Hj. Abu Hassan Towards Large Scale Unconstrained Optimization 20 April 2007
- Prof. Dr. Khalid Abdul Rahim Trade and Sustainable Development: Lessons from Malaysia's Experience 22 Jun 2007

- Prof. Dr. Mad Nasir Shamsudin *Econometric Modelling for Agricultural Policy Analysis and Forecasting: Between Theory and Reality* 13 July 2007
- 100. Prof. Dr. Zainal Abidin Mohamed Managing Change - The Fads and The Realities: A Look at Process Reengineering, Knowledge Management and Blue Ocean Strategy 9 November 2007
- 101. Prof. Ir. Dr. Mohamed Daud Expert Systems for Environmental Impacts and Ecotourism Assessments 23 November 2007
- 102. Prof. Dr. Saleha Abdul Aziz Pathogens and Residues; How Safe is Our Meat? 30 November 2007
- 103. Prof. Dr. Jayum A. Jawan Hubungan Sesama Manusia 7 Disember 2007
- 104. Prof. Dr. Zakariah Abdul Rashid
 Planning for Equal Income Distribution in Malaysia: A General
 Equilibrium Approach
 28 December 2007
- 105. Prof. Datin Paduka Dr. Khatijah Yusoff Newcastle Disease virus: A Journey from Poultry to Cancer 11 January 2008
- 106. Prof. Dr. Dzulkefly Kuang Abdullah Palm Oil: Still the Best Choice 1 February 2008
- 107. Prof. Dr. Elias Saion Probing the Microscopic Worlds by Lonizing Radiation 22 February 2008
- 108. Prof. Dr. Mohd Ali Hassan Waste-to-Wealth Through Biotechnology: For Profit, People and Planet 28 March 2008

- 109. Prof. Dr. Mohd Maarof H. A. Moksin Metrology at Nanoscale: Thermal Wave Probe Made It Simple 11 April 2008
- 110. Prof. Dr. Dzolkhifli Omar The Future of Pesticides Technology in Agriculture: Maximum Target Kill with Minimum Collateral Damage 25 April 2008
- 111. Prof. Dr. Mohd. Yazid Abd. Manap Probiotics: Your Friendly Gut Bacteria 9 May 2008
- 112. Prof. Dr. Hamami Sahri Sustainable Supply of Wood and Fibre: Does Malaysia have Enough? 23 May 2008
- 113. Prof. Dato' Dr. Makhdzir Mardan Connecting the Bee Dots 20 June 2008
- Prof. Dr. Maimunah Ismail Gender & Career: Realities and Challenges 25 July 2008
- Prof. Dr. Nor Aripin Shamaan Biochemistry of Xenobiotics: Towards a Healthy Lifestyle and Safe Environment
 1 August 2008
- 116. Prof. Dr. Mohd Yunus Abdullah Penjagaan Kesihatan Primer di Malaysia: Cabaran Prospek dan Implikasi dalam Latihan dan Penyelidikan Perubatan serta Sains Kesihatan di Universiti Putra Malaysia 8 Ogos 2008
- 117. Prof. Dr. Musa Abu Hassan Memanfaatkan Teknologi Maklumat & Komunikasi ICT untuk Semua 15 Ogos 2008
- Prof. Dr. Md. Salleh Hj. Hassan Role of Media in Development: Strategies, Issues & Challenges 22 August 2008

- Prof. Dr. Jariah Masud Gender in Everyday Life
 10 October 2008
- 120 Prof. Dr. Mohd Shahwahid Haji Othman Mainstreaming Environment: Incorporating Economic Valuation and Market-Based Instruments in Decision Making 24 October 2008
- 121. Prof. Dr. Son RaduBig Questions Small Worlds: Following Diverse Vistas31 Oktober 2008
- 122. Prof. Dr. Russly Abdul Rahman Responding to Changing Lifestyles: Engineering the Convenience Foods 28 November 2008
- Prof. Dr. Mustafa Kamal Mohd Shariff Aesthetics in the Environment an Exploration of Environmental: Perception Through Landscape Preference
 9 January 2009
- 124. Prof. Dr. Abu Daud Silong Leadership Theories, Research & Practices: Farming Future Leadership Thinking 16 January 2009
- 125. Prof. Dr. Azni Idris
 Waste Management, What is the Choice: Land Disposal or Biofuel?
 23 January 2009
- 126. Prof. Dr. Jamilah Bakar Freshwater Fish: The Overlooked Alternative 30 January 2009
- 127. Prof. Dr. Mohd. Zobir Hussein The Chemistry of Nanomaterial and Nanobiomaterial 6 February 2009
- Prof. Ir. Dr. Lee Teang Shui Engineering Agricultural: Water Resources 20 February 2009

- 129. Prof. Dr. Ghizan Saleh Crop Breeding: Exploiting Genes for Food and Feed 6 March 2009
- Prof. Dr. Muzafar Shah Habibullah Money Demand
 27 March 2009
- Prof. Dr. Karen Anne Crouse In Search of Small Active Molecules 3 April 2009
- Prof. Dr. Turiman Suandi Volunteerism: Expanding the Frontiers of Youth Development 17 April 2009
- 133. Prof. Dr. Arbakariya Ariff
 Industrializing Biotechnology: Roles of Fermentation and Bioprocess Technology
 8 Mei 2009
- 134. Prof. Ir. Dr. Desa Ahmad Mechanics of Tillage Implements 12 Jun 2009
- Prof. Dr. W. Mahmood Mat Yunus *Photothermal and Photoacoustic: From Basic Research to Industrial Applications* 10 Julai 2009
- 136. Prof. Dr. Taufiq Yap Yun Hin Catalysis for a Sustainable World 7 August 2009
- 137 Prof. Dr. Raja Noor Zaliha Raja Abd. Rahman Microbial Enzymes: From Earth to Space9 Oktober 2009
- 138 Prof. Ir. Dr. Barkawi Sahari Materials, Energy and CNGDI Vehicle Engineering 6 November 2009

- 139. Prof. Dr. Zulkifli Idrus Poultry Welfare in Modern Agriculture: Opportunity or Threat? 13 November 2009
- 140. Prof. Dr. Mohamed Hanafi Musa Managing Phosphorus: Under Acid Soils Environment 8 January 2010
- 141. Prof. Dr. Abdul Manan Mat Jais Haruan Channa striatus a Drug Discovery in an Agro-Industry Setting 12 March 2010
- 142. Prof. Dr. Bujang bin Kim Huat Problematic Soils: In Search for Solution 19 March 2010
- 143. Prof. Dr. Samsinar Md Sidin Family Purchase Decision Making: Current Issues & Future Challenges 16 April 2010
- 144. Prof. Dr. Mohd Adzir Mahdi Lightspeed: Catch Me If You Can 4 June 2010
- 145. Prof. Dr. Raha Hj. Abdul Rahim Designer Genes: Fashioning Mission Purposed Microbes 18 June 2010
- 146. Prof. Dr. Hj. Hamidon Hj. Basri A Stroke of Hope, A New Beginning 2 July 2010
- 147. Prof. Dr. Hj. Kamaruzaman Jusoff Going Hyperspectral: The "Unseen" Captured? 16 July 2010
- 148. Prof. Dr. Mohd Sapuan Salit Concurrent Engineering for Composites 30 July 2010
- 149. Prof. Dr. Shattri Mansor Google the Earth: What's Next?15 October 2010

- 150. Prof. Dr. Mohd Basyaruddin Abdul Rahman Haute Couture: Molecules & Biocatalysts 29 October 2010
- 151. Prof. Dr. Mohd. Hair Bejo Poultry Vaccines: An Innovation for Food Safety and Security 12 November 2010
- Prof. Dr. Umi Kalsom Yusuf Fern of Malaysian Rain Forest
 December 2010
- 153. Prof. Dr. Ab. Rahim Bakar Preparing Malaysian Youths for The World of Work: Roles of Technical and Vocational Education and Training (TVET) 14 January 2011
- 154. Prof. Dr. Seow Heng Fong Are there "Magic Bullets" for Cancer Therapy? 11 February 2011
- 155. Prof. Dr. Mohd Azmi Mohd Lila Biopharmaceuticals: Protection, Cure and the Real Winner 18 February 2011
- 156. Prof. Dr. Siti Shapor Siraj Genetic Manipulation in Farmed Fish: Enhancing Aquaculture Production 25 March 2011
- 157. Prof. Dr. Ahmad Ismail Coastal Biodiversity and Pollution: A Continuous Conflict 22 April 2011
- 158. Prof. Ir. Dr. Norman Mariun Energy Crisis 2050? Global Scenario and Way Forward for Malaysia 10 June 2011
- 159. Prof. Dr. Mohd Razi Ismail Managing Plant Under Stress: A Challenge for Food Security 15 July 2011

- 160. Prof. Dr. Patimah IsmailDoes Genetic Polymorphisms Affect Health?23 September 2011
- 161. Prof. Dr. Sidek Ab. Aziz Wonders of Glass: Synthesis, Elasticity and Application 7 October 2011
- 162. Prof. Dr. Azizah Osman Fruits: Nutritious, Colourful, Yet Fragile Gifts of Nature 14 October 2011
- 163. Prof. Dr. Mohd. Fauzi Ramlan Climate Change: Crop Performance and Potential 11 November 2011
- 164. Prof. Dr. Adem Kiliçman Mathematical Modeling with Generalized Function 25 November 2011
- 165. Prof. Dr. Fauziah Othman My Small World: In Biomedical Research 23 December 2011
- 166. Prof. Dr. Japar Sidik Bujang The Marine Angiosperms, Seagrass 23 March 2012
- 166. Prof. Dr. Zailina Hashim Air Quality and Children's Environmental Health: Is Our Future Generation at Risk? 30 March 2012
- 167. Prof. Dr. Zainal Abidin Mohamed Where is the Beef? Vantage Point form the Livestock Supply Chain 27 April 2012
- 168. Prof. Dr. Jothi Malar Panandam Genetic Characterisation of Animal Genetic Resources for Sustaninable Utilisation and Development 30 November 2012

- 169. Prof. Dr. Fatimah Abu Bakar The Good The Bad & Ugly of Food Safety: From Molecules to Microbes 7 Disember 2012
- 170. Prof. Dr. Abdul Jalil Nordin My Colourful Sketches from Scratch: Molecular Imaging 5 April 2013
- 171. Prof. Dr. Norlijah Othman Lower Respiratory Infections in Children: New Pathogens, Old Pathogens and The Way Forward 19 April 2013
- 172. Prof. Dr. Jayakaran Mukundan Steroid-like Prescriptions English Language Teaching Can Ill-afford 26 April 2013