
Pertanika J. Sci. & Technol. 22 (1): 175 - 192 (2014)

SCIENCE & TECHNOLOGY
Journal homepage: http://www.pertanika.upm.edu.my/

ISSN: 0128-7680  © 2014 Universiti Putra Malaysia Press.

INTRODUCTION

Subspace quasi-Newton (SQN) method is 
generally used to solve large scale non-linear 
systems of equations and non-linear least 
square problems. This method is popular 
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because it has the characteristic to force the 
next iteration in a low dimensional subspace. 
At each iteration, we searched for a minimum 
of the objective function over a subspace 
spanned by the current gradient and by 
direction of few previous steps.

The main advantage of this method is that 
it constructs subproblems in low dimensions 
so that computation cost can be reduced. It 
also offers a possible way to handle large 
scale unconstrained optimization problems. 
Besides, this method can be implemented 
extremely fast. This happens when the 
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objective function is a combination of expensive linear mappings with computationally cheap 
nonlinear functions (Yuan, 2007).

One of the famous subspace algorithms for non-linear optimization is the unbalance 
property shared by most line search algorithms. Any line search method is considered to have 
the following form:

1 ,k k k kx x dα+ = +               (1)

Where, kd  is the search direction and 0≥kα  is the step-length that is computed by certain 
line search technique. Generally, the search direction kd  is computed by solving a subproblem 
which is an approximation to the original non-linear optimization problem. Therefore, there are 
two parts combined in each iteration of a line search algorithms; the first part is to find kd in the 
whole n  dimensional space, while the other part is to search for a suitable step-length in a fixed 
one dimensional space spanned by the computed kd . As a result, the overall algorithm swings 
between the n  dimensional search and one dimensional search alternately. Some variants of 
these methods can be found in [3], [4], [5], [9], [10], [11], [12], [17] and [18].

Furthermore, many well-known existing algorithms essentially have certain subspace 
features. For example, the conjugate gradient method uses a search direction in a two 
dimensional subspace spanned by the steepest descent direction and the previous step, the dog-
leg method computes a step that is a convex combination of the steepest descent direction and 
the Newton’s direction, and the limited memory quasi-Newton algorithms will also produce 
search directions that are spanned in a lower dimensional space to speed up the convergency 
and lower the computation cost.

SUBSPACE METHOD APPROACHES

The well-known nonlinear conjugate gradient methods use a linear combination of the steepest 
descent direction kg−  and the previous search direction 1−kd  to form the new search direction, 
as follows:

1k k k kd g dβ −= − +

Hence, one of the important tasks is how to determine the suitable kβ  based on certain 
conjugate gradient principles. Instead of the conjugate property, Stoer and Yuan (1995) 
suggested to look at the conjugate gradient method from the subspace point of view. In the 
conjugate gradient method, kβ  is used to define search direction kd  and the stepsize kα  to set

kkkk dxx α+=+1 ; thus, no matter whatever kβ  and kα  are used, the increment in the iterative 
point will be a linear combination of kg−  and 1−kd . They consider a model subproblem as 
follows:

{ }
( ) ( )

1,
min

k k
k kd span g s

Q d f x d
−∈ −

≈ +

Let kd be the solution of the above 2-dimensional subproblem and a successive 
2-dimensional search algorithm is presented, which is an example of algorithms that using 
subspace methods (Stoer & Yuan, 1995).
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Limited memory quasi-Newton method also has the subspace nature. The Quasi-Newton 
updates have the following form:

( )1 1 1, ,k k k kB U B s y− − −=

which satisfies

1 1k k kB s y− −=

where, 11 −− −= kkk xxs  and 11 −− −= kkk ggy . A famous example is the BFGS method.

1 1 1 1 1 1
1

1 1 1 1 1

T T
k k k k k k

k k T T
k k k k k

B s s B y yB B
s B s s y
− − − − − −

−
− − − − −

= − +

The limited memory quasi-Newton updates the approximate Hessian repeatedly:

( ) ( )( )1
1 1, ,i i

k k k m i k m iB U B s y−
− − + − − +=

    1, 2, ,i m= 

with ( ) IB kk σ=0  (Liu & Nocedal, 1989). There are various formulae for kσ , with one choice 

being 
11

11

−−

−−

k
T
k

k
T
k

yy
ys

. The limited memory quasi-Newton matrix can be written as follows:

( ) [ ]
T

m k
k k k k k k T

k

S
B B I S Y T

Y
σ

 
= = +  

 

where, kT  is a mm 22 ×  matrix, and

[ ] [ ] mn
mkkkmkkkkk yyysssYS 2

2121 ,,,,,,, ×
−−−−−− ℜ∈=  .

We have kkkkkk gBds 1−−== αα  in the line search type method, while for a trust region 

type algorithm, we have ( ) kkkk gIBs 1−+−= λ . As a result,

[ ] kT
k

T
k

kkkkk g
Y
S

TYSIs
1−



















+−= ρ

{ }mkkmkkk yyssgspan −−−−∈ ,,,,,, 11  .

It has been shown that no matter what, the limited memory quasi-Newton 
algorithm with line search or trust region will always produce a step in the subspace

{ }mkkmkkk yyssgspan −−−− ,,,,,, 11   (Wang et al., 2004).
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A model subspace algorithm for unconstrained optimization is suggested, which is a slight 
modification of the standard trust region algorithm for unconstrained optimization.

Algorithm 2.1 (A Model Subspace Algorithm for Unconstrained Optimization)

Step 1: Given 1x , define 1S , 0>ε , 1:=k .

Step 2: Solve a subspace subproblem:

( ) dBddgdQ k
TT

kkSd k 2
1min +=

∈
.            (2)

 to obtain ks . If ε≤|||| ks , then stop.

Step 3: Define

kkk sxx +=+1   if ( ) ( )kkk xfsxf <+

kk xx =+1 , otherwise.

Step 4: Generate 1+kS  and ( )dQk 1+ .

Step 5: Set 1: += kk , go to step 2.

The main difference between the above algorithm and the standard whole space algorithm 
is the constraint for the step kS  to be in the subspace kS . Thus, the key issue here is how to 
choose the subspace kS . Stoer and Yuan (1995) suggested that the choice for the subspace kS  

is a generalization of the 2-dimensional subspace, namely, { }1, , , ,k k k k mS span g s s− −= −   
since all the points in kS  can be expressed by:

∑
=

−+−=
m

i
ikik sgd

1
βσ ,            (3)

using the following approximations,

( ) jk
T

ikjkk
T

ik yssxfs −−−− ≈∇ 2 ,     ( ) k
T

ikkk
T

ik gygxfs −− ≈∇ 2 .

However, the performance of a CG-like search direction can be very slow on certain types 
of non-linear problem such as ill-conditioned problems. Hence, the main aim of the study is 
to propose some preconditioners for the search direction (3), namely:

  ∑
=

−
− +−=

m

i
ikikkk sgDd

1

1 β             (4)

where kD is the preconditioner in diagonal matrix form, and it is supposed to have some 
properties of the Hessian matrix, or a good approximation to the Hessian matrix in some sense.
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DERIVATION OF THE DIAGONAL PRECONDITIONER

In this section, we develop a preconditioner for subspace quasi-Newton algorithm in order 
to overcome the deficiency of the standard subspace algorithm when solving ill-conditioned 
optimization problems.

We shall choose a diagonal matrix kD  that satisfies the weak-quasi-Newton relation, as 
below:

k
T
kkk

T
k yysDy =+1              (5)

where, kkk ggy −= +1 , and kkk xxs −= +1 .

Suppose that the Hessian matrix A  of an objective function ( ) 1
2

T Tf x x Ax b x= −  is 

positive definite. We let kD  be a diagonal matrix to approximate the Hessian matrix. Hence, 
we form our approximation as follows:

kkk DD ∆+=+1              (6)

Our purpose is to construct a 1+kD in such a way that it is a good approximation to the 
actual Hessian matrix.

Theorem 3.1

Assume that 0>kD  is a positive definite diagonal matrix and 1+kD  is the updated version 
of kD , which is also diagonal. Suppose that 0≠ks , the optimal solution of the following 
minimization problem will then be:

minimize 
2

2
1

Fk∆  

subject to k
T
kkk

T
k yysDy =+1              (7) 

and is given by: 

k
k

kk
kk GDD

γ
µω −

+=+1              (8)

where, ( )T
k k kF

tr∆ = ∆ ∆ is the Frobenius norm and tr is the trace operator, k
T
k yy=ω , 

kk
T
k sDy=µ , ( ) ( )( )

2

1
∑
=

=
n

i

i
k

i
k syγ and ( ) ( )( ) ( ) ( )( )( )i

k
i

kkkk ysysdiagG ,,11
=  with ( )i

ky  and ( )i
ks  

being the i = th component of the ky  and ks  respectively.
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Proof

Let 

( )

( ) 















=∆
k

k

k

k

a

a







0
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( )

( ) 















=
n

k

k

k

s
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1

 and 

( )

( ) 















=
k

k

k

k

y

y
y 

1

 for .,,3,2,1 ni =

From equation (7), we have:

( ) ( )
2

2 T
k k ktr ∆ = ∆ ∆ 

 

( )( ) ( )( ) ( )( )( )2221 n
k

i
kk aaa ++++=  .            (9)

Thus, the minimization equation will become:

minimize ( )( ) ( )( ) ( )( )( )2221

2
1 n

k
i

kk aaa ++++  .          (10)

By substituting (6) into (7), we obtain:

( ) k
T
kkkk

T
k yysDy =∆+ .           (11)

We expand (11) to get the following expression:

k
T
kkk

T
kkk

T
k yysysDy =∆+ .

Rearranging the equation, we get:

( ) ( ) ( )∑
=

=+−
n

i

i
k

i
k

i
k asy

1
0ωµ ,          (12)

where kk
T
k sDy=µ  and k

T
k yy=ω .

From (12), we have:

( ) ( ) ( )∑
=

−=
n

i

i
k

i
k

i
k asy

1
µω .           (13)

Finally, we wish to solve the following:

minimize ( )( ) ( )( ) ( )( )( )2221

2
1 n

k
i

kk aaa ++++ 

subject to ( ) ( ) ( )∑
=

=+−
n

i

i
k

i
k

i
k asy

1
0ωµ .         (14)
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Since the objective function in (14) is convex, there exists a unique solution and its Lagrange 
function will be:

( )( ) ( )( )( ) ( ) ( ) ( ) 







+−+++= ∑

=

n

i

i
k

i
k

i
k

n
kk asyaaL

1

221

2
1 ωµλ ,      (15)

where,λ is the Lagrange multiplier associated with the constant. We differentiate (15) with 
respect to ( )i

ka , and setting the result to zero, we obtain,

( )
( ) ( ) ( ) 0=+=

∂
∂ i

k
i

k
i

ki
k

sya
a
L λ .          (16)

From (16), it is clear that,

( ) ( ) ( )i
k

i
k

i
k asy −=λ .            (17)

Multiplying (17) with ( ) ( )i
k

i
k ys  for ni ,,3,2,1 = , respectively, we shall obtain

( ) ( )( ) ( ) ( ) ( )i
k

i
k

i
k

i
k

i
k asysy −=

2
λ .           (18)

Summing all of the equations in (18) yields:

( ) ( )( ) ( ) ( ) ( )∑ ∑
= =

−=
n

i

n

i

i
k

i
k

i
k

i
k

i
k asysy

1 1

2
λ .          (19)

By equation (13), (19) becomes

( ) ( )( )∑
=

−=
n

i

i
k

i
k sy

1

2
ωµλ ,           (20)

Finally, we get

γ
ωµλ −

= ,             (21)

where ( ) ( )( )∑
=

=
n

i

i
k

i
k sy

1

2
γ .

Once again, from (17), we get

( ) ( ) ( )i
k

i
k

i
k sya λ−= .            (22)

We substitute (21) into (22), the equation becomes,

( ) ( ) ( )i
k

i
k

k

kki
k sya

γ
µω −

= .            (23)
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Expression (23) is in the form of each component of k∆. By substituting (23) into the formula 
of k∆ , we will get the approximation of 1+kD  as follows:

k
k

kk
kk GDD

γ
µω −

+=+1 ,           (24)

where k
T
k yy=ω , kk

T
k sDy=µ , ( ) ( )( )

2

1
∑
=

=
n

i

i
k

i
k syγ and ( ) ( )( ) ( ) ( )( )( )i

k
i

kkkk ysysdiagG ,,11
=

with ( )i
ky  and ( )i

ks  being the i th−  component of the ky  and ks  respectively, and the proof 
is completed.

Now, we give our algorithm for solving large-scale unconstrained optimization, which is called 
the preconditioned subspace quasi-Newton algorithm.

Algorithm 3.1 SQN Algorithm

Step 1 : Set 0=k ; select the initial point 0x  and ε  as a stopping condition.

  We also set ID =0 , where I  is nn×  identity matrix.

Step 2 : For 0≥k , compute k kg Ax b= − . If ε≤kg , stop, else compute

  kD , where D is a specific diagonal preconditioner.

Step 3 : Compute ∑
=

−++++ +−=
m

i
ikikkk sgDd

1
1111 β , where 1

T
i i

i T
i i

g Ad
d Ad

β += , 

  { }mki ,min≤ .

Step 4 : Compute 
T
k k

k T
k k

g d
d Ad

α = − .

Step 5 : Hence, kkkk dxx α+=+1 .

Step 6 : Set 1: += kk ; go to step 2.

The SQN method is tested where in Step 2, D is chosen from theorem 3.1.

CONVERGENCE ANALYSIS

In this section, we shall look at the convergence properties of the subspace quasi-Newton 
method. Note that all the Hessian approximations are obtained by updating a bounded 
matrix using the proposed preconditioned subspace quasi-Newton method. We will prove the 
convergence properties of our proposed methods based upon the convergence assumptions 
given by Liu and Nocedal (1989), since it is valid for our preconditioning formulae whose 
matrices are diagonal and positive definite.
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Assumption 4.1:

(1) The objective function f  is twice continuously differentiable.

(2) The level set ( ) ( ){ }0: xfxfxD n ≤ℜ∈=  is convex.

(3) There exist positive constants 1M  and 2M  such that

( ) 2
2

2
1 zMzxGzzM T ≤≤            (25)

for nz ℜ∈∀  and Dz∈∀ . This implies that the objective function f  has a unique minimize 
*x in D .

From (25), we can have another similar inequality, as below:

( ) 2
2

12
1 zNzxGzzN T ≤≤ − ,          (26)

where 
2

1
1

M
N =  and 

1
2

1
M

N =  are the constants.

Lemma 4.1

Let 0x  be a starting point for which f  satisfies Assumptions 4.1, and we take ID =0 , where 

I  is the nn×  identity matrix. Assume that the matrices 0
kD  are chosen so that ( ){ }0

kD  and 

( ){ }10 −
kD  are bounded. Then, { }1+kD  and { }1

1
−
+kD  are also bounded, where,

k
k

kk
kk GDD

γ
µω −

+=+1            (27)

where k
T
k yy=ω , kk

T
k sDy=µ , ( ) ( )( )

2

1
∑
=

=
n

i

i
k

i
k syγ and ( ) ( )( ) ( ) ( )( )( )i

k
i

kkkk ysysdiagG ,,11
=  

with ( )i
ky  and ( )i

ks  being the i th−  component of the ky  and ks , respectively.

Proof

Without the loss of generality, we shall assume that ID =0 , where I  is the nn×  identity 
matrix. It is clear that 0D  is bounded, as follows:

000 |||| ωµ ≤≤ FD

Now, we need to prove 1D  is bounded.
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Let ( )xf2∇  be defined as:

( ) ( )∫ +∇=∇
1

0

22 ττ dsxfxf kk .

Then, we have,

( ) kk sxfy 2∇= .            (28)

From (26) and (28), we get
2

2
2

1 kk
T
kk yNsyyN ≤≤ ,           (29)

Where,
2

1
1

M
N =   and 

1
2

1
M

N =  are the constants.

From (27), we have

F
F

GDD 0
0

00
01 γ

µω −
+=

F
FF

GDD 0
0

00
01 γ

µω −
+≤

( )
FFF

GDD 0
0

00
01 γ

µω −
+≤ ,         (30)

where 
2

F
⋅   is the square of Frobenius norm and let tr be the trace operator.

Note that

( ) ( ) ( )2
0

22
0

21
0

2
0

nyyyy +++= 

( )20
Myn≤ ,             (31)

where ( ) ( ) ( ) ( ){ }2
0

22
0

21
0

2
0 ,,,max nM yyyy = .



Preconditioned Subspace Quasi-Newton Method for Large Scale Optimization

185Pertanika J. Sci. & Technol. 22 (1): 175 - 192 (2014)

From (29), (30) and (31), we will get

( )2
0 0 0

T
F

G tr G G=

( ) ( ) ( ) ( ) ( ) ( )2
0

2
0

22
0

22
0

21
0

21
0

nn ysysys +++= 

( )200 syT≤

( )2020 |||| MynNG ≤ .            (32) 

From (27), we have

000 yyT=ω

2
0y=

( )20
Myn≤              (33)

and 
0000 sDyT=µ

0030 syM T≤µ

2
0230 yNM≤µ

( )20230
MyNM≤µ  (34)

where, 13 =M .

Hence, from (30), (32), (33) and (34), we shall have

( ) ( )( )
( ) ( )( )

( )202

1

2
00

2
02

2
0

01
M

n

i

ii

MM

FF
ynN

ys

ynNyn
DD

∑
=

−
+≤

( )( )
( ) ( )( )

( )202

1

2
00

2
02

01
M

n

i

ii

M

FF
ynN

ys

ynNn
DD

∑
=

−
+≤

( ) ( )
( ) ( )( )∑

=

−
+≤ n

i

ii

M

FF

ys

ynNN
DD

1

2
00

4
0

2
22

01
1
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( )
( ) ( )( )

42
2 0

1 0 2

0 0
1

M

nF F
i i

i

kN n y
D D

s y
=

≤ +

∑

401 MDD
FF
+≤

41 MnD
F

+≤
,           (35)

Where, 
2

4 2M kN n= and ( ) ( ){ }22 1,1max NNk +−= , and

( )
( ) ( )( )

1

1

2
00

4
0 ≤

∑
=

n

i

ii

M

ys

y
            (36)

From (35), we can conclude that 
F

D1  is bounded since 
F

D0  is also bounded.  Now, we 
assume that kD  is bounded, and then, we need to prove that 1+kD  is also bounded.

From the above, we shall get a similar equation and inequality, as follows:

( )22
M

Fk ynNG ≤ ,            (37)

2
kk y≤ω ,             (38)

2
23 kk yNM≤µ ,            (39)

( )22 M
kk yny ≤ .           (40)

From (27) and (37)-(40), we obtain

 41 MDD
FkFk +≤+ ,           (41)

Where, 2
4 2M kN n=  and ( ) ( ){ }2323 1,1max NMNMk +−= .

From the fact that 
FkD  is bounded, i.e. 5MD

Fk ≤ , and from (41),

651 MMD
Fk +≤+

61 MD
Fk ≤+ ,

Where, 456 MMM +=  and it is a constant.  Finally, we have shown that 
FkD 1+ is bounded 

and the proof is completed.
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In this section, we have shown that the proposed preconditioned subspace quasi-Newton 
methods are convergent on uniformly convex problems and the rate is R -linear. This R
-linear convergence results obtained are based upon the assumption by Liu and Nocedal (1989).

COMPUTATIONAL RESULTS AND DISCUSSION

The computational results and discussion on the performance of preconditioner subspace quasi-
Newton (SQN) method are given in this section. All the algorithms are written in MATLAB 
7.0. The total number of tested problems is 4. All the runs were terminated when

410kg −≤

Where, ⋅  denotes the Euclidean norm. Furthermore, we also consider the number of 
function evaluation and gradient calls. We set our upper bound for the number of function 
evaluation and gradient call to be 1000.

The computational results are compared through the number of iterations, gradient 
evaluations as well as function evaluations. In order to test the efficiency of the proposed 
preconditioned methods, the number of subspaces that is considered is 2=m  and 3=m .

Meanwhile, the SQN method was tested using the following preconditioners:

1. SQN(0)-SQN method without preconditioning.

2. SQN(D1)-SQN method with diagonal preconditioner D , where D  is given by Theorem 3.1.

In order to compare the efficiency of the proposed preconditioned SQN methods with the 
standard SQN method, the following quadratic test problem is considered:

( ) 1
2

T Tf x x Ax b x= − ,          (42)

where, A  is positive definite diagonal matrix and [ ]1,,1,1,1,1,1 =b .

For all the methods, the initial point is [ ]0,,0,0,0,00 =x . A set of unconstrained 
minimization quadratic problems consisting of 4 test problems were used. We now describe 
the 4 different quadratic test problems (43) with n -dimensional cases.

1. QF1, where [ ]iiA diag a= , ( )2 mod5iia i= , [ ]1, ,1b =  .

2. QF2, where [ ]iiA diag a= , ( )3 mod5iia i= , [ ]1, ,1b =  .

3. QF3, where [ ]iiA diag a= , ( )3 mod5iia i i= + , [ ]1, ,1b =  .

4. QF4, where [ ]iiA diag a= , 2, 2 1, 1ii i i i ia a a− − − −= + , 3i ≥  and 11 1a = , 22 1a = , [ ]1, ,1b =  .
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We tested the above problems by using 2=m  and 3=m . In each table, the symbol Ite, 
kg , and Fva mean the number of iterations, norm of the gradient and function evaluation, 

respectively.

TABLE 1 
A comparison of the Method of 2=m  in solving QF1

SQN(0) SQN(D1)

N Ite kg Fva Ite kg Fva

10 106 9.2e-5 -1.4636 40 6.2e-5 -1.4636
20 109 9.8e-5 -2.9272 40 8.8e-5 -2.9272
40 113 9.6e-5 -5.8544 41 6.6e-5 -5.8544
80 117 9.3e-5 -1.1709e+1 41 9.3e-5 -1.1709e+1
100 118 9.5e-5 -1.4636e+1 45 7.6e-5 -1.4636e+1
200 122 9.3e-5 -2.9272e+1 46 9.2e-5 -2.9272e+1
500 127 9.2e-5 -7.3181e+1 52 8.7e-5 -7.3181e+1
1000 130 9.9e-5 -1.4636e+2 53 8.9e-5 -1.4636e+2
1500 133 9.1e-5 -2.1954e+2 56 4.6e-5 -2.1954e+2
2000 134 9.6e-5 -2.9272e+2 56 5.3e-5 -2.9272e+2

TABLE 2 
A comparison of the Method of 2=m  in solving QF2

SQN(0) SQN(D1)

N Ite kg Fva Ite kg Fva

10 598 9.9e-5 -1.1857 66 9.8e-5 -1.1857
20 619 9.9e-5 -2.3713 78 4.7e-5 -2.3713
40 640 9.9e-5 -4.7426 78 6.6e-5 -4.7426
80 661 9.9e-5 -9.4853 79 2.5e-5 -9.4853
100 668 9.9e-5 -1.1857e+1 79 3.5e-5 -1.1857e+1
200 689 9.9e-5 -2.3713e+1 79 5.5e-5 -2.3713e+1
500 716 1.0e-4 -5.9283e+1 79 6.2e-5 -5.9283e+1
1000 737 1.0e-4 -1.1857e+2 91 1.0e-5 -1.1857e+2
1500 750 9.9e-5 -1.7785e+2 102 7.0e-5 -1.7785e+2
2000 758 1.0e-4 -2.3713e+2 116 3.1e-5 -2.3713e+2
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TABLE 3 
A comparison of the Method of 2=m  in solving QF3

SQN(0) SQN(D1)

N Ite kg Fva Ite kg Fva

10 311 9.7e-5 -6.5573e-1 48 9.7e-5 -6.5573e-1
20 322 9.7e-5 -1.3115 54 8.1e-5 -1.3115
40 332 1.0e-4 -2.6229 58 7.4e-5 -2.6229
80 343 1.0e-4 -5.2459 64 9.4e-5 -5.2459
100 347 9.8e-5 -6.5573 66 7.2e-5 -6.5573
200 358 9.8e-5 -1.3115e+1 67 5.3e-5 -1.3115e+1
500 372 9.9e-5 -3.2787e+1 67 8.4e-5 -3.2787e+1
1000 383 9.9e-5 -6.5573e+1 68 5.3e-5 -6.5573e+1
1500 390 9.7e-5 -9.8360e+1 68 6.4e-5 -9.8360e+1
2000 394 9.9e-5 -1.3115e+2 68 7.4e-5 -1.3115e+2

TABLE 4 
A comparison of the Method of 2=m  in solving QF4

SQN(0) SQN(D1)

N Ite kg Fva Ite kg Fva

10 252 9.7e-5 -1.6652 74 9.6e-5 -1.6652
20 261 9.7e-5 -3.3305 77 9.1e-5 -3.3305
40 270 9.6e-5 -6.6609 85 8.8e-5 -6.6609
80 278 1.0e-4 -1.3322e+1 86 8.1e-5 -1.3322e+1
100 281 9.9e-5 -1.6652e+1 86 9.1e-5 -1.6652e+1
200 290 9.9e-5 -3.3305e+1 92 8.2e-5 -3.3305e+1
500 301 9.8e-5 -8.3262e+1 100 1.0e-5 -8.3262e+1
1000 311 9.7e-5 -1.6652e+1 103 7.4e-5 -1.6652e+1
1500 316 9.8e-5 -2.4979e+1 103 9.5e-5 -2.4979e+1
2000 320 9.7e-5 -3.3305e+2 106 9.4e-5 -3.3305e+2

TABLE 5 
Comparison of the Method of 3=m in solving QF1

SQN(0) SQN(D1)

N Ite kg Fva Ite kg Fva

10 81 9.8e-5 -1.4636 36 8.6e-5 -1.4636
20 84 9.6e-5 -2.9272 38 8.1e-5 -2.9272
40 87 9.4e-5 -5.8544 39 7.7e-5 -5.8544
80 90 9.3e-5 -1.1709e+1 40 5.9e-5 -1.1709e+1
100 91 9.2e-5 -1.4636e+1 40 6.6e-5 -1.4636e+1
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SQN(0) SQN(D1)

N Ite kg Fva Ite kg Fva

200 94 9.0e-5 -2.9272e+1 40 9.4e-5 -2.9272e+1
500 97 9.9e-5 -7.3181e+1 47 5.6e-5 -7.3181e+1
1000 100 9.7e-5 -1.4636e+2 47 8.0e-5 -1.4636e+2
1500 102 9.4e-5 -2.1954e+2 47 9.8e-5 -2.1954e+2
2000 103 9.6e-5 -2.9272e+2 48 9.5e-5 -2.9272e+2

TABLE 6 
A comparison of the Method of 3=m in solving QF2

SQN(0) SQN(D1)

N Ite kg Fva Ite kg Fva

10 577 1.0e-4 -1.1857 74 8.9e-5 -1.1857
20 598 9.8e-5 -2.3713 80 6.1e-5 -2.3713
40 618 9.9e-5 -4.7426 80 8.6e-5 -4.7426
80 638 9.9e-5 -9.4853 87 1.5e-5 -9.4853
100 645 9.9e-5 -1.1857e+1 87 6.2e-5 -1.1857e+1
200 665 9.9e-5 -2.3713e+1 89 5.3e-5 -2.3713e+1
500 692 9.9e-5 -5.9283e+1 89 8.8e-5 -5.9283e+1
1000 712 9.9e-5 -1.1857e+2 90 7.9e-5 -1.1857e+2
1500 724 9.9e-5 -1.7785e+2 92 7.6e-5 -1.7785e+2
2000 732 9.9e-5 -2.3713e+2 96 3.2e-5 -2.3713e+2

TABLE 7 
A comparison of the Method of 3=m in solving QF3

SQN(0) SQN(D1)
N Ite

kg Fva Ite
kg Fva

10 300 9.8e-5 -6.5573e-1 44 8.2e-5 -6.5573e-1
20 310 1.0e-4 -1.3115 58 7.0e-5 -1.3115
40 321 9.8e-5 -2.6229 58 1.0e-4 -2.6229
80 332 9.7e-5 -5.2459 60 4.6e-5 -5.2459
100 335 9.8e-5 -6.5573 60 5.2e-5 -6.5573
200 346 9.7e-5 -1.3115e+1 60 7.3e-5 -1.3115e+1
500 359 1.0e-4 -3.2787e+1 62 9.0e-5 -3.2787e+1
1000 370 9.9e-5 -6.5573e+1 63 6.1e-5 -6.5573e+1
1500 376 9.9e-5 -9.8360e+1 63 7.5e-5 -9.8360e+1
2000 381 9.7e-5 -1.3115e+2 63 8.7e-5 -1.3115e+2

TABLE 5 (continue) 
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TABLE 8 
A comparison of the Method of 3=m  in solving QF4

SQN(0) SQN(D1)

N Ite kg Fva Ite kg Fva

10 230 9.8e-5 -1.6652 62 7.9e-5 -1.6652
20 238 9.8e-5 -3.3305 63 5.4e-5 -3.3305
40 246 9.9e-5 -6.6609 63 7.7e-5 -6.6609
80 254 9.9e-5 -1.3322e+1 64 8.3e-5 -1.3322e+1
100 257 9.8e-5 -1.6652e+1 64 9.3e-5 -1.6652e+1
200 265 9.8e-5 -3.3305e+1 68 3.5e-5 -3.3305e+1
500 276 9.7e-5 -8.3262e+1 68 9.5e-5 -8.3262e+1
1000 284 9.8e-5 -1.6652e+1 73 8.2e-5 -1.6652e+1
1500 289 9.7e-5 -2.4979e+1 73 9.6e-5 -2.4979e+1
2000 292 9.8e-5 -3.3305e+2 74 8.8e-5 -3.3305e+2

The number of iterations is the success index in a computational method. In this study, 
the number of iterations was compared between the standard SQN method and the proposed 
SQN method.

Tables 1-4 show the comparison results between the proposed preconditioned SQN methods 
and the standard SQN method for 2=m . Generally, the computational results show that the 
proposed methods performed better when compared to that of the standard SQN method. As 
shown in the Tables, the proposed methods require less number of iterations than the standard 
method. Although all the methods show the same values of function evaluation, the norms of 
the gradient for the proposed methods are less than the norms of the gradient of the standard 
method. Once again, this shows that the proposed SQN methods are promising alternatives as 
compared to the standard SQN method.

Tables 5-8 show the comparison results between the proposed preconditioned SQN methods 
and the standard SQN method for 3=m . Once again, the results reveal that the proposed 
methods clearly outperform the standard method. The number of iterations and the norms of 
the gradient are the best evidences to show that the proposed methods generally perform better 
than the standard SQN method.

CONCLUSION

The preconditioner for SQN method that is based upon variational technique and weak secant 
relation is proposed in this paper. The numerical results obtained suggest that the preconditioned 
SQN method is a good alternative for large-scale unconstrained optimization. Moreover, the 
preconditioned SQN method is preferred for reasons including simple implementation and it 
requires only function and gradient values.
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