
Malaysian Journal of Mathematical Sciences 9(1): 91-110 (2015) 

 

 

 

 
 

Speeding up the Elliptic Curve Scalar Multiplication Using the 

Window- w  Non Adjacent Form 

 
  

1,2* 
Najlae Falah Hameed Al Saffar and 

1 
Mohamad Rushdan Md Said 

 

 
1,2 

Institute for Mathematical Research, Universiti Putra Malaysia,  

43400 UPM Serdang, Selangor, Malaysia 
 

2 
Department of Mathematics, Faculty of Mathematics and  

Computer Science, Kufa University, Iraq 
 

E-mail: najlae_falah@yahoo.com and mrushdan@upm.edu.my 

 

*Corresponding author 

 

ABSTRACT  

Nowadays, elliptic curve based cryptosystem is an efficient public key 

cryptosystem, The very expensive operation in this cryptographic protocol is 

the elliptic curve scalar multiplication (elliptic curve point multiplication). 

Efforts have been mainly focused on developing efficient algorithms for 

representing the scalar which is involved of elliptic curve scalar 

multiplication. One of these is using the window- w  non adjacent form 

method. In the present work, the accelerating elliptic curve scalar 

multiplication using the window- w  non adjacent form method is proposed, 

where the number of operations in the elliptic curve scalar multiplication has 

been reduced. The expected gain is about 20%, 14% and 7.6%  comparing 

with using the anther methods to compute the elliptic curve scalar 

multiplication. 20% 

 

Keywords: Elliptic Curve Cryptosystems, Elliptic Curve Scalar 

Multiplication, Non Adjacent Form, Window- w  Non Adjacent.  
 

1. INTRODUCTION 

Elliptic curves have wealthy and nice history, having been studied 

by mathematicians for over a hundred years, it used to solve a diverse rang 

of problems but not cryptographic problems. Until 1985, elliptic curves 

were first proposed for use in public-key cryptography by Neal Koblitz 
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(1987) and Victor Miller (1986) independently requires smaller key sizes 

than the other public cryptosystems such as RSA  (Ronald L. Rivest et al. 

(1978)) at the same level of security. The security of the elliptic curve 

cryptosystem ( ECC ) is based on the computational intractability of solving 

the discrete logarithm problems ( ECDLP ) which is the problem of finding 

scalar k , given Q  and P  in the operation =Q kP , such as ElGamal 

encryption (Taher ElGamal (1985))  and the DSA (Patrick Gallagher 

(2009)). 

 
Since the mid of 1980s and so far, researchers always try to 

improve the efficiency of ECC . Elliptic curve scalar multiplication is the 

main operation in ECC , which is the process of computing  

 

 = = ...  
k times

Q kP P P P   

where k  is a positive integer called scalar and P , Q  are points on elliptic 

curve, so that a fast and secure elliptic curve scalar multiplication algorithm 

is required. 

 

Many algorithms had been introduced to improve the efficiency of 

this elliptic curve scalar multiplication. These algorithms have mainly 

forced on improving efficient numeric expansions for the scalar k  that by 

reducing the number of operations required for the computation of the 

elliptic curve scalar multiplication. In 2001, Gallant, Lambert and Vanstone 

(2001) has proposed a method to compute the elliptic curve scalar 

multiplication using the application of the endomorphism function defined 

on the group of elliptic curve over binary field ( np
F ) for 1n   and p  is 

prime. This algorithm is to compute kP  by decomposing k  into 1k  and 2k  

but with condition that 1k  and 2k  bounded by n . Another example of 

these algorithms is by transferring the scalar k  to the Non Adjacent Form  

( NAF ) or the Window- w  Non Adjacent Form (Window w NAF ) such 

like (Marc Joye and Christophe Tymen (2001); Franois Morain and Jorge 

Olivos (1989) and Katsuyuki Okeya and Tsuyoshi Takagi (2003). The story 

started since 1951 when Booth (1951) proposed a new scalar representation 

called signed binary method which is the NAF , after ten years when 

Rietweisner (1960) proved that every integer could be represented in this 

form and it is unique. 
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The aim of the present work is to speed up the elliptic curve scalar 

multiplication using the window w NAF  of integer. This achieved by 

representing the scalar 1 2= ( ) ( )w wk NAF k NAF k . This computation is 

simple and efficient when compared to other traditional methods. 

 

The contributions of this paper are organized as follows: 

 The preliminaries section describes an abstract analysis of the additive 

group of elliptic curves over prime field, with some definition related 

with our work such as signed digit representation of an integer 𝑘 to the 

base 𝑏. 

 The next section is about the main operation on 𝐸𝐶𝐶 , which is the 

elliptic curve scalar multiplication. This section has been divided 

according to the method used to account this operation. 

 The proposed algorithm section contains illustrated the main idea of 

this work together with its  algorithm and the complexity of it. 

Comparison between the three methods mentioned in this work is also 

in the complexity subsection. 

 Finally, the conclusion section. 

 

2. PRELIMINARIES  

For cryptographic purposes, the reader refer to Hankerson, Menezes 

and Vanstone (2004); Menezes et al. (1997) and Yan (2002). In this work, 

the consider elliptic curve E  over a field K  denoted by ( )E K  is given by 

the equation  
2 3=  y x ax b                                             (1) 

which is the Weierstrass equation (1) over prime field 
pF , that is , pa b F  

and 
3 24 27 0a b  . Let E  be an elliptic curve over a finite prime field 

pF . Then the set of pairs ( , )x y  that solve the elliptic curve equation (1) 

where , px y F , and the point at infinity O  form an abelian additive 

group. Which contains all the possible elements for computations on EC  

over 
pF . All algorithms to compute an addition for any two points is given 

in Yan (2002). For two points  1 2, pP P E F  with 1 2P P , we consider an 

operation 1 2P P  as ECADD , and an operation 2P with  pP E F  as 

ECDBL . 
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In the field of real number R , the elliptic curve is defined on 

equation (1) but with ,a b R  and 
3 23 27 0a b  . Now to explain how 

the CEADD  is preformed, it is defined as finding the line between two 

points ( P  and Q ), to get the result which is the inverse of the point R  as 

shown in Figure 1.  

  

   
Figure  1: Elliptic Curve Addition  

    

The operation which computes the = ...
k times

kP P P P    where k  

is an integer and P  is a point on an elliptic curve, is called elliptic curve 

scalar (point) multiplication . 

 

Definition: A signed digit representation of an integer k  to the base b  

(denoted by ( )bk  is an ordered sequence of integers 0 1 2... rk k k k  with 

<ik b  for = 0,1,...,i r , such that 
=1

=
r i

ii
k k b . 

 

Signed digit representation is not unique, for example,  

 

  

4 3 2 1 0

4 1

5 4

18 = (11110) = (1)2 (1)2 ( 1)2 ( 1)2 (0)2

= 10010 = 2 2

= (110010) = 2 2 2

     



 

 

where 1 = 1 . 
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In 2007, Ebeid and Hasan (2007) proposed an algorithm to generate 

all possible signed digit representation of any integer k . 

 

Definition: The hamming weight of an integer k  (denoted by ( )h k ) is the 

number of 1s in the signed digit representation. 

 

Definition: The length of the expression ( )bk  (denoted by ( )l k  ) is the 

number of its digits. 

 

3. ELLIPTIC CURVE SCALAR MULTIPLICATION 

In this section we discuss the common methods for performing 

scalar multiplication on an elliptic curve. These methods are to represent 

the scalar k  in different ways to compute the main operation in ECC  

which is kP  elliptic scalar multiplication. 
 

The idea of this operation ( kP ) is adding a point P  to itself k  

times, where P  is a point with order n  on an elliptic curve  pE F , and 

 1, 1k n   is an integer. The simplest way to perform the elliptic curve 

scalar multiplication kP  is the binary algorithms, which is the analogue of 

the square and multiply process for fast modular exponentiations (Yan 

(2002)). 
 

3.1  Binary Method 

The basic technique for elliptic scalar multiplication is the ECADD  and 

ECDBL . It is based on the binary method of the coefficient k . The integer 

k  is represented as a signed digit representation or as 
1 2

1 2 0= 2 2 ...n l

l lk k k k 

     where 1 = 1lk   and  0,1 ,ik 

= 0,1,2,..., 1i l  . That is 
1

=0
= 2

l i

ii
k k



 , where  0,1ik  . This method 

scans the bits of the bits of k  from the left to right, if the bit is 1  then 

perform a ECDBL  and ECADD , otherwise, the ECDBL  will perform 

(the first bit is always 1  which is used as initialization). This method is 

called binary method (IEEE (2000)), the process of it for computation of 

kP  is given in the following Algorithm 1.  
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ALGORITHM 1: Binary Method for Elliptic Curve Scalar Multiplication 

 

 Input:
10 1 1 0 2( ) = ( ... )lk k k k

 , ( )pP E F   

 Output: =Q kP   

1. =Q P  

 2. For = 1i l   down to 0  do 

2.1. = 2Q Q  

2.2. If =1ik  then =Q Q P  

 3. Return Q  

  

For example, let us assume that k  is equal to 10(109) , so in the 

binary representation k  is equal to 2(1101101) . The 109P  for 

 pP E F  is compute as follows:  

 

  

   

    

     

6

5

4

3

2

1

0

109

1

1 2

0 2 2

1 2 2 2

1 2 2 2 2

0 2 2 2 2 2

1 2 2 2 2 2 2







 

  

  

   

P

e P initialization

e P P doubling and addition

e P P doubling

e P P P doubling and addition

e P P P P doubling and addition

e P P P P doubling

e P P P P P doubling and addtion

 

The cost of elliptic curve scalar multiplication using binary method depends 

on the ( )l k and the ( )h k  in the representation of k . If 

   1 2 1 010 2
= ...l lk k k k k 

, then the number of ECDBL  is 1l   and the 

number of ECADD  is one less than the ( )h k . In an average, the binary 

method requires 1l   ECDBL  and 
1

2

l 
 ECADD . For example, the cost 

of computation of 109P  in the above example requires 

( 6 4ECDBL ECADD ). 
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As a conclusion, whenever the bit is 1 , two elliptic curve arithmetic 

operations doubling and addition will be made and if it is 0 , only one 

operation, doubling is required. Thus, if we reduce the number of ( )h k  in 

the scalar representation, we could accelerate this computation. 

 

3.2  Non Adjacent Form Method ( NAF ) 

The hamming weight of the scalar k  can be reduced with a signed 

representation that uses the numbers 0  and 1 . Among various signed 

representation, NAF  is a canonical representation with less number of 

hamming weight for any integer k . The NAF  representation of k  has 

been proposed in 1951, by Booth (1951) (some time the searchers called it 

Addition-subtraction method according to its process). And after 10 years 

Rietweisner (1960) has proved that every integer could be uniquely 

represented in this form.  

 

Nowadays, The NAF  of a scalar k  denoted by ( )NAF k  becomes the 

subject of various investigations in different contexts. The property of this 

representation is that, of any two consecutive digits, at most one is non 

zero, Moreover, the length of ( )NAF k , denoted by ( ( ))l NAF k  is at most 

1 more bit than its binary representation. This means, fewer point additions 

and therefore more efficiency when we need to compute the scalar 

multiplication on EC . 

 

Now, because of the group law of elliptic curve group, we know that the 

inverse of    = , pP x y E F  is    = , pP x y E F   . Therefore, 

computing the inverse of any point on elliptic curve is very fast in terms of 

computational time. That is, in the process of computing the  

kP , and the minus is come across, subtraction of P  is performed during 

this computation, furthermore, it costs the same amount of ECADD  in the 

total operation. 

 

In the example of signed digit representation, we mentioned that there is no 

unique signed digit representation for any integer k . To get this uniqueness 

one has to add some conditions on the representation. This condition will be 

that there are no adjacent non zeros (using NAF ). 
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For example, the number 7  can have several signed-digit representations: 
  

2

2

2

(7)

(0111) = 4 2 1 = 7

(1011) = 8 2 1 = 7

(1111) = 8 4 2 1 = 7

(1001) = 8 1 = 7NAF

 

 

  



 

 

But only the last representation is NAF . 
  

Definition: A NAF  of a positive integer k  is a signed digit representation 

of k  to the base = 2b , such that 1 = 0i ik k   for 0i  . The ( )NAF k  is 

written 
1 1 0 ( )( ... )l NAF kk k k

.  

 

The reader can refer to Gordon (1998) for the proofs of existence and 

uniqueness of ( )NAF k  for any integer k . Muir and Stinson (2006) in 

there paper have been proved that the hamming weight of the ( )NAF k  is 

minimal among all signed digit representations of k . Fortunately, the 

number of bits in the ( )NAF k  is at most one more than the number of bits 

in the binary form of k . Algorithm 2 is for the conversion of a scalar k  

into the NAF .  
 

ALGORITHM  2: Computing NAF  of a Scalar k  

 Input: A scalar 
10( )k   

 Output: 1 1 0 ( )= ( ... )l NAF kN k k k   

= 1i ; =c k  

While > 0c  

If c  odd 

( ) = 2 ( 4)N i cmod  

= ( )c c N i  

Else 

( ) = 0N i  

End if 

 =
2

c
c ; = 1i i   

End while 

Return N  
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Performance of Algorithm 2 can be summarized in the following steps:  

 If k  is an even integer, we have to take 0 , and continue with 
2

k
. 

 If  1( 4)k mod , we take 1 , and continue with 
1

2

k 
 which is 

even integer that guarantees a 0  in the next step. 

 If  3 1( 4)k mod   , we take 1 , and continue with 
1

2

k 
 

which is even integer that guarantees a 0  in the next step.  
 

This measure produces zero after each non-zero digit, which means this 

signed-digit representation must has low hamming weight. 
 

For example, the mechanism to compute (27)NAF , according to 

Algorithm 2, is shown in Table 1.  

 

TABLE 1: Computing a (27)NAF  

i  c  ( )N i  N  

1 27 1  (1)  

 28  

2 14 0 (01)  

3 7 1  (101)  

 8   

4 4 0 (0101)  

5 2 0 (00101)  

6 1 1 (100101)  

 0   
  

Remarks:   

 ( )NAF k  for a scalar k  has fewest non zero digits (hamming 

weight) of any signed representation of k , unless if the binary 

representation of k  already has. For instance  

 10 2(89) = (1011001)   

67pt 
(89)= (10101001)NAF

.  

 The length of ( )NAF k  is at most one more bit than its binary 

representation. 



 Najlae Falah Hameed Al Saffar & Mohamad Rushdan Md Said 

 

100 Malaysian Journal of Mathematical Sciences 

 

 If ( ( )) =l NAF k l , then 

12 2
< <

3 3

l l

k


. 

 The average hamming weight of ( )NAF k  (denoted by 

( ( ))h NAF k  when ( ( )) =l NAF k l  is 
3

l
.  

The method for computing the scalar multiplication kP  using NAF  

expression is Algorithm 3.  

 
ALGORITHM 3: NAF  Method for Elliptic Curve Scalar Multiplication 

 

 Input:
10 1 1 0 ( )( ) = ( ... )l NAF kk k k k

 , ( )pP E F   

 Output: =Q kP   

1. =Q P  

2. For = 1i l   down to 0  do 

2.1. = 2Q Q  

2.2. If =1ik  then =Q Q P  

2.3. If = 1ik   then =Q Q P  

3. Return Q  

  

According to the Algorithm 3, the scalar multiplication using NAF  

method requires 
3

l
ECADD  and lECDBL , where the subtraction and 

addition operation have the same cost in the case of the elliptic curves 

group. 

 

Example: Let =127k  and P  a point on the elliptic curve E . Now, the 

binary representation of k  is 2(1111111) , so the cost is exactly equal to  

( 6 6ECDBL ECADD ). 

 

While, the (127)NAF  is 
(127)(10000001)NAF

, so the cost it is equal to (

7 1ECDBL ECADD ). 
 

3.3  Window- w  Non Adjacent Form 

If the digits of representation of k  are allowed to be the elements of a 

larger set instead of only 0  and 1 , then the cost of Algorithms 3 is 

decreased.  
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That is mean, not only P  is added or subtracted, but also some small scalar 

multiple of P  is added or subtracted. Those values have to be computed at 

the beginning of the elliptic curve scalar multiplication algorithm and saved 

to the memory. 
 

A generalization of the NAF  is called the Window- w  Non Adjacent 

(denoted w NAF ). The hamming weight of the scalar k  can be reduced 

with this ( )w NAF k , where 2w  is an integer. 
 

Definition: A w NAF  of a positive integer k  is an expression 
1

=0
= 2

l i

ii
k k



 , such that each non zero ik  is odd, 1< 2w

ik   and 1 0lk   . 

For 2w , at most one of any w  consecutive bits is non zero.  
 

The proof of existence and uniqueness of ( )w NAF k  for any integer 

positive integer k , where 2w  is found in  (James Muir (2004). 

 

The length of ( )w NAF k  (denoted by ( ( ))l w NAF k  is at most one 

more than the ( )l k . And the hamming weight of ( )w NAF k  (denoted by 

( ( ))h w NAF k  is 
1

1w
. Algorithm 4 computes the ( )w NAF k  for 

any integer k  and >1w . Observed that when = 2w  then 

( ) = ( )w NAF k NAF k . 
 

ALGORITHM 4: Computing ( )w NAF k  of a Scalar k  

 Input: A scalar 
10( )k   

 Output: 1 1 0 ( )= ( ... )l w NAF kN k k k    

=1i  

While 1k  

 If k  odd 

( ) = 2 ( 2 )wN i kmods  

= ( )k k N i  

 Else 

 ( ) = 0N i  

 End if 

 =
2

k
k ; = 1i i   

 End while 

 Return N  
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The function mods  in the Algorithm 4 is an extra code designed as 

follows: 
 

Coding of mods  Function 

If 
2

2
2

w
wk mods k  

( ) = ( 2 ) 2w wN i kmods   

Else 

( ) = ( 2 )wN i kmods  

 

For example, 
3 (27)3 (27) = (3003) NAFNAF  , since 

3 027 = 3 2 3 2   . 

According to Algorithm 4, the mechanism of calculating 3 (27)NAF  is 

shown in Table 2. 

 
TABLE 2: Computing a 3 (27)NAF  

i  c  ( )N i  N  

1 27 3 (3)  

 24  

2 12 0 (03)  

3 6 0 (003)  

4 3 3 (3003)  

 0   

  

Computation of elliptic curve scalar multiplication using ( )w NAF k  is 

general version of usual ( )NAF k  elliptic curve scalar multiplication. 

Nevertheless, there is precomputation step. 
 

ALGORITHM 5: ( )w NAF k  Method for Elliptic Curve Scalar Multiplication 

 Input: 10 1 1 0 ( )( ) = ( ... )l NAF kk k k k  , ( )pP E F   

 Output: =Q kP   

1. Calculate 2P  

 2. For = 3i  up to 
12 1w   do 

 2.1. If i  is odd then 1= 2i iP P P   

 3. For = 1i l   down to 0  do 

 3.1 If = 2Q Q  

 3.2 If 0ik    

 3.2.1 If > 0ik  then = k
i

Q Q P  

 3.2.2 Else = k
i

Q Q P  

 4. Return Q  
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The cost of Algorithm 5 is as follows: for line 1 and 2 there is 1ECDBL  

and 
22 1w ECADD   respectively; then as precomputaion cost there is 

21 2 1wECDBL ECADD  . The cost of line 2.1 is lECDBL  while it is 

1

l
ECADD

w
 for lines 3.2.1 and 3.2.2, that is, the total cost of Algorithm 

5 is 
  22 1 2

1
1

w w w
lECDBL ECADD

w

   
 


. 

  

Example: Let = 27k  and P  a point on the elliptic curve E . 

 
TABLE 3: Computing a (27)NAF P  

27  27P  Cost of Computing 27P  

2(11011)  2(2(2(2 )) )P P P P    4 3ECDBL ECADD  

(27)(100101)NAF
 2(2(2(2(2 )) ))P P P   5 2ECDBL ECADD  

3 (27)(3003) NAF  2(2(2(3 ))) 3P P  3 1ECDBL ECADD  

 

  From the above example, we can see that the number of total 

operation is 7  when the form of 27  is in binary and NAF . While it is 

only 4  when 27  in the form of 3 (27)NAF . For the first case, its 

happens because of the ( (27))l NAF  is more than the (27)l . Also, 

( (27))w NAF  is less than (27)w  but of only one bit. Therefore, when we 

plan to speed up the elliptic curve scalar multiplication using w NAF  

algorithm, we have to look for the special scalar k  with 

(( ( ( )) 1) ( ( )) 1) < (( ( ) 1) ( ) 1)l w NAF k h w NAF k l k h k        . 
 

4. PROPOSED METHOD 

Our proposed method to calculate the kP is by using basic 

operation addition ( )  between two scalars in the w NAF , where the 

goal of speeding up the elliptic curve scalar multiplication is achieved. 

 

The idea is to look for two integers 1( )w NAF k  and 

2( )w NAF k  such that 1 2=k k k , for which the evaluation of 

1( )w NAF k P  and 2( )w NAF k P  require less operations than the 

( )w NAF k P , with an extra operation which is addition where we will 
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account it as an extra operation which will change the total cost by adding 

one operation. For example, if we need to compute the elliptic curve scalar 

multiplication 4582P  for P  a point on the elliptic curve E , the binary 

representation of 4582  is 2(1000111100110)  which means there are 

12ECDBL  and 6ECADD , a total of 18  operation. The NAF  expression 

of 4582  is 
(4582)(1001000101010)NAF

, where there are 12ECDBL  and 

4ECADD , a total of 16  operations. The 3 (4582)NAF  is 

3 (4582)(1001000100030) NAF
, where there are 12ECDBL  and 3ECADD , 

a total of 15  operations. In comparison,  
 

 4582 = 3078 1504   

where  

 
3 (3078)3 (3078) = (30000000030) NAFNAF    

 and  

 
3 (1504)3 (1504) = (3000100000) NAFNAF    

 

which means there are 14  operations as total. 
 

Algorithm 6 is a method of calculating the elliptic curve scalar 

multiplication operation which ensures reduction in the number of 

processes. 
 

First of all, we have to be sure that the length of ( )w NAF k  

expression of the scalar is not equal to the length of it in the binary form, so 

this will be the first condition in the algorithm. Also, the algorithm will has 

a guarantee that the new expression of the scalar will require less operations 

than the original algorithm to compute the scalar multiplication operation 

on elliptic curve. This algorithm is as follows: 
 

ALGORITHM  6: Computing 
1( )w NAF k  and 

2( )w NAF k  

 Input:
10( )k , w   

 Output:
1( )w NAF k ,

2( )w NAF k   

If 2( ( )) = (( ) )h w NAF k h k , take another 10k  

For 1 = : 1:1k k   

2.1 For 2 = : 1:1k k   

2.2 If 1 2=k k k   

        and         

                 1 2[ ( ( )) ( ( ))] < [ ( ( ))]h w NAF k h w NAF k h w NAF k     

3. 1( )w NAF k , 2( )w NAF k   

4. End 
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 When we need to use this output to compute the scalar 

multiplication kP , then Algorithm 5 will perform the task, but with the 

input of the new expression of the scalar which is  

 

 ( ) ( )w NAF k w NAF k     

 

If the digits of representation of the scalar k  are allowed to be the 

elements of a larger set instead of only  1,0,1 , then the running time of 

above algorithms are decreased. That means, when we consider these form 

of k  to be in the algorithm of computing the scalar multiplication, not only 

the point P  is added or subtracted, but also there are some small scalar 

multiple of P  that are added or subtracted. Those values have to be 

computed at the beginning of the scalar multiplication algorithm and saved 

to the memory. 

 

4.1 Complexity Of Proposed Algorithm  

In this section we will discuss the cost of the above four methods which are 

used to compute the elliptic curve scalar multiplication kP . 

We know that ( ( ))l NAF k  and ( ( ))l w NAF k  of the scalar k  is at most 

one more bit than its binary representation with less non zero digits, this 

will guarantee that it will reduce the number of operations, but if the 

hamming weight of them is equal, there is no advantage of using ( )NAF k  

or even ( )w NAF k  of the scalar k , because it will affect on the number 

of the operations as total. Now, the proposed algorithm has the following 

features: 
 

 The hamming weight of ( )w NAF k  expression of the scalar k  is not 

equal to the hamming weight of it in the binary form. 

 The warranty that the new expression of the scalar will require less 

operation than the binary, NAF  and ( )w NAF k  expression. This is 

achieved in the final step. That means, the new algorithm is ensured to 

enhance the computing efficiency of elliptic curve scalar multiplication 

compared with other traditional algorithms.  
 

In order to be able to compare the different elliptic curve scalar 

multiplication, we counted the number of ECDBL  and ACADD  which 

were required of the algorithms. Table 4 and the plots in Figure 2 shows the 
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number of operations required by the proposed algorithm and the binary, 

NAF  and ( )w NAF k  algorithms. 

 

Now, the comparison of the complexity of the algorithms which referred to 

above will give in the following table: 

 
TABLE 4: Complexity of Computing Elliptic Curve Scalar Multiplication of 

Various Processors 

Size of k  

Number of Operation 

Binary 

Algorithm 
NAF  

Algorithm 

3 NAF
Algorithm 

Proposed 

Algorithm 

10 15 14 13 12 

16 23 21 20 19 
27 41 36 34 33 

34 48 46 44 42 

  

   
 

Figure  2: Complexity of Computing Elliptic Curve Scalar Multiplication of Various Processors 

   

The running time of an algorithm is determined by how many operations 

are performed throughout its execution. Therefore, we followed (Lars 

Elmegaard-Fessel  (2006))  in there assumption which is  

 

1 =1.05ECDBL ECADD  

 

Then the running time according to this assumption for all mentioned 

algorithms will be as follows: 

 

For the binary algorithm:  
 

( ( ) 1) ( ( ) 1) = ( ( ) 1)(1.05) ( ( ) 1)     l k ECDBL h k ECADD l k ECADD h k ECADD
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For the NAF  algorithm:  

 

 ( ( ( )) 1) ( ( ( )) 1) =  l NAF k ECDBL h NAF k ECADD  

( ( ( )) 1)(1.05) ( ( ( )) 1)  l NaF k ECADD h NAF k ECADD  

  

Finally, for the proposed algorithm:  

 

1 1 2( ( )) ( ( ( )) 1) ( ( ( )) 1) =      l w NAF k ECDBL h w NAF k ECADD h w NAF k ECADD

 

1 1 2( ( ))(1.05) ( ( ( )) 1) ( ( ( )) 1)      l w NAF k ECADD h w NAF k ECADD h w NAF k ECADD  

For selected bit size of integer k  we can make a comparison for the four 

mentioned methods as in the Figure 3 and  Table 5. These figure and table 

summarize our achievement with proposed algorithm of using the addition 

operation between two w NAF  expressions with special case when 

= 3w . 

  

   
 

Figure  3: Running Time of the Proposed Algorithm with other Algorithms 

 (Binary, NAF  and 3 NAF ) 

 

TABLE 5: Comparison of Running Time 

Size of k  

Times in Seconds by ECADD  

Binary 
Algorithm 

NAF  

Algorithm 

3 NAF  

Algorithm 
Proposed Algorithm 

10 15.45 14.05 13.5 12.4 

16 23.75 21.75 20.75 19.65 

27 42.3 37.35 35.35 34.25 
34 49.65 47.65 45.7 44.6 
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All algorithms have been implemented on 

( ) ( )2Intel R Core Tm Duo  with processor 2.99GHz  and and 3.00GB  of 

memory using MATLAB  version 7.10.0.499  ( 2010R a ). In order to 

obtain running time, we executed all algorithms with different size bits  

(10,16,27  and 34 ) for the scalar k . The following is the result we have 

collected from the execution and its corresponding graphical explanation. 

 

The efficiency of the proposed algorithm is clearly known, from the 

Table 4 and 5 and Figure 2 & 3. For instance, elliptic curve scalar 

multiplication using binary, NAF  and 3 NAF  algorithm require 41  , 

36  and 34  respectively with respect to the number of operations, while the 

proposed algorithm require 33  operation when k  has 27  bits. For another 

example, with the same size of k  (27) , the binary , NAF  and 3 NAF  

algorithm executed within 42.3 , 37.35  and 35.35  seconds of executed 

ECADD  respectively while the proposed algorithm spent 34.25  seconds 

of executed ECADD . Therefore the algorithm which we proposed saved 

computation and time comparing with the mentioned algorithms. 

 

5. CONCLUSION 

The elliptic curve scalar multiplication is not only the fundamental 

computation, but also the most time consuming operation, that is why it is 

interesting subject made almost all cryptographers (specialists in ECC ) 

trying to speed up it using different methods. 
 

In this paper, we proposed a new method to compute the elliptic 

curve scalar multiplication. This algorithm has guaranteed that is one of the 

methods that accelerate this operation on EC  by 20% , 14%  and 7.6%  

comparing with using the binary, NAF  and w NAF  algorithms with 

= 3w  respectively. Table 4 & 5 and Figure 2 & 3 summarize our 

achievement with the proposed algorithm of using the addition operation 

between two integers in the w NAF  expression with = 3w . Moreover, 

the points which we listed it in the previous section were earnestly justified 

the conclusion. 
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