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ABSTRACT 

A class of implicit 2-point block extended backward differentiation formula (BEBDF) 

of order 4 is presented. The stability region of the method is constructed and shown to 

be A – stable.  Results obtained are compared with an existing block backward 

differentiation formula (BBDF). The comparison shows that using constant step size 

and the same number of integration steps, our method achieves greater accuracy than 

the 2-point BBDF and is suitable for solving stiff initial value problems. 

 

Keywords: 2–point block method, Stability region, Block extended backward 

differentiation formula, Stiff. 

 

1. INTRODUCTION 

Stiff differential equations arise in many areas of science and 

technology.  Their solutions are known to be numerically unstable with many 

numerical methods, unless the step size taken is extremely small (Brugnano 

et al. (2011)).  Thus, to overcome this stability restriction on the step size, 

numerical methods that possess unbounded region of absolute stability (A–

stable or stiffly stable) have been recommended for the solution of stiff initial 
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value problems (IVPs).  One of the most popular methods for solving stiff 

ordinary differential equations (ODEs) of the form 

 

0( ( , ) ( ) , [ , ]y f x y y a y x a b                             (1) 
 

is the backward differentiation formula (BDF) by Curtiss and Hirschfelder 

(1952).  The BDF is a linear multistep method (LMM) of the form 

 

0

k

j n j k n k

j

y h f  



     (2) 

 

Relevant research on numerical solution of stiff IVPs can also be 

found in Alt (1978), Alvarez and Rojo (2002), Aminikhah and 

Hemmatnezhad (2011), Kushnir and Rokhlin (2012), Suleiman et al (2013) 

and Musa et al (2013).  A famous result due to Dahlquist (1963) has shown 

that no A–stable linear multistep method (LMM) can have order greater than 

2.  However, strategies for improving accuracy, order and efficiency of 

multistep methods have been suggested by Hairer and Wanner (2004) which 

include addition of a future point, off-step point and using higher derivatives.  

Cash (1980) attempted to circumvent the Dahlquist barrier by developing an 

extended backward differentiation formula (EBDF); characterized by the use 

of a super ‘future point’.  The formula has the form 
 

1 1

0

k

j n j k n k k n k

j

y h f h f      



                          (3) 

The method is L – stable up to order 4 and L ( )   stable up to order 9. 
 

The procedures for implementing the formula (3) involve predicting the 

required solution using the conventional BDF and correcting the solution 

using EBDF method of higher order.  The procedures as outlined in Cash 

(1980) and Hairer and Wanner (2004) are as follows: 
 

(1) Computing 
n

n ky



as the solution of the conventional k-step BDF 
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                                                        (4) 

(2) Computing 
( )

1

n

n ky   as the solution of  
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                     (5) 
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(3) Computing 
( )

11 1( , )
n

n kn k n kf f x y     . 

(4) Computing 
n ky 

from (3) in the form 

1

1 1

0

k

n k k n k j n j k n k

j

y h f y h f  


     



                     (6) 

 

In this paper, a similar idea to that in Cash (1980) is applied to the 2-point 

BBDF method 

 
3

, 1 ,

0

j i n j k i n k

j

y h f   



 ,  1,2.k i      (7) 

 

developed in Ibrahim (2007), to develop a new implicit block formula we 

shall call a 2–point block extended backward differentiation formula 

(BEBDF).  The strategy employed involved adding a future point to (7) to 

generate a formula of the form: 
3

, 1 , 1, 1

0

j i n j k i n k k i n k

j

y h f h f       



  , 1,2.k   
   (8) 

 

The interpolation points involved in the derivation of the formula (8) is 

shown below. 

 

           h    h        h           h 

 

          1nx     nx        1nx   2nx         3nx   
 

Figure 1:  Interpolation points involved in the 2-point BEBDF method 

 

 

2. DERIVATION OF THE 2–POINT BEBDF 

Given the previous values at 1nx   and nx , we shall derive a formula 

that will compute the solution at 1nx   and 2nx    simultaneously.  The point 

3nx 
 in Figure 1 is the "super future" point. 

 

An implicit 2 – point BEBDF is constructed using a linear operator 

defined by: 



Mohamed Bin Suleiman, Hamisu Musa & Fudziah Ismail 

 

36 Malaysian Journal of Mathematical Sciences 

 

0, 1 1, 2, 1 3, 2 1, , 2, 1,[ ( ), ]: 0i n i n i n i n i n i n k i i n k iL y x h y y y y hf hf               

                      (9) 

where  1,2.k i   

 

1k i  k=i=1 corresponds to the first point while k=i=2 corresponds to the 

second point. 

 

To derive the first point 1ny  , let k=i=1 and define the operator 1L  by: 

1 0,1 1 1,1 2,1 1 3,1 2 1,1 ,1 2,1 1,1[ ( ), ]: 0n n n n n n k n kL y x h y y y y hf hf               

                   (10) 

The associated approximate relationship for (10) can be written as  

 

0,1 1,1 2,1 3,1

1,1 2,1

( ) ( ) ( ) ( 2 )

'( ) '( 2 ) 0

n n n n

n n

y x h y x y x h y x h

hy x h y x h

   

 

     

    
              (11) 

 

Expanding ( ), ( ), ( ),( 2 ), '( )n n n n ny x h y x y x h x h y x h    and '( 2 )ny x h  as 

Taylor series about 
nx  and collecting like terms gives 

2,1 3,1

2 3

0,1 1,1( ) '( ) ''( ) '''( ) ... 0n n n nC y x C hy x C h y x C h y x      (12) 

where 

0,1 0,1 1,1 2,1 3,1

1,1 0,1 2,1 3,1 1,1 2,1

2,1 0,1 2,1 3,1 1,1 2,1

3,1 0,1 2,1 3,1 1,1 2,1

4,1 0,1 2,1 3,1 1,1 2,1

0

2 0

1 1
2 2 0

2 2

1 1 4 1
2 0

6 6 3 2

1 1 2 1 4
0

24 24 3 6 3

C

C

C

C

C

   

    

    

    

    

     


       


      



       



      



  (13) 

 

The coefficient of 1ny   is normalized to 1.  Solving the simultaneous 

equations thus formed for 'ji s and 'ji s  gives the formula for 
1ny 
 as 

1 1 2 1 2

1 17 2
2

9 9 3
n n n n n ny y y y hf hf            (14) 
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The second point 2ny   is derived using the linear operator 

2 0,2 1 1,2 2,2 1 3,2 2 2,2 2 3,2 3[ ( ), ]: 0n n n n n n nL y x h y y y y hf hf              

                   (15) 
 

By adopting a similar procedure in deriving the first point (14), we obtain the 

formula for the second point as 
 

2 1 1 2 3

17 99 279 150 18

197 197 197 197 197
n n n n n ny y y y hf hf          (16) 

 

The 2–point BEBDF is therefore given by 

1 1 2 1 2

2 1 1 2 3

1 17 2
2

9 9 3

17 99 279 150 18

197 197 197 197 197

n n n n n n

n n n n n n

y y y y hf hf

y y y y hf hf

    

    


     


    


 (17) 

 

3. ORDER OF THE METHOD 

Define the method (17) in general matrix form as 
1 2

* *

1 1 1

0 0

j m j j m j

j j

A Y h B F    

 

     (18) 

where 
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and 2 .n m  

 

Equation (18) can be written as 
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 (19) 

 

Let * * * *

0 1 1 0, , ,A A B B
and *

1B  be block matrices defined by 

 *

0 0 1 ,A A A    *

1 2 3 ,A A A    *

1 0 1 ,B B B   

 *

0 2 3 ,B B B    *

1 3 4 ,B B B  

 

where 
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Definition 3.1 

The order of the block method (18) and its associated linear operator given 

by: 

 
3 1

0 0

( ); ( ) '( )
k k

j j

j j

L y x h A y x jh h B y x jh
 

 

             (20) 

is a unique integer p such that 0, 0(1) ,qC q p   and 1 0pC   ; where the qC  

are constant (column) matrices defined by: 

 

   

0 0 1

1 1 2 0 1 2

1 1

1 2 1 2 1

2

1 1
2 2 ( 1)

! ( 1)!

k

k k

q q q q

q k k

C A A A

C A A kA B B B B

C A A k A B B k B
q q

 



   

        

        


                  

(21) 

For q=0(1)5, we have 
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1 1 2 3 0 1 2 3 4

2 2 1 1 1
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3 3 2 2 2
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1
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0

111

1970

 
 

  
 
 
 

        

 (22) 

Therefore, the formula (17) is of order 4, with error constant 
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4. STABILITY OF THE METHOD 

To analyze the method (17) for stability, we apply the scalar test 

equation  

 

'y y      ( ) 0    (23) 

 

The method (17) can be written in matrix form as 

 

1 1 1

2 2

1 3

2 4
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0 1

1 0 9 9
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n n n

n n

n n

y y y

y y y

f f
h h

f f

  

 

 

 

   
         

          
            
   

 
                    
   
 

 (24)

          

which is equivalent to 
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We defined the k - block, r-point method (25) in general matrix form as 

 

0 1 1 0 1 1( )m m m mA Y AY h B F B F       (26) 

 

where 2r   and 2 , 0,1,2,n m m   

 

 

 

 



An Implicit 2-point Block Extended Backward Differentiation Formula for Integration of Stiff Initial 

Value Problems 
 

 Malaysian Journal of Mathematical Sciences 41 

 

 

0

17
1

9
,

279
1

197

A

 
 

  
  
 

 
1

1
1

9
,

17 99

197 197

A

 
 

  
  
 

 

0

2
2

3
,

150
0

197

B

 
  

  
 
 
 

 
1

0 0

,18
0

197

B

 
 
  
 

 

1 2 1

2 2 2

,
n m

m

n m

y y
Y

y y

 

 

   
    
   

  
2( 1) 11 2 1

1

2( 1) 22

,,
mn m

m

mn m

yy y
Y

yy y

  



 

    
       
     

 

1 2 1

2 2 2

,
n m

m

n m

f f
F

f f

 

 

   
    
   

  
2( 1) 13 2 3

1

2( 1) 24 2 4

.
mn m

m

mn m

ff f
F

ff f

  



  

    
       
     

 

 

Substituting the scalar complex test equation (23) into (26) and letting 

h h   gives 

 

0 1 1 0 1 1( )m m m mA Y AY h B Y B Y       (27) 

 

where 0 1 0 1 1, , , , ,m mA A B B Y Y   are as previously defined and 

2( 1) 13
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mn

m
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Let denote the determinant.  Then solving 0 0 1 1det ( ) 0t A B B A      gives 

the following stability polynomial 

 

2
2 2 26 324 224 330 448 264

( , )    0
197 197 197 197 197 197

R t h t h t t h t h t        (28) 

 

For zero stability, we set 0h   in (28) and solve for t.  Hence we have 

26 324 330
0

197 197 197
t t       (29) 
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Solving (29) for t we obtain 

1

55
t   and 1t  . 

which shows that the method is zero stable. 

 

We plot the region of absolute stability of the 2–point BEBDF in Figure 2.  

The region exterior to the circle is the stability region which shows that the 

method is A–stable and suitable for solving stiff initial value problems. 

 
 

Figure 2:  Stability Region of the 2 - point BEBDF 

 

5. IMPLEMENTATION OF THE METHOD 

The method is implemented in a Newton's like iteration. 

We denote 
( 1)i

n jy 

  as the ( 1)thi   iteration and 

( 1) ( ) ( )i i j i j

n j n j n je y y  

    ,        1,2j     (30) 

 

Define 
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The Newton's iteration for the 2–point formula therefore takes the form 

 
1

( 1) ( ) ' ( ) ( )( ) ( )i i i i

n j n j j n j j n jy y F y F y




   
         , 1,2.j    (32) 

 

which can be written in the form 

 
' ( ) ( 1) ( )( ) ( )i i i

j n j n j j n jF y e F y

       (33) 

 

and in matrix form, (33) is equivalent to 
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i
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i
n n
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df df
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1
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2
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3

17 2
1 2 0
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279 150 18
1 0
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i

ni
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ni

in

n

f
y

h f
y

f















             
        

                

 (34) 

 

where 1  and 2  are the back values. 

 

6. PROBLEMS TESTED 

The following problems are used to test the performance of the 

method.  They consist of both linear and non-linear problems. 

 

(1) 
(1 )

'
2 1

y y
y

y





 

5
(0)

6
y   0 1x   

 

Exact solution 

1 1 5
( )

2 4 36

xy x e    

 

Source:  Alvarez and Rojo (2002) 
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(2) 
50

' 50y y
y

   (0) 2y   0 1x   

Exact solution:  
1

100 2( ) (1 )xy x e   

 

Source:  Burden and Faires (2001) 

 

(3) ' 100( 1)y y    (0) 2y   0 20x   

 

Exact solution: 
100( ) 1xy x e   

 Source: Artificial problem 

 

(4) 

'

1 2

'

2 1 2

26

5

y y

y y y



  
 

1

2

(0) 1

(0) 1

y

y




 0 2x   

Exact Solution: 

5 5
1

5 5
2

1 5
( )

4 4

5 1
( )

4 4

x

x

x

x

y x e e

y x e e







  

 

 

 

Source:  Dormand (1996). 

 

This is linear system '' ' 0y cy ky    reduced to a system of linear equations, 

modelling the damped simple harmonic motion, described as a vibrating 

spring whose motion is restricted by a force proportional to the velocity.  y  

is the displacement of a unit mass attached to the spring,  
26

5
c   is the 

damping constant and 1k   is the stiffness constant for the spring.  The past 

transient term 5xe  decays more rapidly except for small values of x .  On the 

other hand, the slower component on its own provides a fairly good 

approximation for   the complete solution when 1x  . 

(5) 

'

1 2

'

2 1 2200 20

y y

y y y



  
 

1

2

(0) 1

(0) 10

y

y



 
 0 10x   
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Exact solution 
10

1

10

2

( ) cos10

( ) 10 (cos10 sin10 )

x

x

y x e x

y x e x x







  
 

 

Source:  Lambert (1973). 

 

(6) 

'

1 1 2

'

2 1 2

20 19

19 20

y y y

y y y

  

  
 

1

2

(0) 2

(0) 0

y

y




 0 20x   

 

Exact solution 
39

1

39

2

( )

( )

x x

x x

y x e e

y x e e

 

 

 

 
 

Source:  Cheney (2012). 

 

7. NUMERICAL RESULTS 

Numerical results that compare the performance of the method with 

the 2–point BBDF with a given fixed step length are given in Tables 1–6  

below.  The maximum error and the time taken to complete the integration 

are also given.  The results show that the method derived has better accuracy 

than BBDF. 

 

The following notations are used in the tables: 

h   Step size 

MAXE   Maximum Error 

TIME   Time in seconds 

2BBDF   2 – point BBDF 

2BEBDF  2–point  BEBDF 

 

To give a more visual impact, the graph of 10 ( )Log MAXE  over Time for the 

problems solved were plotted.  Given below are the graphs of the scaled 

maximum error problem by problem.  The hidden edge (dash) line indicates 

BEBDF method while the visible edge (thick) line indicates BBDF method. 
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TABLE 1:  Numerical results for problem 1 

 

h Method MAXE Time 

10-2 2BBDF 

2BEBDF 

1.47086e-03 

6.64937e-04   

2.46000e-04 

5.91040e-04 

10-3 2BBDF 

2BEBDF 

1.52651e-04 

7.05780e-05 

1.50300e-03 

2.95367e-03 

10-4 2BBDF 

2BEBDF 

1.53220e-05 

7.10123e-06 

1.39009e-02 

3.14080e-02 

10-5 2BBDF 

2BEBDF 

1.53277e-06 

7.10560e-07 

1.39695e-01 

2.79435e-01 

10-6 2BBDF 

2BEBDF 

1.53305e-07 

7.10611e-08 

1.37724e+00 

2.81880e+00 

 
TABLE 2:  Numerical results for problem 2 

 

h Method MAXE Time 

10-2 2BBDF 
2BEBDF 

1.44729e-01 
9.24961e-03 

2.41416e-04 
4.40750e-04 

10-3 2BBDF 

2BEBDF 

2.15168e-02 

7.96762e-03 

1.59720e-03 

2.94533e-03 

10-4 2BBDF 
2BEBDF 

2.55682e-03 
1.07245e-03 

1.388375e-02 
3.03819e-02 

10-5 2BBDF 

2BEBDF 

2.59686e-04 

1.10428e-04 

1.48665e-01 

2.82938e-01 

10-6 2BBDF 
2BEBDF 

2.60086e-05 
1.10751e-05 

1.36387e+00 
2.81364e+00 

 

TABLE 3:  Numerical results for problem 3 

 

h Method MAXE Time 

10-2 2BBDF 

2BEBDF 

1.83156e-02 

1.83156e-02 

3.34792e-03 

3.34792e-03 

10-3 2BBDF 
2BEBDF 

5.67155e-02 
5.97499e-02 

3.22815e-02 
3.42977e-02 

10-4 2BBDF 

2BEBDF 

7.18323e-03 

4.36785e-04 

3.16316e-01 

3.42515e-01 

10-5 2BBDF 
2BEBDF 

7.34012e-04 
3.23640e-05 

3.19415e+00 
3.40134e+00 

10-6 2BBDF 

2BEBDF 

7.35584e-05 

3.47615e-06 

3.16101e+01 

3.41661e+01 

 
TABLE 4:  Numerical results for problem 4 

 

h Method MAXE Time 

10-2 2BBDF 

2BEBDF 

4.05485e-02 

1.54095e-02 

6.66750e-04 

7.42000e-04 

10-3 2BBDF 

2BEBDF 

4.54013e-03 

4.07357e-04 

5.97775e-03 

6.69608e-03 

10-4 2BBDF 
2BEBDF 

4.58919e-04 
2.38486e-05 

5.91634e-02 
6.55754e-02 

10-5 2BBDF 

2BEBDF 

4.59411e-05 

2.20771e-06 

5.91698e-01 

7.31862e-01 

10-6 2BBDF 
2BEBDF 

4.59459e-06 
2.18989e-07 

5.93144e+00 
7.32775e+00 
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TABLE 5:  Numerical results for problem 5 

 

h Method MAXE Time 

10-2 2BBDF 

2BEBDF 

1.61785e-01 

1.67366e-01 

3.65725e-03 

3.91558e-03 

10-3 2BBDF 

2BEBDF 

1.45948e-01 

1.82997e-02 

3.53500e-02 

3.78459e-02 

10-4 2BBDF 

2BEBDF 

1.44490e-02 

7.63068e-04 

3.52383e-01 

3.74330e-01 

10-5 2BBDF 

2BEBDF 

1.44347e-03 

6.93925e-05 

3.51502e+00 

3.76159e+00 

10-6 2BBDF 

2BEBDF 

1.44332e-04 

6.87941e-06 

3.52527e+01 

3.74746e+01 

 

TABLE 6:  Numerical results for problem 6 
 

h Method MAXE Time 

10-2 2BBDF 

2BEBDF 

6.29433e-02 

6.41545e-02 

7.29025e-03 

1.11905e-03 

10-3 2BBDF 

2BEBDF 

2.61104e-02 

8.33432e-03 

7.11481e-02 

7.66378e-02 

10-4 2BBDF 

2BEBDF 

2.84789e-03 

2.87015e-04 

7.10616e-01 

7.71190e-01 

10-5 2BBDF 

2BEBDF 

2.87180e-04 

2.19722e-05 

7.11981e+00 

7.65406e+00 

10-6 2BBDF 
2BEBDF 

2.87420e-05 
2.13643e-06 

7.12867e+01 
7.73116e+01 

 

Figure 3:  Graph of 
10( )Log MAXE vs TIME for problem 1 
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Figure 4:  Graph of 
10( )Log MAXE vs TIME for problem 2 

 

 
Figure 5:  Graph of 

10( )Log MAXE vs TIME for problem 3 

 
Figure 6:  Graph of 

10( )Log MAXE vs TIME for problem 4 
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Figure 7:  Graph of 

10( )Log MAXE vs TIME for problem 5 

 

 
Figure 8:  Graph of 

10( )Log MAXE vs TIME for problem 6 

 

The results from the tables show that for almost all the problems 

solved, the method derived is better in terms of accuracy than the 2BBDF. 

However, in terms of computation time, the time taken to complete the 

integration using the 2BBDF method is better than that in our method; even 

though the differences are marginal. Also, both methods took the same 

number of integration steps to complete the integration. 

From the given figures, for almost all the problems and for a particular step 

size h, the scaled errors of the method 2BEBDF are smaller compared to 

2BBDF method. This shows the error growth is also smaller for the extended 

method, hence more stable and accurate compared to the 2BBDF. 
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8. CONCLUSION 

This paper applied the technique of adding a 'super future point' to 

the 2–point BBDF to derive a new block method called a 2–point block 

extended backward differentiation formula.  The method derived computes 

the solution of stiff IVPs at two points simultaneously.  The order of the 

method is 4 and the plot of the stability region showed that it is A–stable.  

The formula is implemented using Newton's like iteration.  A comparison of 

the results obtained for solving some stiff IVPs shows its advantage in 

accuracy over the BBDF.  The computation time for the new method is seen 

to be competitive. 
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