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ABSTRACT 

One of the well-known methods in solving large scale unconstrained optimization is limited 

memory quasi-Newton (LMQN) method. This method is derived from a subproblem in low 
dimension so that the storage requirement as well as the computation cost can be reduced. 
In this paper, we propose a preconditioned LMQN method which is generally more 
effective than the LMQN method dueto the main defect of the LMQN method that it can be 
very slow on certain type of nonlinear problem such as ill-conditioned problems. In order to 
do this, we propose to use a diagonal updating matrix that has been derived based on the 
weak quasi-Newton relation to replace the identity matrix to approximate the initial inverse 
Hessian. The computational results show that the proposed preconditioned LMQN method 

performs better than LMQN method that without preconditioning.  
 
Keywords: Preconditioned, limited memory quasi-Newton methods, large scale, 
unconstrained optimization. 
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1. INTRODUCTION 

  Limited memory quasi-Newton (LMQN) methods are used to solve 
the optimization problems especially large scale problems. These methods 

make simple approximations of the Hessian matrices and they provide a 

faster rate of linear convergence and only require minimal storage, hence it is 

more appropriate to use the LMQN methods instead of the quasi-Newton 
methods. 

 

LMQN methods are the extensions of the conjugate gradient method 
that through additional storage is used to speed up the convergence. LMQN 

methods are suitable for most of the large scale unconstrained optimization 

due to the ability of the user can control the amount of storage that required 
by the algorithm. Furthermore, this method are actually the implementations 

of the quasi-Newton methods but with the storage is already restricted. 

 

A general form of the LMQN  methods is given by 

                        ∑
=

+ +=
km

i

T

ikikk

T

kkk ZWQHPH
1

01 ,γ                             (1) 

 

where 0H is a nn×  symmetric positive definite matrix that remains constant 

for all ;k  kγ  is a nonzero scalar that iteratively rescales 0H ; kP  is a nn×  

matrix that a product of projection matrices of the form 

                                                     ,
vu

uv
I

T

T

−                                                   (2) 

 

by which ∈u span { }kyy ,,0 …  and ∈v span { }10 ,, +kss … ; kQ  a nn×  

matrix, the product of the projection matrices of the same form where u  is 

any −n vector ∈v span { }kss ,,0 … ; km is a nonnegative integer; 

( )kik miW ,,2,1 …=  is any −n vector; ( )kik miZ ,,2,1 …=  is any vector in 

span{ }kss ,,0 … . 

 

 Equation (1) is a general result that characterizes perfect quasi-

Newton methods that terminate in n  iterations on an n -dimensional strictly 

convex quadratic. Some variant of these methods can be found in Farid et al. 
(2010), Farid et al (2011), Leong and Hassan (2009, 2011), Leong et al. 

(2010) and Waziri et al. (2010). 
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2. LIMITED MEMORY BFGS METHOD 

One of the famous LMQN method is the limited memory BFGS 
method. The limited memory BFGS method (L-BFGS) is proposed by 

Nocedal (1980). The implementation of the L-BFGS method is almost 

identical to the BFGS method but with the difference in matrix update, 

whereby the BFGS corrections are stored separately, and when the available 
storage is used up, the oldest correction is deleted to make space for the new 

one. Thus, all subsequent iterations will insert a new correction whereas an 

old correction will be deleted. Besides that, the user actually can specify the 

number m  of BFGS corrections that are to be kept, and provides a sparse 

symmetric and positive definite matrix 0H , which approximates the inverse 

Hessian of f . This method is identical to the BFGS method during the first 

m iterations. For mk > , kH  is obtained by applying m BFGS updates to 

0H using the information from the m  previous iterations. (Liu and Nocedal 

(1989)). 

 

Some of the notations are introduced to give a description of the L-

BFGS method. The iterates will be denoted by kx , and kkk xxs −= +1  and 

kkk ggy −= +1  are defined. According to Dennis and Schnabel (1983), the 

method will use the inverse BFGS formula in the form as follow 

 

                                             ,1

T

kkkkk

T

kk
ssVHVH ρ+=+                             (3) 

where  

,
1

k

T

k

k
sy

=ρ  

and  

           .T

kkkk syIV ρ−=  

 

The algorithm of L-BFGS method is shown as follow: 

 

Step 1 : Choose ,0x ,m  
1

0 ,
2

β ′< <  1,β β′ < <  and a symmetric and 

                positive definite matrix 0H . Set .0=k  
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Step 2 : Compute 

,kkk gHd −=  

,1 kkkk dxx α+=+  

 

                where kα  satisfies the Wolfe conditions below: 

 

( ) ( ) ,k

T

kkkkkk dgxfdxf αβα ′+≤+  

( ) ,
k

T

kk

T

kkk
dgddxg βα ≥+  

 

     but we always try the steplength 1=
k

α  first. 

 

Step 3 : Let { }.1,minˆ −= mkm  Update 0H , 1ˆ +m , times using the pairs    

              { }k

mkjjj sy
ˆ

,
−=

, i.e. let 

 

( ) ( )kmk

T

mk

T

kk VVHVVH ⋯⋯ ˆ0ˆ1 −−+ =  

                           ( ) ( )kmk

T

mkmk

T

mk

T

kmk VVssVV ⋯⋯ 1ˆˆˆ1ˆˆ +−−−+−−+ ρ  

                                  ( ) ( )kmk

T

mkmk

T

mk

T

kmk VVssVV ⋯⋯ 2ˆ1ˆ1ˆ2ˆ1ˆ +−+−+−+−+−+ ρ  

                                           ⋮  

                                          .T

kkk ssρ+  

 

Step 4 : Set : 1k k= +  and go to Step 2. 

 

From the Algorithm above, the matrices kH  are not formed 

explicitly, but the 1ˆ +m  previous values of jy  and 
j

S  are stored separately. 

There is a efficient formula, due to Strang, for computing the product of  

kk gH  [10]. The implementation of L-BFGS method coincides with the one 

given in [10], except for one detail: the line search is not forced to perform at 

least one cubic interpolation, but the unit steplength is always tried first, and 

if it satisfies the Wolfe conditions, it is accepted. The main aim is that the 
limited memory methods resemble BFGS as much as possible, and disregard 

quadratic termination properties, which are not very meaningful, in general, 

for large dimensional problems. 
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The key issue here is how to choose the subspace kS . Stoer and 

Yuan (1995) suggest the choice for the subspace kS  is a generalization of the 

2-dimensional subspace, namely =kS span{ }1, , ,
k k k m

g s s− −− ⋯ , since all the 

points in kS can be expressed by  

                                     ∑
=

−+−=
m

i

ikik sgd
1

,βσ                                (4) 

 

using the following approximations 
 

                 ( ) ,2

ik

T

ikikk

T

ik yssxfs −−−− ≈∇        ( ) .2

k

T

ikkk

T

ik gygxfs −− ≈∇  

 

 

However, the performance of a Conjugate Gradient-like search 
direction can be very slow on certain type of nonlinear problem such as ill-

conditioned problems. Hence, our main aim of the study is to propose some 

preconditioners for the search direction (4), namely, 
 

                                     ∑
=

−+−=
m

i

ikikk sgDd
1

,β                             (5) 

 

where kD  is the preconditioner in diagonal matrix form and it suppose to 

have some properties of the Hessian matrix, or a good approximation to 
Hessian matrix in some sense. 

 

 

3. DERIVATION OF THE DIAGONAL PRECONDITIONER 
 

 In this section, we develop a preconditioner for LMQN algorithm in 
order to overcome the deficiency of the standard subspace limited memory 

algorithm when solving ill-conditioned optimization problems. 
 

 We shall choose a diagonal matrix kD  that satisfy the weak-quasi-

Newton relation as below: 
 

                                                  k

T

kkk

T

k yssDs =+1 ,                                       (6) 

 

where ,1 kkk ggy −= +  and .1 kkk xxs −= +  
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 Suppose that the Hessian matrix A  of an objective function 

( ) xbAxxxf TT −=
2

1
 is positive definite. We let 

k
D  be a diagonal matrix 

to approximate the Hessian matrix. Hence, we form our approximation as 

follow: 
 

                                                    .1 kkk
DD ∆+=+                                        (7) 

 

Our purpose is to construct a 1+k
D  such that it is a good approximation to the 

actual Hessian matrix. 

 

Theorem  

Assume that 0>
k

D  is a positive definite diagonal matrix and 1+k
D  is the 

updated version of
k

D , which is also diagonal. Suppose that 0≠
k

s , then the 

optimal solution of the following minimization problem: 

 

minimize 
2

2

1
Fk

∆   

                                              subject to ,1 k

T

kkk

T

k
yssDs =+                          (8)  

 

is given by  

                                      
k

k

kk

kk
GDD

γ

µω −
+=+1                            (9) 

 

where ( )k

T

kFk tr ∆∆=∆  is the Frobenius norm and tr is the trace operator, 

k

T

kk
ys=ω , 

kk

T

kk
sDs=µ , 

( )( )
4

1

∑
=

=
n

i

i

kk sγ  and =
k

G diag
( )( ) ( )( )( )221

,,
n

kk ss …  

with 
( )n

k
s  being the thn −  component of the  

k
s . 

 

Proof. 

Let 
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From equation (8), we have 

( ) ( )
2

2





 ∆∆=∆

k

T

kk
tr  

                                                  
( )( ) ( )( ) ( )( )( )2221 n

k

i

kk aaa ++++= …… .    (10) 

 
 

Thus the minimization equation will become 

 

                   minimize 
( )( ) ( )( ) ( )( )( )2221

2

1 n

k

i

kk
aaa ++++ …… .                  (11) 

 
By substituting (7) into (8), we obtain 

 

                                              ( )
k

T

kkkk

T

k
yssDs =∆+ .                           (12) 

 

We expand (12) as: 
 

k

T

kkk

T

kkk

T

k
yssssDs =∆+ . 

 

Rearrange the equation above, we get 

 

                                      
( ) ( )∑

=

=+−
n

i

i

k

i

k as
1

2
0)(ωµ ,                                 (13) 

 

where 
kk

T

k
sDs=µ  and 

k

T

k
ys=ω . 

 

From (13), we have 
 

                                         
( ) ( )∑

=

−=
n

i

i

k

i

k as
1

2
)( µω .                                     (14) 

 
Finally, we wish to solve the following: 

 

minimize 
( )( ) ( )( ) ( )( )( )2221

2

1 n

k

i

kk
aaa ++++ ……  
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                    subject to 
( ) ( )∑

=

=+−
n

i

i

k

i

k as
1

2
0)(ωµ .                                 (15) 

 

Since the objective function in (15) is convex, then there exists a unique 
solution and its Lagrange function will be 

 

      
( )( ) ( )( )( ) ( ) ( ) 








+−+++= ∑

=

n

i

i

k

i

k

n

kk asaaL
1

2221
)(

2

1
ωµλ… ,               (16) 

 

where λ is the Lagrange multiplier associated with the constant. We 

differentiate (16) with respect to 
( )i

k
a , and set the result to zero, we obtain, 

 

                                      ( )
( ) ( ) 0)( 2 =+=

∂

∂ i

k

i

ki

k

sa
a

L
λ .                                  (17) 

 

From (17), it is clear that 
 

                                          
( ) ( )i

k

i

k
as −=2)(λ .                                               (18) 

 

Multiplying (18) with 
( ) 2)( i

k
s  for ni ,,3,2,1 …= , respectively, we shall 

obtain 

 

                                       
( )( ) ( ) ( )i

k

i

k

i

k ass
24

)(−=λ .                                 (19) 

 

Summing all of the equation in (19) yields 

 

                             
( )( ) ( ) ( )∑ ∑

= =

−=
n

i

n

i

i

k

i

k

i

k ass
1 1

24

)(λ .                                 (20) 

 

By equation (14), (20) becomes 
 

                                        
( )( )∑

=

−=
n

i

i

ks
1

4

ωµλ ,                                    (21) 
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Finally, we get 

                                                 
γ

ωµ
λ

−
= ,                                               (22) 

where 
( )( )∑

=

=
n

i

i

ks
1

4

γ . 

Once again, from (18), we get 

 

                                           
( ) ( ) 2)( i

k

i

k
sa λ−= .                                              (23) 

 

We substitute (22) into (23), the equation becomes 

 

                                          
( ) ( ) 2)( i

k

k

kki

k
sa

γ

µω −
= .                                    (24) 

 

Expression (24) is in the form of each component of i . By substituting (24) 

into the formula of 
k

∆ , we will get the approximation of 1+k
D  as follow: 

 

                                  
k

k

kk

kk
GDD

γ

µω −
+=+1 ,                                       (25) 

where
k

T

k
ys=ω , 

kk

T

k
sDs=µ , 

( )( )
4

1

∑
=

=
n

i

i

ksγ  and 

=
k

G diag
( )( ) ( )( )221

,,
n

kk ss …  with 
( )n

k
s  being the thn −  component of the 

k
s , 

and the proof is completed. 
 

Now, we give our algorithm for solving large scale unconstrained 

optimization, which is called the preconditioned limited memory quasi-
Newton algorithm. 

 

LMQN Algorithm  

Step 1 : Set 0=k ; select the initial point 0x  and ε  as a stopping  

               condition. We also set ID =0 , where I  is nn×  identity matrix. 

 

Step 2 : For 0≥k , compute bAxg
kk

−= . If ε≤kg , stop, else 

               compute 
k

D  where D  is a specific diagonal preconditioner. 
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Step 3 : Compute ∑
=

−++++ +−=
m

i

ikikkk sgDd
1

1111 β , where 

i

T

i

i

T

i

i
Add

Adg 1+=β , 

                { }mki ,min≤ . 

Step 4 : Compute 

k

T

k

k

T

k

k
Add

dg
−=α . 

Step 5 : Hence, 
kkkk

dxx α+=+1 . 

Step 6 : Set 1: += kk ; go to step 2. 

 

The LMQN method is tested where in step 2, D  is chosen from theorem 

above. 
 

 

4. CONVERGENCE ANALYSIS 

In this section, we shall look at the convergence properties of the 

LMQN method. Note that all the Hessian approximations are obtained by 

updating a bounded matrix using our proposed preconditioned LMQN 
method. We will prove the convergence properties of our proposed methods 

based upon the convergence assumptions given by Liu and Nocedal (1989) 

since it is valid for our preconditioning formulae whose matrices are diagonal 
and positive definite. 

 

Assumption 

(1) The objective function f  is twice continuously differentiable. 

(2) The level set ( ) ( ){ }0: xfxfxD n ≤ℜ∈=  is convex. 

(3) There exist positive constants 1M  and 2M  such that 

 

                             ( ) 2

2

2

1 zMzxGzzM
T ≤≤                              (26) 

 

for 
nz ℜ∈∀  and Dz ∈∀ . This implies that the objective function f  has a 

unique minimize 
*x  in D . 

 
From (25), we can have another similar inequality as below 

 

                             ( ) 2

2

12

1 zNzxGzzN
T ≤≤

−
,                            (27) 
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where 
2

1

1

M
N =   and 

1

2

1

M
N =  are the constants. 

 

Lemma  

Let 0x  be a starting point for which f  satisfies Assumptions above, and we 

takes ID =0 , where I  is the nn×  identity matrix. Assume that the 

matrices 
0

kD  are chosen so that 
( ){ }0

kD  and 
( ){ }10 −
kD  are bounded. Then, 

{ }1+kD  and { }1

1

−
+kD  are also bounded, where 

                                    k

k

kk

kk GDD
γ

µω −
+=+1                                       (28) 

where  k

T

kk ys=ω , kk

T

kk sDs=µ , 
( )( )

4

1

∑
=

=
n

i

i

kk sγ  and 

=kG diag
( )( ) ( )( )( )221

,,
n

kk ss ⋯  with 
( )n

ks  being the thn −  component of the 

ks  respectively. 

 

Proof. 

Without the loss of generality, we shall assume that ID =0 , where I  is the 

nn×  identity matrix. It is clear that 0D  is bounded as follow: 

 

                                              000 |||| ωµ ≤≤ FD                                          (29) 

 

We shall prove this Lemma by using mathematical induction. Now, we shall 

prove that FD |||| 1  is bounded. If 000000 ≤− sDsys TT
, then by LMQN 

algorithm, we have 01 DD =  which implies that 0100 |||||||| ωµ ≤=≤ FF DD . 

Hence, we shall prove for the case, 000000 >− sDsys TT
and 

0>− kk

T

kk

T

k sDsys . 

 

Let ( )xf2∇  be defined as 

                                     ( ) ( )∫ +∇=∇
1

0

22 ττ dsxfxf kk .                               
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Then, we shall obtain 

 

                                                 ( ) kk sxfy 2∇= .                                        (30) 

 

From (26) and (30), we get 
 

                                  ,|||||||| 2

2

2

1 kk

T

kk sMyssM ≤≤                              (31) 

 

where 1M  and 2M  are constants. 

 
From (31), we have 

 

                                            
2

200 |||| k

T sMys ≤ .                                         (32) 

 

From (29), it leads to 
 

                                       .|||||||| 2

00000

2

00 ssDss T ωµ ≤≤                        (33) 

 

From (32) and (33), we yield 

 

                                     .|||||| 2

00200000 sMsDsys TT µ−≤−                      (34) 

 

We let 

                                      
( ) ( ) ( )2

0

22

0

21

0

2

0 |||| nssss +++= …  

                                                 ,2

0mns≤                                                       (35) 

 

where 
( ) ( ) ( ){ }2

0

22

0

21

0

2

0 ,,,max n

m ssss …= . 

 

From (28), we obtain 
 

                                                =2

0 |||| FG tr ( )00 GGT
,  

                                                            
( ) ( ) ( ) .4

0

42

0

41

0

nsss +++= …  

 
Finally, we should have 

                                                 .|||| 2

00 mF snG ≤                                        (36) 
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Hence, 

                                   
( )( )
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0 mn

i
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m
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s
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D

∑
=

−
+≤

µ
 

                                               
( )( )

,||||

1

4

0

4

0
2

3

0

∑
=

+≤
n

i

i

m
F

s

skn
D  

                                               ,|||| 40 MD F +≤                                            (37) 

 

where ( ) ( ){ },,max 0202 µµ +−= MMk  2

3

4 knM =   and since 

 

                                                    
( )( )

.1

1

4

0

4

0 ≤

∑
=

n

i

i

m

s

s
 

 

From (37), we can conclude that FD |||| 1  is bounded since  FD |||| 0  is 

bounded. Now, we assume kD  is bounded, then we need to prove that 1+kD  

is also bounded. 
 

From above, we shall get the similar inequalities as follow: 

 

                                             ,|||| 2

0 mF snG ≤                                             (38) 

                                             ,|||| 22

mk nss ≤                                                  (39) 

                                            .|||||| 2

2 kkkk

T

kk

T

k sMsDsys µ−≤−              (40) 
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From (28) and (38)-(40), we obtain 

 

                                     ,|||||||| 41 MDD FkFk +≤+                                       (41) 

 

where ,2

3

4 knM =  and ( ) ( ){ }kk MMk µµ +−= 22 ,max . 

 

From the fact that FkD ||||  is bounded, i.e. 5|||| MD Fk ≤ . Thus, from (41), 

 

                                      ,|||| 451 MMD Fk +≤+  

                                                     ,6M≤  

 

where 456 MMM +=  and it is a constant. Finally, we have shown that 

FkD |||| 1+   is bounded and the proof is completed. 

 

 In this section, we have shown that the proposed preconditioned 

LMQN methods are to be convergent on uniformly convex problems and the 

rate is −R linear. This −R linear convergence results obtained are based 

upon the assumption by Liu and Nocedal (1989). 

 
 

5. COMPUTATIONAL RESULTS AND DISCUSSION 

 In this section, the computational results and discussion on the 
performance of preconditioner limited memory quasi-Newton (LMQN) 

method will be proposed. All algorithms are written in MATLAB 7.0. The 

total number of tested problems is 4. All the runs were terminated when 
 

                                                   
410−≤kg , 

 

where ⋅  denotes the Euclidean norm. Furthermore, we also consider the 

number of function evaluation and gradient calls. We set our upper bound for 

the number of function evaluation and gradient call is 1000. 

 

The computational results are compared through number of 
iterations, gradient evaluations as well as function evaluations. In order to test 
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the efficiency of the proposed preconditioned methods, the number of 

subspaces that we will consider is 2=m  and 3=m . 

 

The LMQN method was tested using the following preconditioners: 
 

1.  LMQN(0)-SQN method without preconditioning. 

2.  LMQN(D1)-SQN method with diagonal preconditioner D  where D  is 

 given by theorem above. 
 

In order to compare the efficiency of our proposed preconditioned 

LMQN methods with the standard LMQN method, we have considered the 
following quadratic test problem 

 

                                               ( ) xbAxxxf TT −=
2

1
,                               (42) 

 

where A  is positive definite diagonal matrix and [ ]1,,1,1,1,1,1 …=b . 

 

For all methods, the initial points is [ ]0,,0,0,0,00 …=x . A set of 

unconstrained minimization quadratic problems, consisting of 4 test 

problems, were used. We now describe the 4 different quadratic test problems 

(42) with n -dimensional cases. 

 

1.  QF1, where =A diag [ ]iia , ( )5mod2iaii = , [ ]1,,1…=b . 

2.  QF2, where =A diag [ ]iia , ( )5mod3iaii = , [ ]1,,1…=b . 

3.  QF3, where =A diag [ ]iia , ( )5mod3 iiaii += , [ ]1,,1…=b . 

4.  QF4, where =A diag [ ]iia , 1,12,2 −−−− += iiiiii aaa , 3≥i  and 111 =a , 

 122 =a , [ ]1,,1…=b . 

 

We tested the above problems by using 2m =  and 3m = . In each 

table, the symbol Ite, 
k

g , and Fva mean the number of iterations, norm of 

the gradient and function evaluation respectively. 
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TABLE 1: Comparison of the Methods of 2m =  in solving QF1 

 

 LMQN(0) LMQN(D1) 

N Ite k
g  Fva Ite k

g  Fva 

10 106 9.2e-5 -1.4636 31 4.2e-5 -1.4636 

20 109 9.8e-5 -2.9272 31 6.0e-5 -2.9272 

40 113 9.6e-5 -5.8544 31 8.4e-5 -5.8544 

80 117 9.3e-5 -1.1709e+1 32 1.5e-5 -1.1709e+1 

100 118 9.5e-5 -1.4636e+1 32 1.6e-5 -1.4636e+1 

200 122 9.3e-5 -2.9272e+1 32 2.3e-5 -2.9272e+1 

500 127 9.2e-5 -7.3181e+1 32 3.6e-5 -7.3181e+1 

1000 130 9.9e-5 -1.4636e+2 32 5.2e-5 -1.4636e+2 

1500 133 9.1e-5 -2.1954e+2 32 6.3e-5 -2.1954e+2 

2000 134 9.6e-5 -2.9272e+2 32 7.3e-5 -2.9272e+2 

 
TABLE 2: Comparison of the Methods of 2m =  in solving QF2 

 

 LMQN(0) LMQN(D1) 

N Ite k
g  Fva Ite k

g  Fva 

10 598 9.9e-5 -1.1857 34 9.7e-5 -1.1857 

20 619 9.9e-5 -2.3713 36 8.2e-5 -2.3713 

40 640 9.9e-5 -4.7426 38 8.3e-5 -4.7426 

80 661 9.9e-5 -9.4853 39 5.8e-5 -9.4853 

100 668 9.9e-5 -1.1857e+1 39 6.5e-5 -1.1857e+1 

200 689 9.9e-5 -2.3713e+1 39 9.2e-5 -2.3713e+1 

500 716 1.0e-4 -5.9283e+1 40 6.6e-5 -5.9283e+1 

1000 737 1.0e-4 -1.1857e+2 40 9.4e-5 -1.1857e+2 

1500 750 9.9e-5 -1.7785e+2 42 6.7e-5 -1.7785e+2 

2000 758 1.0e-4 -2.3713e+2 42 7.7e-5 -2.3713e+2 

 
TABLE 3: Comparison of the Methods of 2m =  in solving QF3 

 

 LMQN(0) LMQN(D1) 

N Ite k
g  Fva Ite k

g  Fva 

10 311 9.7e-5 -6.5573e-1 65 2.4e-5 -6.5573e-1 

20 322 9.7e-5 -1.3115 65 3.4e-5 -1.3115 

40 332 1.0e-4 -2.6229 65 4.9e-5 -2.6229 

80 343 1.0e-4 -5.2459 65 6.9e-5 -5.2459 

100 347 9.8e-5 -6.5573 65 7.7e-5 -6.5573 

200 358 9.8e-5 -1.3115e+1 67 9.4e-5 -1.3115e+1 

500 372 9.9e-5 -3.2787e+1 71 9.6e-5 -3.2787e+1 

1000 383 9.9e-5 -6.5573e+1 75 9.9e-5 -6.5573e+1 

1500 390 9.7e-5 -9.8360e+1 84 7.6e-5 -9.8360e+1 

2000 394 9.9e-5 -1.3115e+2 84 9.1e-5 -1.3115e+2 
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TABLE 4: Comparison of the Methods of 2m =  in solving QF4 

 

 LMQN(0) LMQN(D1) 

N Ite 
k

g  Fva Ite 
k

g  Fva 

10 252 9.7e-5 -1.6652 66 6.2e-5 -1.6652 

20 261 9.7e-5 -3.3305 66 8.8e-5 -3.3305 

40 270 9.6e-5 -6.6609 71 9.9e-5 -6.6609 

80 278 1.0e-4 -1.3322e+1 78 7.8e-5 -1.3322e+1 

100 281 9.9e-5 -1.6652e+1 78 8.7e-5 -1.6652e+1 

200 290 9.9e-5 -3.3305e+1 87 3.4e-5 -3.3305e+1 

500 301 9.8e-5 -8.3262e+1 87 5.4e-5 -8.3262e+1 

1000 311 9.7e-5 -1.6652e+1 87 7.7e-5 -1.6652e+1 

1500 316 9.8e-5 -2.4979e+1 87 9.4e-5 -2.4979e+1 

2000 320 9.7e-5 -3.3305e+2 88 7.1e-5 -3.3305e+2 

 
TABLE 5: Comparison of the Methods of 3m =  in solving QF1 

 

 LMQN(0) LMQN(D1) 

N Ite k
g  Fva Ite k

g  Fva 

10 81 9.8e-5 -1.4636 53 8.0e-5 -1.4636 

20 84 9.6e-5 -2.9272 54 3.0e-5 -2.9272 

40 87 9.4e-5 -5.8544 54 4.2e-5 -5.8544 

80 90 9.3e-5 -1.1709e+1 54 6.0e-5 -1.1709e+1 

100 91 9.2e-5 -1.4636e+1 54 6.7e-5 -1.4636e+1 

200 94 9.0e-5 -2.9272e+1 54 9.5e-5 -2.9272e+1 

500 97 9.9e-5 -7.3181e+1 55 6.2e-5 -7.3181e+1 

1000 100 9.7e-5 -1.4636e+2 55 8.8e-5 -1.4636e+2 

1500 102 9.4e-5 -2.1954e+2 61 7.0e-5 -2.1954e+2 

2000 103 9.6e-5 -2.9272e+2 61 8.1e-5 -2.9272e+2 

 
TABLE 6: Comparison of the Methods of 3m =  in solving QF2 

 

 LMQN(0) LMQN(D1) 

N Ite 
k

g  Fva Ite 
k

g  Fva 

10 577 1.0e-4 -1.1857 157 8.9e-5 -1.1857 

20 598 9.8e-5 -2.3713 143 3.2e-5 -2.3713 

40 618 9.9e-5 -4.7426 134 9.7e-5 -4.7426 

80 638 9.9e-5 -9.4853 154 9.9e-5 -9.4853 

100 645 9.9e-5 -1.1857e+1 159 7.7e-5 -1.1857e+1 

200 665 9.9e-5 -2.3713e+1 140 9.7e-5 -2.3713e+1 

500 692 9.9e-5 -5.9283e+1 192 2.7e-5 -5.9283e+1 

1000 712 9.9e-5 -1.1857e+2 205 8.6e-5 -1.1857e+2 

1500 724 9.9e-5 -1.7785e+2 218 7.8e-5 -1.7785e+2 

2000 732 9.9e-5 -2.3713e+2 158 9.2e-5 -2.3713e+2 
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TABLE 7: Comparison of the Methods of 3m =  in solving QF3 

 

 LMQN(0) LMQN(D1) 

N Ite k
g  Fva Ite k

g  Fva 

10 300 9.8e-5 -6.5573e-1 75 8.4e-5 -6.5573e-1 

20 310 1.0e-4 -1.3115 77 8.9e-5 -1.3115 

40 321 9.8e-5 -2.6229 80 5.4e-5 -2.6229 

80 332 9.7e-5 -5.2459 82 7.3e-5 -5.2459 

100 335 9.8e-5 -6.5573 82 8.2e-5 -6.5573 

200 346 9.7e-5 -1.3115e+1 85 8.5e-5 -1.3115e+1 

500 359 1.0e-4 -3.2787e+1 86 8.2e-5 -3.2787e+1 

1000 370 9.9e-5 -6.5573e+1 99 5.5e-5 -6.5573e+1 

1500 376 9.9e-5 -9.8360e+1 88 7.5e-5 -9.8360e+1 

2000 381 9.7e-5 -1.3115e+2 90 9.1e-5 -1.3115e+2 

 
 

TABLE 8: Comparison of the Methods of 3m =  in solving QF4 

 

 LMQN(0) LMQN(D1) 

N Ite 
k

g  Fva Ite 
k

g  Fva 

10 230 9.8e-5 -1.6652 81 9.8e-5 -1.6652 

20 238 9.8e-5 -3.3305 90 9.4e-5 -3.3305 

40 246 9.9e-5 -6.6609 93 8.4e-5 -6.6609 

80 254 9.9e-5 -1.3322e+1 98 9.3e-5 -1.3322e+1 

100 257 9.8e-5 -1.6652e+1 95 7.6e-5 -1.6652e+1 

200 265 9.8e-5 -3.3305e+1 103 5.2e-5 -3.3305e+1 

500 276 9.7e-5 -8.3262e+1 103 9.6e-5 -8.3262e+1 

1000 284 9.8e-5 -1.6652e+1 114 7.6e-5 -1.6652e+1 

1500 289 9.7e-5 -2.4979e+1 107 8.1e-5 -2.4979e+1 

2000 292 9.8e-5 -3.3305e+2 106 9.3e-5 -3.3305e+2 

 

 

The number of iterations is the successive in a computational method. 
In this study, we will compare the number of iterations between the standard 

LMQN method and the four proposed LMQN methods. 

 
 Tables 1-4 show the comparison results between proposed 

preconditioned SLMQN methods and standard LMQN method 

for 2.m = Generally, the computational results show that the proposed 

methods are performed better when compare to that standard LMQN method. 

As in the Tables, the proposed methods required less number of iterations 
than the standard method.  
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Although all the methods show the same values of function 

evaluation, but the norms of gradient for the proposed methods are less than 

the norms of gradient of the standard method. Once again, this shows that the 
proposed LMQN methods are promising alternative compared to the standard 

LMQN method. 

 
Tables 5-8 show the comparison results between proposed 

preconditioned LMQN methods and standard LMQN method for 3.m =  Once 

again, the results show that the proposed methods clearly outperform than the 

standard method. The number of iterations and the norms of the gradient are 

the best evidence to show that our proposed methods generally have 

performed well than the standard LMQN method. 
 

 

6. CONCLUSION 

Our tests indicate that the implementation of the proposed 

preconditioned LMQN method performs better than the standard LMQN 

method. The computational results have convinced us that the preconditioned 
LMQN method is a good alternative for large scale unconstrained 

optimization. The preconditioned LMQN method is appealing for several 

reasons: it is easy to implement; it requires only function and gradient values 
and lastly it works better than the standard LMQN method. In conclusion, our 

proposed preconditioned LMQN method is inexpensive and required only 

minimal storage, thus, it is worth to extend the use of this method. 
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