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Heavy metal biomarker: Fish behavior, cellular alteration, enzymatic 
reaction and proteomics approaches

Abstract

Due to the latest industrial development, many dangerous chemicals have been released 
directly or indirectly which resulted in the polluted water bodies. Water rehabilitation is an 
alternative way to restore the quality of water, followed by the environmental management to 
control the waste discharge to ensure the balance of the degradation rates or detoxifying by 
environmental factors. However, this process consumed a lot of time and cost. Besides, most of 
the metal ions, especially copper which is capable to bioaccumulate in aquatic organism and at 
the elevated level may cause physiological and biochemical alteration which leads to mortality. 
Environmental monitoring is the initial step presupposed evaluating the potential toxicity of 
effluent gushing at its purpose to discharge, avoiding the determining effects of contaminant in 
water bodies.  Due to the high sensitivity of the aquatic life towards dissolving toxicant, the fish 
has been utilized as the biological measurement (Biomarker) to indicate the existence of toxicant 
exposure and/or the impact towards the evaluation of molecular, cellular to physiological level. 
Thus, this paper gives an overview of the manipulation of fish as a biomarker of heavy metals 
through behavior response, hepatocyte alteration, enzymatic reaction and proteomic studies 
which have proven to be very useful in the environmental pollution monitoring.

Introduction

In the most recent decades, most of the country 
are undergoing a rapid industrial development, 
urbanization, construction, mining activities and 
deforestation. These activities may leads to the 
environmental problem such as land, air and water 
pollution. Water pollution is a major problem across 
the globe with the presence of harmful contaminants 
in the environment that had increased much concerns 
because of the green revolution (Skouras et al., 2003). 
Spain and New Delhi was reported to be contained 
with urban sewage, industrial liquid waste and liquid 
flows off from agricultural and industrial activities 
(Nagdeve, 2004; Moreno et al., 2006). Previous 
studies reported several rivers in Malaysia which has 
been polluted with pesticides and fertilizer residues 
from over-application of agricultural activities and 
heavy metals from domestic waste of industrial 
factory (Leong et al., 2007; Abbas Alkarkhi et al., 
2008; Yap and Pang, 2011). Juru river, Penang is an 
example of the most polluted river in Malaysia due 

to the rapid development of the economy along with 
urbanization (Al-Shami et al., 2011). 

The other common hazardous material which 
caused negative impacts to the aquatic ecosystem 
are phenol (Busca et al., 2008), azodyes (Hong et 
al., 2007), acrylamide (Sathesh Prabu et al., 2007), 
automobile lubricant (Lopes and Bidoia, 2009), 
which can be eliminated through the remediation of 
either physical, chemical or biological. Remediation 
explanation was well reviewed by Wang et al. (2012). 
Bioremediation is a method capable of degrading 
environmental pollutants into a nontoxic compound 
by living organisms through enzymatic and metabolic 
action influence by the type of medium, pH, oxygen, 
temperature and nutrition available (Vidali, 2001). 
However, although bioremediation have many 
benefits such as lower cost, reduced site disruption 
and permanent removal of the waste, this method 
still have some limitation and controversial, such as 
numerous pollutants, especially heavy metals, and 
the unability to degrade radionuclide and chlorinated 
compound or the degradation may produce toxic 
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metabolites (Boopathy, 2000; Shukor et al., 2006). 
Thus, preventive step is crucial for this situation. 

Biomarker was considered as the reliable 
method to evaluate the biological response towards 
environmental risk so that preventive measures can 
be taken. This method has the advantage to elucidate 
the stress level through bioassay on the organism 
at various stages from biomolecular, histologically 
to physiological alteration caused by contaminant 
exposure. For example, the principle of bioassay 
is to measure the inhibition level of the cells 
biochemical characteristics in order to determine 
toxicant (Krawczyński, 2000). The application of 
cholinesterase (ChE) as a biomarker for metal and 
organochlorine compound in Kootenai River was also 
given as an example (Kruse and Scarnecchia, 2002). 
Biomarker for monitoring environmental quality 
in aquatic ecosystem had raised a great deal and 
promising tool of interest caused by its economical 
method, early warning signal, adequate in uncovering 
overall considered toxicities of complex mixtures and 
measurement precision (Mayeux, 2004; Paustenbach 
and Galbraith, 2006; Sarkar, 2006). In this review, we 
describe various fish biomarker and its significance 
as a diagnostic tool for determining fish health status 
and aquatic pollution monitoring. This review also 
focuses more on heavy metal; copper, especially as 
their adverse effect and pollutant source was higher 
compared to the others.

Fish as a biomarker tool
Fish has turned into a favorite subject biomarker 

research caused by its sensitivity to temperature 
changes, natural surroundings and water quality 
deterioration and additionally aquatic contamination 
antagonistically influence the fish health, which might 
bring mortalities and ecosystem degradation (Skouras 
et al., 2003). Fish biomarker including the assessment 
of biomolecular, cellular and physiological alteration 
that were utilized for monitoring the biological effect 
of toxicant especially metal exposure. In the last 5 
years, an increasing interest towards biomarkers 
of heavy metals have been recorded as observed 
in Figure 1, where the number patterns of papers 
published in these fields within the last 5 years was 
reported. The interest in biomarkers for heavy metals 
impact was defined parallels to the development of 
biomonitoring program, according to the test subject 
either had been exposed in the past or currently 
exposed to environmental stimuli. Fish liver shows 
the highest popularity in the study of heavy metals 
toxicity with the number of 85 papers published 
followed by muscle, gill, kidney and brain with the 
number of 62, 57, 36 and 23 papers, respectively. 

The entrance of heavy metals from direct contact 
may cause inhalation to be bioaccumulated into 
the liver before it is being distributed to the body 
tissues of fish and caused metabolism abnormalities 
such homeostatic imbalance, enzyme inhibition and 
retarded of growth development at the elevated level 
(Cohn et al., 1992; Ali et al., 2003; Canli and Atli, 
2003; Flora et al., 2008; Sarosiek et al., 2009; Lauer 
et al., 2012). Vutukuru et al. (2005) reported that 
heavy metal such as copper decreased the respiratory 
and metabolic rate of freshwater fish, Esomus 
danricus understudied. The significant decreasing in 
the number of glycogen, tissue oxygen consumption 
and piruvate level of the whole body of Cyprinus 
carpio was determined due to the stress by copper 
exposure (Reddy et al., 2008). Toxicity effects of 
pesticides on fish has been reported to give response 
to biochemical, cellular and proteome of the test body 
(Kruse and Scarnecchia, 2002; Matos et al., 2007; 
Biales et al., 2001; Anzolin et al., 2012; Sukumaran 
et al., 2013). Thus, more study can be conducted 
from this finding based on fish biomarker which 
can help on estimating the toxicity level through 
the observation of fish behavior, cellular alteration, 
enzymatic, and proteome response. 

Fish behavior
The studies on fish behaviors provide a lots of 

knowledge and information because, any behavior 
alteration can be related to physiological biomarker 
in aquatic species (Kristiansen et al., 2004; Amiard-
Triquet, 2009; Hellou, 2011). For example, the 
monitoring of behavioral response becomes an 

Figure 1.  Number of papers published in last 5 years. 
The research was carried out on Scopus by using five 
research queries, respectively: (Gill) “Fish gill” and 
“Heavy metal toxicity,”(Liver) “Fish liver” and “Heavy 
metal toxicity,”(Brain) “Fish brain” and “Heavy metal 
toxicity,”(Kidney) “Fish kidney” and “Heavy metal 
toxicity,”(Muscle) “Fish muscle” and “Heavy metal 
toxicity.” (Scopus, Febuary 2014)
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impending option to environmental change, disease, 
stress and the presence of toxic compound in water, 
which most of this condition initiates the variation of 
fish behavior (Petrell and Ang, 2001; Kane et al., 2004; 
Almazán-Rueda et al., 2004; Gerhardt, 2007). Fish 
behavior represents the fish physiological response 
towards the environmental factor. Moreover, the 
interaction of fish behavior related to the ecology can 
be easily observed even if it can quantified (Scott and 
Sloman, 2004) and at the same times effecting the 
consequences of metal toxicity upon the concentration 
and species, including size (Vosyliene et al., 2003; 
Hussain et al., 2011). For instance, the existence of 
metal ion in the environment mediation increased the 
mucus like secretion from gill, excessive excretion, 
anorexia and also the fin movement (Ezeonyejiaku et 
al., 2011). Chronic metal exposure includes complex 
physiological alterations in many body systems, 
involving the increased oxygen consumption, 
reduced mean swimming velocity or speed, up-
regulation of ionic parameter,the decreasing amount 
of optimal lymphocyte and the increasing level of 
neutrophils, altered immunity system, the adjustment 
of Cu-dependent and independent enzyme activities, 
and abudance of epithelial cells in the gills or 
intestine (Handy, 2003). Alteration in behavior is 
considered as a sensitive biomarker to evaluate the 
toxicant exposure and/or  effect (Gerhardt, 2007). 
Affected fish with behavior alteration toward toxicant 
especially pesticides or heavy metal has been 
reported by Patil and David (2010), Ezeonyejiaku 
et al. (2011) and Javed (2012). The parameter for 
behavior alteration measurement such as swimming 
performance, avoidance behavior and feed intake has 
been implemented.

Swimming performance
Swimming performance is considered as behavior 

parameters to assess the physiological status of 
aquatic life to measure the presence and effects of 
contaminant (Ballesteros et al., 2009; Cailleaud et al., 
2011; Almeida et al., 2012). The result clearly showed 
thet the dependence on the concentration of toxic 
causes the loss of resistance in the fish swims which 
has been proven by the study of Vieira et al. (2009). 
In the duration of copper exposure, the concentration 
level of Na+, K+ and Ca2+ in plasma decreased 
(Pilgaard et al., 1994; Beaumont et al., 1995) 
caused by the increasing of total plasma ammonia 
concentration affecting the swimming speed (Grosell 
et al., 2002). These compound ions are known to have 
a number of metabolic and physiological effects that 
may influence swimming performance by interfering 
with the metabolic status of the muscle or affect 

central or peripheral nervous activity, transmission 
at the neuromuscular junction, excitation/contraction 
coupling or muscle electrophysiology (Beaumont 
et al., 1995). The excessive level of ammonium 
ions are capable of replacing K+ in the exchange of 
mechanism consequence in depolarization of neuron 
(Binstock and lecar, 1969) then causes fatigue 
associated with low contraction force in the skeletal 
muscle (SjØgaard, 1991). Swimming performance 
has been implemented by the previous study to assess 
the toxicity of the compound by the measurement 
of swimming velocity (cm s-1) based on swimming 
distance and time required to cover it, or through the 
critical swimming speed of calculation on maximal 
swimming speed (Umax) and exhaustion time  (Waser 
et al., 2009; Almeida et al.,  2010).

Avoidance behavior
Previous authors recommended that the studies of 

avoidance behavior can be utilize as a very sensitive 
indicator of ecotoxicology effects and should be used 
as a corresponding tool in risk evaluation (West and 
Ankley, 1998; Kravitz et al., 1999;  Moreira-Santos 
et al., 2008). In this study, avoidance behavior 
was observed through fish that escape the water, 
excessive aggressiveness, agigatted or shows an 
unsteady swimming pattern with irregular movement 
(Ezeonyejiaku et al., 2011). Other reports strengthen 
the study about low concentration of copper exposure, 
fish activity that shows avoidence behavior, but not 
at a very high concentration (Giattina et al., 1982; 
Hansen et al., 1999). The induction of avoidence 
caused by irritation of the gill and taste, had also 
shows the aggressiveness of the fish at the same time. 
However, the high concentration had displayed a 
failure to avoid copper concentration which indicated 
that the detection and avoidance are  not functioning 
properly, confusing the organisms which will causing 
it to be disoriented (Hansen et al., 1998). Other species 
such as prawn Palaemon serratus cannot avoid the 
high concentration of organophosphate fenitrothion 
(Oliveira et al., 2013). This proved that copper was 
capable to damage the function of the olfactory system 
by impairing olfactory epithelial structure and at the 
same time reducing the neurophysiological response 
towards the olfactory stimulant (Bjerselius et al., 
1993). The avoidance behavior test has been well 
explained by Lopes et al. (2004) through calculation 
of the entrance and exited by a number of fish from 
the test compartment in the evidence test chamber, 
or from the other data that can be obtained from the 
computer vision monitoring such study developed by 
Jian-Yu et al. (2005). There were various chambers 
that has been developed for the avoidance behavior 
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study such as Dornfeld et al. (2009) and Oliveira et 
al. (2013). 
Feed intake

Swimming performance and avoidance behavior 
affects the fish appetite because both of the activities 
is a part of the main nature determining the survival 
of the fish such as food obtaining, reproduce, and also 
avoid adverse conditions (Plaut, 2001). According to 
Ali et al. (2003) studies showed that the fish which 
were exposed to different concentration (0.15, 0.3 
and 0.5 ppm) to affect their diet, reducing their feed 
consumption caused by refused feed after exposure 
about 4-5 hours.  Pelgrom et al. (1994) observed 
the nutritional status of fish influenced by the 
accumulation of copper at the same times affected 
the other metal concentration content in the fish. Due 
to the study by Parveen and Javed, (2010), Fish Catla 
catla reduced the feed intake after a week exposure 
of sublethal copper at 19.44 ppm. Common carp 
also shows a reduction of food intake at 0.8 µM 
copper exposure which determined after a week of 
test. Copper exposure caused the increasing level of 
glucose in blood, which suppressed fish’s appetite and 
decreased food intake (Colgan, 1973). This process 
occurs from the hormonal change which turned the 
system to fooled into receiving the caloric intake 
more than normal then utilized the of liver glycogen 
into blood glucose. Moreover, a high energy demand 
is needed for metabolic coordination in the liver for 
maintaining the continuance of detoxification process 
to overcome chemical stress (Moreira et al., 2006; 
Amiard-Triquet, 2009; Oliveira et al., 2013) which 
proved by James and Sampth (1995) had showed 
the decreasing level of glycogen in freshwater fish, 
Heteropneustes fossilis liver exposed to sublethal of 
copper and ammonia or individually. Study done by 
Ezeonyejiaku et al. (2011) reported that the mortality 
response of the fish can be observed at the end of 
the exposure times, which the fish sank into the 
bottom of the containers and became motionless. 
Feed intake can be measured by the calculation of 
feed conversion ratio  which the increasing value 
correspond to the increasing toxicity level in the 
medium (Vincent et al., 1996; Ali et al., 2003), or 
calculation on feed conversion efficiency  which the 
value is lower compared to the control indication of 
the toxicity affection such as the study  done by Javed 
(2012) which affected the selected fish after being 
exposed with different type of heavy metals. 

Cellular observation 

Molecular quantification
Deposition of pesticides and heavy metals in 

digested fish protein were measured by previous 
studies using high performance liquid chromatography 
(Rao et al., 2010), gas chromatography (Fianko et 
al., 2011), Inductive couple plasma (Ribeiro et al., 
2005) and atomic absorption spectraphotometry 
(Shukla et al., 2007). Due to fish gill properties, 
such high permeability and large area of contact 
with environment had made this organ to become 
the primary target of be toxicant to be accumulated 
before being transported into the fish’s body. Study 
done by Jayakumar and Paul (2006) reported that 
the exposure of sublethal concentration of cadmium 
showed that this metal ion was highly accumulated 
in the gill tissue compared to other organ within the 
first 10 days until it reached 40th days of exposure, 
which decreased the cadmium concentration but 
inversely proportional with the other organ; liver, 
kidney and muscle, which were increased with the 
exposure time. This situation has been explained by 
Jezierska and Witeska (2007) and Kim et al. (2011) 
which the metal exposure, such copper was rapidly 
increased in the early period of exposure and decline 
at recovery periods while other organ shows higher 
metal accumulation at the recovery periods.  The 
liver is the main toxicant deposition as it neutralize 
and detoxify before distributed to another organ 
or eliminate through excretion. Previous studies 
shown that the liver can actually accumulate metals 
higher than other tissues like skin, muscle and gills 
(Yousafzai et al., 2009; Karayakar et al., 2010; 
Crafford and Avenant-Oldewage, 2011). However, 
the utilization of the fish organ as biomarker of 
toxicant has been implemented to assess the river 
contamination and fish health status, such as the study 
by Ribeiro et al. (2005), Qadir and Malik (2011), and 
the good  example from Javed and Usmani (2011) 
which the accumulation of copper in selected organ 
of C. punctatus and L. Rohita; collected from fish 
market was reported to exceed the permissible limit 
set by WHO/FAO (1989) hence proves the capability 
to assess the toxicity level and health status.

Hepatosmotic index (HSI) is another parameter 
of ecotoxicology which  the calculation was based on 
the ratio of liver weight per body weight (Jelodar and 
Fazli, 2012). HSI was reported to become a useful 
measurement to assess the pesticides and metal 
toxicity level, such as the study by Versonnen et al. 
(2003), Chandra et al. (2004), Abdel-Hameid (2008), 
and Kaoud et al. (2012). HSI is the measurement 
on the status of energy stored in a fish. It has been 
reported on the toxic environment that fish  normally 
has a smaller liver, which reserve less energy in the 
liver that caused the HSI value to becomes higher 
than the normal condition such as the study done by 
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Figueiredo-Fernandes et al., (2007) reported the HSI 
value of Nile tilapia liver increased with the increasing 
of the copper sulfate concentrations after 21 days 
exposure.  Jelodar and Fazli (2012) and Lenhardt et 
al. (2009) studied based on HSI value to evaluate the 
contamination site for every month using a frog and 
starlet, respectively, as a biomarker tool.  Thus, HSI 
was considered as a sensitive indicator to provide 
information on potential water contamination impact 
(Yang and Baumann, 2006; Lenhardt et al., 2009)

Microscopic observation
Several fish organs such as gill, liver, kidney, 

muscle and brain were selected to visualize the 
cellular alteration due to pesticides and metal toxicity 
impact (Rojik et al., 1983; Tort et al., 1996, Rodrigues 
and Fanta, 1998; Pugazhvendan et al., 2009; Kaoud 
et al., 2012; Patnaik  et al., 2011; Ahmed et al., 2013; 
Al-Bairuty et al., 2013). Gill is the first direct contact 
with the external environment and changes in fish gill 
around the most usually distinguished reactions to 
environmental toxins (Au et al., 2004). Normal and 
affected gill tissues was visualized by Campagna et 
al. (2008) which the affected gill showed structural 
deformation such as epithelial lifting at secondary 
lamella, hyperplasia of primary epithelium, fusion 
of secondary lamella, aneurisms, necrosis and 
infiltration of inflammatory cells with the disintegrate 
of epithelial cells of secondary lamellae including 
mucus secretion and swollen mucocyte. Fish gill 
defense mechanism and its potential as biomarker 
has been well explained by Nascimento et al. (2012).

Fish liver and kidney also are an alternative 
biomarker tool to evaluate toxicity level. At 
the beginning of toxicity level, morphology of 
parenchyma cell shows the abnormalities such as 
cytoplasmic vacuolation along with dilation and 
congestion of sinusoid depending on duration and 
toxicant concentration exposure, such as the study by 
van Dyk et al. (2007) and Younis et al. (2013). At 
high toxicity level, other abnormalities appeared such 
as macrophage activity, hyalinization, hemorrhage, 
binucleai, apoptosis and necrosis development 
(Cavas et al., 2005; Wolf and Wolfe, 2005; Younis 
et al., 2013).  Ultrastructure visualizations were 
performed by Gernhöfer et al. (2001) and Abdel-
Moneim and Abdel-Mohsen (2010) by monitoring 
and evaluate the health status of fish in contaminated 
areas. Normal parenchyma cells which is untreated 
or unaffected by toxicant showed normal polygonal 
shape with the normal form of the nuclear envelope, 
endoplasmic reticulum, spherical shape of 
mitochondria and cytoplasm, but affected cell showed 
the clear development of karyorhexis, karyolysis and 

pyknosis nucleus associated with the clumping of 
nuclear chromatin, fragmentation of endoplasmic 
reticulum, enlargement of hepatocyte bile canaliculi, 
lipid droplet accumulation, vacuolation, increasing 
number of lysosome, dilation and matrix dense 
in mitochondria until elimination processes such 
apoptosis; cell budding formation, and necrosis; cell 
swellon and ruptured membrane plasm observed 
(Paris-Palacios et al., 2000; Varanka et al., 2001; 
Jiraungkoorskul et al., 2007; Abdel-Moneim and 
Abdel-Mohsen, 2010; Costa et al., 2010; Narayan 
and Al-Bader, 2011; Salem, 2011). Unlike liver, 
affected kidney shows an additional impairment such 
as the damage to the epithelium of some renal tubules 
and increased Bowman’s space in the kidney while 
affected brain tissues showed the swelling of blood 
vessels on the ventral surface of the cerebellum, 
alteration in nerve cell bodies in the telencephalon 
and the thickness of the mesencephalon layers (Al-
Bairuty et al., 2013).

This observation can be measured by 
semiquantitative analysis, such as the study by 
Gernhöfer  et al. (2001), and Abdel-Moneim and 
Abdel-Mohsen (2010), or fully quantitative analysis 
done  by Paris-Palacios et al. (2000) by measuring the 
surface area of clear, dark and nucleus of hepatocyte 
(µm2) with nucleolus diameter (µm) then compare it 
with concentration and duration of copper exposure, 
while Figueiredo-Fernandes 

 (2007) study was based on the calculation of 
hepatocyte nucleus per mm of hepatic tissue (Hepat. 
nucl. mm-2) and it had been compared with different 
copper concentration treatment.  

Enzymatic biomarker
Enzyme-based biomarker was considered as 

the most simple estimation for toxicant existence. 
This method gave multiple advantages such as rapid 
determination andit is also considered sensitive even 
the toxicant exist in low concentration, and low 
technical application. These properties together had 
mada it to become a highly promising method to be 
use in pharmacology, agriculture and environmental 
protection. Various sources of enzyme from bacteria, 
plant and animal was reported to be a sensitive 
biomarker with toxicant especially heavy metals 
(Table 1). Fish is considered as a biomarker tool and a 
highly sensitive enzyme as sentinel species allows the 
detection of lower contamination levels. Moreover, 
several manufactured substances caused an adverse 
effect in vivo and in vitro. Thus, the combination of 
in vivo and in vitro study gave multiple information 
aid standardization of environmental management 
and treatment to minimize and eliminate the toxicant 
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Table 1. List of enzymes from various sources as biomarker candidate for Ecotoxicology monitoring. Ag, 
argentum (Silver); As, arsenic; Cd, Cadmium, Cr, Chromium; Co, cobalt; Cu, Copper; Fe, ferum; Hg, 

Mercury; Pb, plumbum (Lead); Mo, molybdenum; Ni, nickel; Zn; zink
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exposure based on the mode of action and reaction 
with biological system

In vivo assay
In vivo test was implemented by previous study to 

evaluate environmental risk, such as the effects metal 
ion on aquatic organism. (Singh et al., 2012; Saliu and 
Bawa-Allah, 2012; Han et al., 2013). Fish has been 
purposely exposed with toxicant either at different 
concentration or duration exposure time, and at the 
same time inducing the oxidative stress  by generating 
highly reactive oxygen species (ROS) leading to cell 
death program (Kehrer, 2000; Do Lago et al., 2011). 
The entrance of toxicant may activate the function 
of detoxifying enzyme to neutralize the xenobiotic 
to non-toxic compound, and antioxidant enzyme 
plays an important role as a protective mechanism 
and hemostasis balance to remove ROS from either 
free and no free radicals (Tripathi and Gaur, 2004). 
Previous report mentioned the metabolic enzyme 
such as aspirate amino transferases (ASAT), alanine 
amino transferases (ALAT), superoxide dismutase 
(SOD), and gluthathione s-transferase (GST) had 
significantly increase in the activity induced by the 
presence of toxicant especially heavy metals (Singh 
et al., 2012; Saliu and Bawa-Allah, 2012; Han et al., 
2013). However, it depends on the targeted organ 
and species suchas the study done by Crupkin and 
Menone (2013) mentioned that GST activity in liver 
had significantly decreased while increase in gill and 
brain of fish Australoheros facetus after exposed with 
cadmium. Chourpagar and Kulkarni (2012) reported 
GST from freshwater crab activity was decreased as 
the exposure periods increased by copper sulfate. A 
Biomarker of oxidative stress based on antioxidant 
enzyme such SOD, GST, catalase (CAT), and 
glutathione peroxidase (GPX) have been utilized to 
determine the toxicity level of metal ion in aquatic 
organism and has been proved to be sensitive (Radi 
and Matkovics, 1988; Lopes et al., 2001; Farombi et 
al., 2007). 

Vutukuru et al. (2006) reported that the activity 
of SOD and CAT of Esomus danricus were 
decreased after being exposed to copper at different 
concentration and increasing exposure times. A 
similar result was reported by Zikić et al. (2001) 
which Carassius auratus gibelio Bloch SOD and 
CAT activity, had decreased for the first 4 days, then 
increase in the 7th day higher compared to control 
while transaminase keep increasing as the length of 
exposure times increase. Different result reported by 
Saliu and Bawa-Allah (2012) which the measurement 
of both SOD and CAT activity from juvenile Clarias 
gariepinus had increased for the first 7 days and 14 

days respectively. after being exposed with Zn salt 
and Pb, then decreased onwards the exposure days. 
Vieira et al. (2009) report based on the exposure of 
estuarine fish Pomatoschistus microps with different 
concentration of copper and mercury ranging from 
0 to 400 µg/L and 0 to 50 µg/L, respectively, which 
enzyme such as  acetylcholinesterase (AChE) and 
7-ethoxyresorufin-O-deethylase (EROD) activity had 
decreased, while GST, GPX, SOD, CAT and lactate 
dehydrogenase (LDH) associated with the increasing 
concentration of metal ion. AChE is capable to 
increase in activity at the low concentration of 
metal ion such as iron caused by up-regulated of 
cholinesterase (ChE) gene to produce more ChE to 
degrade the accumulation of acetylthiocholine in the 
synaptic cleft (Bainy et al., 2006; Sant’Anna et al., 
2011). de Lima et al. (2013) proved the increasing 
activity of ChE after exposure 0.06 mg/L of copper 
on Danio rerio.  Study of ChE was very significant 
caused by the relationship of this enzyme with the 
swimming activity of fish (Vieira et al., 2009; Tilton 
et al., 2011). 

In vitro assay
In vitro assay was conducted by discriminating 

a component of an organism in order to provide 
specific detail analysis. For example, ChE isolated 
from Torpedo californica was a study of the molecular 
structure including amino acids presented in the 
catalytic triad of enzyme responsible for substrate 
degradation (Sussman et al., 1991). From this 
understanding, other data can be obtain such as the 
interaction of the enzyme with toxicant which shows 
high affinity to interact with amino acids present at 
the active and the allosteric site of ChE. For example, 
pesticides such as carbamate and organophosphate 
are capable to bind at the anionic and esteric site 
of acetylcholinesterase through carbamoylation 
and phosphorylation (Forget and Bocquene, 1999; 
Rosenberry et al., 2005) at responsible amino acids 
such as serine (Ser), histidine (His), glutamic acid 
(Glu), tyrosine (Try), and  Asparagine (Asp) (Main, 
1979; Fukuto, 1990; Kovarik et al., 1999; Ma et al., 
2010; Thompson et al., 2010). Glusker et al., 1999 
mentioned that heavy metal plays important role as 
an enzyme cofactor by facilitating the substrate to 
enzyme to form an enzyme substrate, but the heavy 
metal tend to inhibit the enzyme at the elevated 
level. Heavy metal was also reported to inhibit 
cholinesterase activity (de Souza Dahm et al., 
2006; Frasco et al., 2008; Sant’Anna et al., 2011). 
Cation- π attraction of the Imidazole group of His 
in cholinesterase strongly attract free metal ion such 
as Zn and Cu (Bhanumathy and Balasubramanian, 
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1998; Abdelhamid et al., 2007; Rajesh et al., 2009). 
The negative charge of amino acid such glutamate 
and aspartate provides an attraction to bind with 
metal ion lead to structural alteration (Masson et 
al., 1996; Sarkarati et al., 1999). Metal ion also has 
an affinity to interact with other amino acid such as 
cysteine, methionine, phenylalanine, and tryptophan 
at the active and the allosteric site of protein (Glusker 
et al., 1999; Armentrout et al., 2013). 

Thus, the in vitro assay had gave much information 
and increase the prediction during the term of toxicity 
of the compound and suitable treatment will be 
implemented to overcome this situation. Moreover, in 
vitro assay is a rapid detection as it reduces the animal 
testing (Takhar and Mahant, 2011). In vitro detection 
using acid and alkaline phosphatase (Mazorra et al., 
2002; Safahieh et al, 2010) and  Glucose 6-phosphate 
Dehydrogenase (Cankaya et al., 2011; Comakli et 
al., 2013) extracted from fish has been proven to be 
another alternative source  which is sensitive towards 
heavy metals contamination. Although the sensitivity 
varies with other species, this information can be 
considered as a turning point for the development of 
biosensor kit for environmental contamination.

Proteomic analysis
Proteomic analysis had gave mass contribution 

method to determine the answers for the questions 
about agriculture and aquaculture production, 
medical field development, and nutrition quality and 
safety, including halal management, which the related 
question is based on chemical and physical factor, 
including contaminant exposure concentration and 
duration, biological adaptation, treatment, changes 
in temperature, osmotic stress, oxygen consumption, 
in addition to the components of developmental 
pathway, infection and symbioses (Carbonaro, 2004; 
Tomanek, 2011; Rodrigues et al., 2012; Silvestre et 
al., 2012). 

In the development of biomarker applications, 
proteomic-based approaches were implemented by 
the previous study to evaluate the impact of toxicant 
such as heavy metal towards sentinel fish targeted 
organ and was considered valuable in the detection 
of early response to this toxic compound (Wang 
et al., 2011; Lu et al., 2012). Ecotoxicoproteomic 
by the combination of gel electrophoresis and 
mass spectrometry was expected to locate the 
biochemical mechanism involved in acute or chronic 
toxicity of heavy metals through the identified 
protein expression signatures (PES) and pathway 
impairment. A combination of both studies may 
strengthen the analysis results (Khoudoli et al., 
2004). Selected organ such as gill, liver, and brain 

was reported to have a significant impact under in 
vivo heavy metal exposure at the proteomic level 
(Feng et al., 2003; Wang et al., 2011; Dorts et al., 
2011; Eyckmans et al., 2012). The early relationship 
assessment between PES and the toxicant induction 
after run with one dimensional electrophoresis (1DE) 
or two dimensional electrophoresis (2DE) will be 
interpreted semiquantitatively either upregulations 
and downregulation of PES. For the examples, 
the study by Sanders et al. (1994) and Feng et al. 
(2003) based on 1DE showed upregulation of heat 
shock protein 70 parallel with copper concentration 
treatments and other stress protein were detected 
especially apoptotic factor such study by Kawakami 
et al., (2006).1DE result was limited to protein 
molecular weight separation while 2DE gave more 
detail result in which the protein has been separated 
according to their pI through isoelectrofocusing (IEF), 
then the second separation via molecular weight was 
performed by SDS-PAGE. The optimization of 2DE 
was well reported by Khoudoli et al. (2004).

There were various pattern types of PES; 1) 
Protein band or spot maintained their intensities, 2) 
Protein band or spot intensities kept on increasing 
(upregulation), and 3) Protein band or spot 
intensities kept on decreasing (Downregulation). 
Most of the type one PES are related to structural 
protein such as the study done by Wang et al. 
(2011) which actin, keratin and lamin were not 
affected by mercury. Another report also shows 
various functional proteins, especially enzyme 
remains unchanged during the copper treatment 
such as Fumarate hydratase, 4-Hydroxyphenylpyruvate 
dioxygenase, glutathione reductase, Uroporphyrinogen 
decarboxylase, Lactoylglutathione lyase, Homogentisate 
1,2-dioxygenase, Serine/threonine kinase 3 and 
Xanthine dehydrogenase (Chen and Chan, 2011; 
Chen and Chan, 2012). Type two and three patterns 
was called the unique protein affected by any type of 
treatment concentration or/and duration (Tomanek, 
2011). However, this unique PES are preferable for 
further analysis and would be identified using mass 
spectrometry (MS) such as matrix-assisted laser 
desorption/ionization-time of flight analysis/MS 
(MALDITOFF/MS) and liquid chromatography/MS 
(LC/MS).

Unique PES
An increase on the quantity of cellular component, 

especially protein, in response to an external effect is 
called upregulation. Under stress conditions, related 
protein such antioxidant, detoxifying enzyme, 
apoptotic and necrotic factor were upregulated in 
order to maintain the homeostasis or deleterious 
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Table 2: The effect of copper toxicity on organ proteome level based on proteomic approch (2D-PAGE)

Exposed with 50µg/L copper 
concentration (Eyckmans et 
al., 2012)
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processes of affected parenchyma cells. For example, 
the presence of toxicant in biological system may 
regulate the synthesis of detoxifying enzyme such 
as GST and GPx the toxicant and produce ROS at 
the same time (Sreejai and Jaya, 2010; Hossain et 
al., 2012). ROS such as radical and non-radical 
compound activates the expression of antioxidant 
gene to synthesis SOD and CAT to decrease the 
intracellular ROS level (Sheehan et al., 2007; Yang 
et al., 2013). However, the elevated level of ROS 
may cause damages in intracellular component 
which leads to the synthesis of apoptotic or necrotic 
compound such as caspase, cytochrome c, BAX, and 
BAD (Kawakami et al., 2008). 

Downregulation of protein by environmental 
stimuli are related to the suppression of protein 
synthesis by inhibition reaction, limitation or time 
delay for mRNA transcrption and translation, 
degradation, cellular damaged are repaired and 
harmful agents are neutralized or eliminated (Young 
et al., 1987; Jensen, 2006; Wan and Liu, 2008; Liu et 
al., 2013; Sánchez-García et al., 2013).  For example, a 
study done by Tanimoto and Kizaki (2002) mentioned 
the effect of proteosome inhibitor obstruct Ras/ERK 
signaling pathway subsequent in the downregulation 
of Fas ligand expression associate with the inhibiting 
synthesis of apoptotic and necrotic compound. 
Another study done by Fernando et al. (2013) 
showed the downregulation of protein expression 
such as carbamoyl phosphate synthase 1 (CSP 1) and 
78 kDa glucose regulated protein (GRP 78/HSPA5) 
in hepatocyte which both has been degraded affected 
by alcoholic steatosis, and both were selected as a 
biomarker for the early detection of hepatic lipidosis. 
Toxic metals such as As, Pb, Cd and Cu caused 
downregulation by anti-apoptotic compound, Bcl-2 
where this protein losses their function to maintain 
the mitochondria membrane permeability leads to 
structural destruction and the release of cytochrome 
c to activate the executive enzyme for the cell death 
program (Mehta et al., 2006; Rana, 2008; Hughes et 
al., 2011; Siddiqui et al., 2013; Galano et al., 2014). 
As the toxicant gave a great impact to the proteome 
level, proteomic approach was utilized as a biomaker 
to evaluate the toxicity level of those compounds. 
Table 2 shows the example of proteomic study on 
varies organ and species toward copper toxicity and 
provide the capability as a sensitive biomarker for the 
environmental factor.

Conclusion

The study of fish behaviors, cellular alteration, 
enzymatic reaction and proteomic approach promises 

the sensitive biomarker method to elucidate heavy 
metal on concentration, acute and chronic exposure 
toxicity. But, both methods have their own cons such 
as time consuming, cost and high technical ability. 
However, the combination of this method provides 
an integrative measurement and improves the 
understanding of the overall biological risk arising 
from the whole burden of bioavailable contaminants 
in areas contaminated especially by heavy metals. 
Thus, this method is supposes to be utilized in the 
biomonitoring program as a preliminary screening 
to elucidate other possible pollutant came from 
agricultural pesticides and fertilizer, industrial waste 
and civilization sewage.
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