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ABSTRACT 

In ECC, scalar multiplication is the dominant operation, namely computing nP from a 

point P on an elliptic curve where the multiplier n is an integer, defined as the point 

resulting from adding 𝑃 + 𝑃 + ⋯ + 𝑃, n times. The 𝜏-NAF proposed by Solinas, is 

one of the most efficient algorithms to compute scalar multiplications on Koblitz 

curves.  In this paper, we introduced an equivalent multiplier to 𝜏-NAF namely 

pseudoTNAF. It is based on the idea of transforming the 𝜏-NAF expression to a 

reduced 𝜏-NAF that has been done by some researchers. It can eliminate the elliptic 

doublings in scalar multiplication method, and double the number of elliptic additions. 

We provide the  formula for obtaining a total of lattice points in Voronoi region of 

modulo 𝑟 + 𝑠𝜏  where 𝑟 + 𝑠𝜏 an element of ring 𝑍(𝜏). This helps us to find all the 

multipliers 𝑛 that based on 𝜏-NAF. We also discuss the estimation of operational costs 

when using pseudoTNAF as a multiplier of scalar multiplication 

 

Keywords: Scalar multiplication, Koblitz curve, density, Voronoi region, Hamming 

weight.  

 

1. INTRODUCTION 

The Koblitz curves are a special type of curves for which the 

Frobenius endomorphism can be used for improving the performance of 
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computing a scalar multiplication (Koblitz,1987). The Koblitz curves are 

defined over 𝐹2 as follows 

 

𝐸𝑎: 𝑦2 + 𝑥𝑦 = 𝑥3 + 𝑎𝑥2 + 1 
 

where 𝑎 ∈ {0,1} (Koblitz, 1992). The Frobenius map 𝜏: 𝐸𝑎(𝐹2𝑚) ↦
 𝐸𝑎(𝐹2𝑚) for a point  𝑃 = (𝑥, 𝑦) on 𝐸𝑎(𝐹2𝑚) is defined by  

 

𝜏(𝑥, 𝑦) = (𝑥2, 𝑦2)  ,           𝜏(𝑂) = 𝑂 
 

where  𝑂 is the point at infinity. It stands that (𝜏2   + 2)𝑃 = 𝑡𝜏(𝑃) for all            

𝑃 ∈ 𝐸𝑎(𝐹2𝑚), where the trace, 𝑡 = (−1)1−𝑎 . Thus, it follows that the 

Frobenius map can be considered as a multiplication with complex number 

𝜏 =
𝑡+√−7

2
  (Solinas, (2000)). 

  

In the ensuing discussion, the following definitions will be applied. 

 

Definition 1. (Yunos and Mohd Atan, 2013).  A 𝜏-adic Non-Adjacent Form 

of nonzero 𝑛̅  an element of 𝑍(𝜏) is defined as  𝜏-NAF(𝑛̅) =  ∑ 𝑐𝑖𝜏𝑖𝑙−1
𝑖=0   

where  𝑙 is the length of an expansion of  𝜏-NAF(𝑛̅), 𝑐𝑙−1 ≠ 0, 𝑐𝑖 ∈  {−1,0,1} 

and 𝑐𝑖𝑐𝑖+1 = 0. 
 

Definition 2. (Yunos and Mohd Atan, 2013).  A Hamming weight is 

defined as the number of elements −1 and 1 of an expansion of an 

element of 𝑍(𝜏). 
 

Definition 3. (Hankerson et al., 2004). Let  𝑁: 𝑍(𝜏) →  𝑍 as a function 

of norm and  𝛼 = 𝑥 + 𝑦𝜏 an element of 𝑍(𝜏). The norm of  𝛼 is 

𝑁(𝛼) = 𝑥2 + 𝑡𝑥𝑦 + 2𝑦2 where 𝑡 = (−1)1−𝑎 . 

 

Definition 4.   An operational costs is defined as the cost in terms of 

running time to compute the scalar multiplication of the number of 

doubling and addition operations. 
 

Definition 5. (Solinas, 2000).  Let 𝜆 ∈  𝑄(𝜏), and 𝜆 = 𝜆0 + 𝜆1𝜏 with 𝜆0, 

𝜆1 ∈ 𝑅.   U is a region in the (𝜆0, 𝜆1)-plane by the inequalities below. 

 

−1 ≤ 2𝜆0 + 𝑡𝜆1 < 1 
-2 ≤  𝜆0 + 4𝑡𝜆1 < 2 

-2 ≤ 𝜆0 − 3𝑡𝜆1 < 2. 
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Definition 6.   A Voronoi region of  𝜓 𝑍(𝜏) is denoted by  

 

V = {𝜆 𝜓: 𝜆 ∈  𝑈, 𝜓 ∈  𝑍(𝜏)}. 

 

In this paper, we introduced an equivalent multiplier to 𝜏-NAF namely 

pseudoTNAF.  This is based on the idea of transforming the 𝜏-NAF to a 

reduced    𝜏-NAF developed by some researchers for example Solinas, 2000, 

and Joye and Tymen, 2001.  We begin in Section 2 with the concept of 

reduction in the ring Z(𝜏). In Section 3, we prove the equivalence of both 

expansion of 𝜏-NAF and  pseudoTNAF, also refined one of the properties of 

𝜌 so that the scalar multiplication is not heading to infinity. Two other 

properties have been discussed by Yunos et al., 2014.  In Section 4, we give 

the formula to find the number of elements in Voronoi region of  

𝜌
𝜏𝑚 −1

𝜏−1
𝑍(𝜏) and produced the algorithm for finding all points in               

mod (𝑟 + 𝑠𝜏).  This algorithm is important to facilitate the process of getting 

all pseudoTNAF for all elements in 𝜌 
𝜏𝑚 −1

𝜏−1
 developed in Section 5.   The 

discussion concluded with the estimating of average Hamming weight of 

pseudoTNAF with maximum length. 

 

2. MODULO REDUCTION IN Z(𝝉) 

The region U that was mentioned in Definition 5 form a hexagon 

with six vertices with their norms 
4

7
  respectively. If the vertices is 

represented by  𝜆 = 𝜆0 + 𝜆1𝜏  then  𝜆0
2  +  𝑡 𝜆0𝜆1 𝜏 + 2 𝜆1

2  =   
4

7
 form an 

ellipse. However, if 𝜆 a point in the ellipse, then the norm is less than  
4

7
. 

Thus, we have   

𝑁(𝜆) ≤   
4

7
. 

 

The    rounding process of  𝜆 ∈  𝑄(𝜏) is done via  

 

𝑅𝑜𝑢𝑛𝑑(𝜆) =  ⌊𝜆 +
1

2
⌋    (1) 

 

so that 𝜆 ∈ 𝑍 (𝜏). The value of  ⌊𝜆 +
1

2
⌋ is the largest integer that does not 

exceed 𝜆 +
1

2
. 
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The reduction concept in the field of rational integer has been 

discussed by Solinas, 2000. The reduction of 𝑥′ 𝑚𝑜𝑑 𝑧′ is expressed as 

𝑥′ ≡ 𝑦′ 𝑚𝑜𝑑 𝑧′ where 𝑦′ and 𝑧′ > 1 are integers, −
𝑧′

2
≤    𝑥 ′ <

𝑧′

2
 and 

𝑁(𝑥′) <
1

2
𝑁 (𝑧 ′).  This reduction is then expanded  to the ring of 𝑍(𝜏) i.e.   

 

𝑥 ′′ ≡  𝑦′′ 𝑚𝑜𝑑  𝑧′′ 
 

where 𝑦′′ and 𝑧′′ are elements of  𝑍(𝜏). Division  𝑦′′  by 𝑧′′ produces the 

residue 𝑥′′  and it can be written as 

 

𝑦′′ = 𝜅 𝑧′′ + 𝑥′′ 
 

where 𝜅 ∈  𝑍(𝜏). Suppose that  𝜆 =
𝑦′′

𝑧′′
. It generates 𝜆 an element of 𝑄(𝜏). 

The rounding process of  𝜆 to an element of 𝑍(𝜏) is done via (1) so that 𝜅  an 

element of 𝑍(𝜏).  Therefore, the residue 𝑥′′ is obtained from equation 

 

𝑥′′ = 𝑦′′ − 𝜅 𝑧′′ 
 

where 𝜅 = 𝑅𝑜𝑢𝑛𝑑(𝜆). Now, the above expression becomes  

 

𝑥′′ = 𝑧′′(𝜆 − 𝑅𝑜𝑢𝑛𝑑(𝜆)) 
 

where 𝑁(𝜆 − 𝑅𝑜𝑢𝑛𝑑(𝜆)) ≤
4

7
.  To avoid scalar multiplication towards to 

infinity, the residue 𝑥′′ must have a norm as small as possible i.e. 

  

𝑁(𝑥′′) ≤  
4

7
𝑁(𝑧′′).    (2) 

 

ROUTINE 62 in Solinas, 2000, for division in 𝑍(𝜏) provides a detail 

reduction steps for  𝑥′′ 𝑚𝑜𝑑 𝑧′′.  This algorithm has been used by Solinas in 

the reduction of  𝑥′′ 𝑚𝑜𝑑 (𝜏𝑚  − 1) and  𝑥′′𝑚𝑜𝑑 
𝜏𝑚 −1

𝜏−1
..  

 

3.   EQUIVALENCE OF  𝝉-ADIC NAF 

 The main purpose of obtaining an equivalence of   𝜏 –adic NAF is to 

maintain the situation so that the doubling operation in elliptic scalar 

multiplication method can be eliminated and the number of elliptic additions 

can be doubled. Let 𝐺 be a set of points on Koblitz Curve. Let 𝛾  and 𝛽  are 

element of  𝑍(𝜏) such that 𝛾 𝑃 =  𝛽𝑃 for all  𝑃 ∈  𝐺. Therefore 𝜏 –NAF( 𝛾) is 
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equivalent to  𝜏 –NAF( 𝛽) with respect to 𝐺. The following proposition 

provides a guideline on how the equivalence of two 𝜏 –NAF occur on the 

entire set  𝐺 = 𝐸𝑎  𝐹2𝑚.   
  

Proposition 1.  If  𝛾, 𝛽  and 𝜌  are elements of 𝑍(𝜏) where 𝛾 ≡ 𝛽 𝑚𝑜𝑑 

𝜌 
𝜏𝑚 −1

𝜏−1
 then 𝛾 𝑃 =  𝛽𝑃 for all 𝑃 ∈  𝐸𝑎  𝐹2𝑚.  𝜏 – NAF( 𝛾) is equivalent to 𝜏 –

NAF( 𝛽) in set 𝐸𝑎  𝐹2𝑚. 

 

Proof. 

Given  𝛾, 𝛽  and 𝜌  are elements of 𝑍(𝜏)   and 𝛾 ≡ 𝛽 𝑚𝑜𝑑 𝜌 
𝜏𝑚 −1

𝜏−1
.   

Therefore,   

𝛾 = 𝛽 + 𝜌 
𝜏𝑚  − 1

𝜏 − 1
⋅ 𝜅 

for 𝜅 ∈   𝑍(𝜏).  Thus, 

𝛾 𝑃 = 𝛽 𝑃 + 𝜌 
𝜏𝑚  − 1

𝜏 − 1
⋅ 𝜅 ⋅  𝑃. 

 
Since (𝜏𝑚 − 1)𝑃 = 𝑂 (refer Proposition 65 on page 221 Solinas, 2000,  then 

 

𝛾 𝑃 = 𝛽 𝑃 + 𝑂 
                                                    𝛾𝑃 = 𝛽 𝑃.  

 

Hence, 𝜏 – NAF( 𝛾) is equivalent to 𝜏 –NAF( 𝛽) in set 𝐸𝑎  𝐹2𝑚.  ∎  
 

In this paper, 𝛾 as a product of reduction modulo 𝜌 
𝜏𝑚 −1

𝜏−1
 as shown in 

Proposition 1 can be used as a multiplier for 𝑃. If the multiplier of 𝑃 is equal 

to  𝜌 
𝜏𝑚 −1

𝜏−1
 , then the scalar multiplication getting towards infinity due to 

 

𝜌 
𝜏𝑚 −1

𝜏−1
 (P)= (𝜏𝑚  − 1) P⋅

𝜌

𝜏−1
 = 𝑂. 

 

To avoid this situation, 𝛾 ∈  𝑍(𝜏)  with the norm as small as possible should 

be selected. Solinas, 2000, has given condition (2) of  𝑁(𝑥′′) for 𝑥 ′′ ≡
 𝑦 ′′𝑚𝑜𝑑 𝑧′′ for any 𝑧 ′′ ∈  𝑍(𝜏). With this guideline, the following condition 

must be chosen. That is,  

 

𝑁(𝛾) ≤  
4

7
𝑁 (𝜌

𝜏𝑚  − 1

𝜏 − 1
).    (3) 
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This study named the 𝜏 –NAF(𝛾) with condition (3), 𝜌 ≠  1 and 𝜌 ≠ 𝜏 − 1 as 

pseudo 𝜏 –adic non adjacent form of 𝛾 and abbreviated as pseudoTNAF(𝛾). 

 

By substituting 𝛾 with 𝑛̅, pseudoTNAF(𝑛̅) can be used in place of 𝜏-

NAF(𝑛̅)  for elliptic scalar multiplication on the set 𝐸𝑎  𝐹2𝑚.  The elliptic 

operational costs with pseudoTNAF(𝑛̅) can be calculated by estimating an 

average Hamming weight of it’s expansion. Such average is a product of 

multiplying an average density among pseudoTNAF(𝑛̅) that have the 

maximum length 𝑙 ̅  by the size of  maximum length.  

   

4. VORONOI REGION OF 𝝆
𝝉𝒎 −𝟏

𝝉−𝟏
𝒁(𝝉) 

In this section, we give a geometric description of element 𝑛 that is a 

result from the modulo reduction of  𝜌
𝜏𝑚 −1

𝜏−1
.  The following theorem is 

important in order to get the Voronoi region of  𝜌
𝜏𝑚 −1

𝜏−1
𝑍(𝜏) where 𝜌

𝜏𝑚 −1

𝜏−1
≠

0. 

 

Theorem 1.  Suppose that 𝜆 is in the interior of region U,  𝜓 =  𝑟 + 𝑠 𝜏 and  

𝜔 =  𝑁(𝜓). Then the following properties are true for every nonzero 

𝜓 ∈   𝑍(𝜏). 

 

(i) If 𝑁(𝜆) <  𝑁(𝜆 ± 𝜓) then |(2𝑟 + 𝑡𝑠)𝜆0 + (𝑡𝑟 + 4𝑠)𝜆1| < 𝜔. 

(ii) If  𝑁(𝜆) < 𝑁(𝜆 ± 𝜏𝜓) then |(𝑟 − 3𝑡𝑠)𝜆0 + (4𝑡𝑟 + 2𝑠)𝜆1| < 2𝜔. 

(iii) If 𝑁(𝜆) < 𝑁(𝜆 ± 𝜏̅𝜓) then |(𝑟 + 4𝑡𝑠)𝜆0 − (3𝑡𝑟 − 2𝑠)𝜆1|  < 2𝜔. 

 

Proof.  

Suppose that  𝜆 = 𝜆0 + 𝜆1𝜏 and  𝜓 =  𝑟 + 𝑠 𝜏. 

 

(i) If  𝑁(𝜆) <  𝑁(𝜆 + 𝜓)  then we have 

𝜆0
2  +  𝑡𝜆0 𝜆1  +  2𝜆1

2 < 𝜆0
2 + 2𝜆0 𝑟 + 𝑟2 + 𝑡( 𝜆0 𝜆1  + 𝜆0 𝑠 + 𝑟 𝜆1 + 𝑟𝑠)       

                                     + 2 (𝜆1
2 + 2𝜆1𝑠 + 𝑠2) 

                               0 < 𝜆0(2𝑟 + 𝑡𝑠) + 𝜆1(𝑡𝑟 + 4𝑠) + (𝑟2 + 𝑡𝑟𝑠 + 2𝑠2) 

 −(𝑟2 + 𝑡𝑟𝑠 + 2𝑠2)  < 𝜆0(2𝑟 + 𝑡𝑠) + 𝜆1(𝑡𝑟 + 4𝑠) 

                     −𝑁(𝜓) < 𝜆0(2𝑟 + 𝑡𝑠) + 𝜆1(𝑡𝑟 + 4𝑠). 

 

Take 𝑁(𝜓) = 𝜔, then we have 

 

−𝜔 < 𝜆0(2𝑟 + 𝑡𝑠) + 𝜆1(𝑡𝑟 + 4𝑠).    (4) 
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And also by using the similar way as above,   if  𝑁(𝜆)  <  𝑁(𝜆 − 𝜓), 

then  

 

𝜔 > 𝜆0(2𝑟 + 𝑡𝑠) + 𝜆1(𝑡𝑟 + 4𝑠).    (5) 

 

From (4) and (5), we obtain 

 

−𝜔 < 𝜆0(2𝑟 + 𝑡𝑠) + 𝜆1(𝑡𝑟 + 4𝑠) < 𝜔.   
 

(ii) If 𝑁(𝜆) <  𝑁(𝜆 + 𝜏𝜓), then 

 

𝜆0
2 + 𝑡𝜆0 𝜆1 + 2𝜆1

2 < 𝜆0
2 − 4𝜆0 𝑠 + 4𝑠2 + 

                                   𝑡( 𝜆0 𝜆1 + 𝜆0 𝑟 + 𝜆0 𝑠𝑡 − 2𝜆1𝑠 − 2𝑟𝑠 − 2𝑠2𝑡 ) 

                                  +2 ( 𝜆1
2 + 2𝜆1𝑟 + 2𝜆1𝑠𝑡 + 𝑟2 + 2𝑟𝑠𝑡 + 𝑠2) 

               0 < 𝜆0(𝑡𝑟 − 3𝑠) + 𝜆1(4𝑟 + 2𝑠𝑡) +  2(𝑟2 + 𝑡𝑟𝑠 + 2𝑠2) 

−2𝜔 < 𝜆0(𝑡𝑟 − 3𝑠) + 𝜆1(4𝑟 + 2𝑠𝑡).    (6) 

 

And also by using the similar way as above, if  𝑁(𝜆) <  𝑁(𝜆 – 𝜏𝜓), then 

we get  

2𝜔 > 𝜆0(𝑡𝑟 − 3𝑠) + 𝜆1(4𝑟 + 2𝑠𝑡). (7)                                 

 

From (6) and (7), we obtain 

 

−2𝜔 < 𝜆0(𝑡𝑟 − 3𝑠) + 𝜆1(4𝑟 + 2𝑠𝑡)  <  2𝜔. 
 

Since 
1

𝑡
= 𝑡 for 𝑡 = ±1 then  

−2𝜔 < 𝜆0(𝑟 − 3𝑡𝑠) + 𝜆1(4𝑡𝑟 + 2𝑠)  <  2𝜔. 

 

(iii) If  𝑁(𝜆) <  𝑁(𝜆 + 𝜏̅𝜓), then 

 

 𝜆0
2  +  𝑡𝜆0𝜆1 + 2𝜆1

2 < 𝜆0
2 + 2𝑡𝜆0 𝑟 + 4𝜆0 𝑠 + 4𝑠2 + 4𝑡𝑟𝑠 

                                    +𝑡(𝜆0 𝜆1 − 𝜆0 𝑟 + 𝑡𝜆1 𝑟 − 𝑡𝑟2 + 2𝜆1𝑠 − 2𝑟 𝑠 ) + 

                                     2 ( 𝜆1
2 − 2𝜆1𝑟 + 𝑟2) 

                             0 < 𝜆0(𝑡𝑟 + 4𝑠) + 𝜆1(−3𝑟 + 2𝑡𝑠) + 2(𝑟2 + 𝑡𝑟𝑠 + 2𝑠2) 
 

−2𝜔 < 𝜆0(𝑡𝑟 + 4𝑠) + 𝜆1(−3𝑟 + 2𝑡𝑠) (8)                              

 

And also by using the similar way as above,,  if  𝑁(𝜆) <  𝑁(𝜆 − 𝜏̅𝜓), 

then we have 
 

2𝜔 > 𝜆0(𝑡𝑟 + 4𝑠) + 𝜆1(−3𝑟 + 2𝑡) (9)                                 



Faridah Yunos et al. 

 

78 Malaysian Journal of Mathematical Sciences 

 

From (8) and (9), we obtain 

−2𝜔 < 𝜆0(𝑡𝑟 + 4𝑠) + 𝜆1(−3𝑟 + 2𝑡𝑠) <  2𝜔. 
 

Since 
1

𝑡
= 𝑡 for 𝑡 = ±1 then  

−2𝜔 < 𝜆0(𝑟 + 4𝑡𝑠) + 𝜆1(−3𝑡𝑟 + 2𝑠)  <  2𝜔.                        ∎ 

 

As a result, the Voronoi region of  𝜓 𝑍(𝜏) is given by the inequalities 

 

−𝜔 ≤ (2𝑟 + 𝑡𝑠)𝜆0 + (𝑡𝑟 + 4𝑠)𝜆1 < 𝜔 
−2𝜔 ≤ (𝑟 + 4𝑡𝑠)𝜆0 − (3𝑡𝑟 − 2𝑠)𝜆1 < 2𝜔 
−2𝜔 ≤ (𝑟 − 3𝑡𝑠)𝜆0 + (4𝑡𝑟 + 2𝑠)𝜆1 < 2𝜔. 

 

The above result is similar to the definition of region V made by 

Solinas, 2000, with the assumption of the variable 𝑤 is the norm of  𝜓 =
𝜏𝑚 −1

𝜏−1
. Wheareas, in our study, w is the norm of any element in 𝑍(𝜏).  

However, this study has confirmed that the definition of V made by him can 

be apply to the case of  𝜓 is any element in 𝑍(𝜏). There is suggestion in 

Theorem 6 of Gordon, 2008, say that the elements in the Voronoi region with 

𝜏𝑚 − 1 can be obtained from the distribution of elements in 𝐿 =
  {0,1,2, … , 𝑁 (𝜏𝑚  − 1)  − 1}  by  𝜏𝑚 − 1. In other words, the reduction of 𝐿 

mod 𝜏𝑚 − 1 produces a total of  𝑁(𝜏𝑚 − 1) − 1 distinct lattice points in the 

Voronoi region of  (𝜏𝑚 − 1)Z(𝜏).  Solinas (2000) also follow the same 

suggestion i.e. the Voronoi region with 
𝜏𝑚 −1

𝜏−1
    can be derived from the 

division of each element in {0,1,2, … , 𝑁 (
𝜏𝑚 −1

𝜏−1
) − 1} by 

𝜏𝑚 −1

𝜏−1
.    This 

division also generates a total of  𝑁 (
𝜏𝑚 −1

𝜏−1
) distinct lattice points. This is 

reinforced with Proposition 75 of Solinas, 2000, which says that the lattice 

points in the region Voronoi is exactly  𝑛 𝑚𝑜𝑑 𝜓   for any 𝜓 ∈  𝑍 (𝜏) where                  

0 ≤  𝑛 < 𝑁(𝜓). The question now, does this proposition could be applicable 

in the case of 𝜓 = 𝜌
𝜏𝑚 −1

𝜏−1
 ? Suppose that Voronoi region with 𝜌

𝜏𝑚 −1

𝜏−1
  and 

written as 𝑉 = { 𝜌
𝜏𝑚 −1

𝜏−1
 𝜆: 𝜆 ∈  𝑈}.  The following describes the Voronoi 

region of   2
𝜏3 −1

𝜏−1
 𝑍(𝜏) = (−2 + 4𝜏)𝑍(𝜏) with 𝑡 = 1. 
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Figure 1:  A Voronoi Region of    (−2 + 4𝜏)𝑍(𝜏) with 𝑡 = 1. 

 

In the above figure, the division of every element in {0,1,2, … , 27} by 

2 4   produces (0,0),(1,0),(2,0),(3,0),  ( 2, 2),( 1, 2),(0, 2),(1, 2),        

(2, 2),(3, 2),(4, 2),( 3,0),     ( 2,0),( 1,0),(0,0),   (1,0),(2,0),(3,0),( 2, 2), 

( 1, 2),  (0, 2),(1, 2),(2, 2),(3, 2),    (4, 2),( 3,0),( 2,0)    and (−1,0) 

respectively. That is, there exist 14 distinct lattice points with  14 pairs of the 

same points that satisfy the region V.  In this case, the number of this distinct 

points is a total of 2𝑁(−1 + 2𝜏) = 14 (i.e. supposed to be 𝑁(𝜓) = 28 by 

Proposition 75 of Solinas, 2000. The actual points in the above figure have 

been produced from the reduction of {0,1,2, … ,13} 𝑚𝑜𝑑 (−2 + 4𝜏). Its show 

us that the Proposition 75 of Solinas, 2000, is not applicable for  the case of 

𝜓 = 2
𝜏3 −1

𝜏−1
. Now, we observing another case by studying first the property 

of 𝑟 + 𝑠𝜏. 

 

Theorem 2. Suppose that 𝑟 + 𝑠𝜏 = 𝜌′( 𝑟′ + 𝑠′𝜏) where 𝜌′ ∈  𝑍 and                  

𝑟′ + 𝑠′𝜏 ∈  𝑍(𝜏) then  𝑍 ∩ (𝑟 + 𝑠𝜏)𝑍(𝜏) = 𝜌′𝑁(𝑟′ + 𝑠′𝜏)𝑍. 
 

Proof. 

Let  𝑟 + 𝑠𝜏 = 𝜌′( 𝑟′ + 𝑠′𝜏), then we obtain 

 

𝑍 ∩ (𝑟 + 𝑠𝜏)𝑍(𝜏)  =  𝑍 ∩ 𝜌′(𝑟′ + 𝑠′𝜏) 

                                        {… , −2(𝑟′ + 𝑠′𝜏 ̅), −(𝑟′ + 𝑠′𝜏 ̅),0, 𝑟′ + 𝑠′𝜏 ̅, 2 (𝑟′ +  

𝑠′𝜏 ̅), … , (𝑖 + 𝑗𝜏)(𝑟′ + 𝑠′𝜏 ̅), … ∣  𝑖, 𝑗 ∈  𝑍 } 
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                              =  𝑍 ∩ 𝜌′𝑁(𝑟′ + 𝑠′𝜏){… , −2, −1,0,1,2, … , 𝑖 + 𝑗𝜏, … ∣ 
 𝑖, 𝑗 ∈  𝑍} 

                              =  𝑍 ∩ 𝜌′𝑁(𝑟′ + 𝑠′𝜏){ 𝑍 ∪  𝑍(𝜏)} 
                              = 𝜌′𝑁(𝑟′ + 𝑠′𝜏)𝑍.      ∎ 

 

As a result, the number of lattice points in the interior of Voronoi derived 

from the division of each element in {0,1,2, … , 𝑁(𝑟 + 𝑠𝜏) − 1} by  𝑟 + 𝑠𝜏  

can be obtained by the following corollary. 

 

Corollary 1.   Let Voronoi region V is define as Definition 6 and 𝜓 = 𝑟 + 𝑠𝜏 

an element of Z(𝜏). The number of lattice points in V can be obtained from 

formula |𝜌′| 𝑁(𝑟′ + 𝑠′𝜏) such that 𝑟 + 𝑠𝜏 = 𝜌′ ( 𝑟′+𝑠′𝜏) where 𝜌′ ∈  𝑍 and                    

𝑟′ + 𝑠′𝜏 ∈  𝑍(𝜏). 

  

Proof. 

Let 𝑟 + 𝑠𝜏 = 𝜌′ ( 𝑟′+𝑠′𝜏) where 𝜌′ ∈  𝑍 and 𝑟′ + 𝑠′𝜏 ∈  𝑍(𝜏). Since                  

𝑍 ∩  (𝑟 + 𝑠𝜏)𝑍(𝜏) = 𝜌′𝑁(𝑟′ + 𝑠′𝜏)𝑍 from Theorem 2,   then the number of 

lattice points in V can be obtained from |𝜌′| 𝑁(𝑟′ + 𝑠′𝜏). ∎ 

 

For the case that  𝜓 = 𝜌 
𝜏𝑚 −1

𝜏−1
 ,  this expression needs to be converted into  

𝑟 + 𝑠𝜏 via Lucas sequence before factoring 𝜓 into 𝜌′ ( 𝑟′ + 𝑠′𝜏).  Refer 

Figure 1, 𝑟 + 𝑠𝜏 =  −2 + 4𝜏 can be factorized into 2(−1 + 2𝜏). Hence,                             

 𝑍 ∩ (−2 + 4𝜏) 𝑍(𝜏) =  2𝑁(−1 + 2𝜏)𝑍 = 14𝑍 where the coefficient of 𝑍 

which is 14 is the number of points in the interior of Voronoi region of  
(−2 + 4𝜏)𝑍(𝜏). The following is an algorithm for obtaining the number of 

lattice points in the region V of  (𝑟 + 𝑠𝜏)𝑍(𝜏), which uses Corollary 1.  

𝑁(𝑃𝑢) in the following algorithm is the norm for every lattice points in the 

Voronoi region. They must be less than or equal to 
4

7
𝑁(𝑟 + 𝑠𝜏)  so that the 

scalar multiplication will not approaches to infinity. 

 

Algorithm 1. (Finding all points in mod (𝒓 + 𝒔𝝉)) 

Input: Integers 𝑟, 𝑠, 𝜌′, 𝑟′ and 𝑠′  such that 𝑟 + 𝑠𝜏 = 𝜌′ ( 𝑟′ + 𝑠′𝜏). 
Output: All points 𝑥𝑢 + 𝑦𝑢𝜏 ∈  𝑚𝑜𝑑  (𝑟 + 𝑠𝜏) and their norms respectively. 

Computation: 
 

(1)  𝑁(𝑟′ + 𝑠′𝜏) ←  (𝑟′)2 + 𝑡𝑟′𝑠′ + 2(𝑠′)2. 
(2)  𝑁′ ← |𝜌′| 𝑁(𝑟′ + 𝑠′𝜏). 

(3)  For 𝑢 from 0 to 𝑁′ − 1 do 

            𝑘 ←  𝑟’𝑢 + 𝑡𝑠’𝑢. 
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            𝑙 ← – 𝑠’𝑢. 
            ℎ ← (𝑟’)2 + 𝑡𝑟’𝑠’ + 2(𝑠’)2. 

\item $𝜆0 ←  
𝑘

ℎ
 . 

\item $𝜆1 ←
𝑙

ℎ
. 

Use Algorithm 3.63 of Hankerso, 2004, for  rounding of 𝑤 and 𝑧 

in 𝑄(𝜏) to get  elements in 𝑍(𝜏). 

\item 𝑥𝑢 ←  𝑢 − 𝑟′𝑤 + 2𝑠′𝑧. 
\item 𝑦𝑢 ←  −𝑠′𝑤 − 𝑟′𝑧 − 𝑡𝑠′𝑧. 

\item 𝑃𝑢 ←  𝑥𝑢 + 𝑦𝑢𝜏. 
\item 𝑁(𝑃𝑢) ←  𝑥𝑢

2 + 𝑡𝑥𝑢𝑦𝑢 + 2𝑦𝑢
2. 

 
(4) Return (𝑃𝑢, 𝑁(𝑃𝑢)). 
 

The programming of Algorithm 1 using Maple 13 is shown in the Diagram 1 

in Appendix. Once all elements in mod 𝜌
𝜏𝑚 −1

𝜏−1
 are known via Algorithm 1, 

so now it is easy to get the pseudoTNAF expansion for each element. The 

algorithm is presented in the next section.  

 

5. DENSITY FOR SOME ELEMENTS IN MODULO 𝝆 
𝝉𝒎 −𝟏

𝝉−𝟏
  

In this section, we discuss a method for obtaining the density of some 

elements in mod 𝜌 
𝜏𝑚 −1

𝜏−1
 . Firstly, we find the Hamming weight of 

pseudoTNAF expansions together with their lengths. After that, we calculate 

the density of each element  by dividing the Hamming weight by its length. 

This density are very important  to determine the operating costs of elliptic 

scalar multiplication with the multiplier for 𝑃 is based on pseudoTNAF. We 

developed the following algorithm to obtain all pseudoTNAF for all elements 

in 𝜌 
𝜏𝑚 −1

𝜏−1
 .  

  

Algoritma 2. 

Input: Integers 𝑥𝑢, 𝑦𝑢 for 𝑢 ∈ {0,1,2, … , 𝑁′ − 1} 

Output: pseudoTNAF (𝑥𝑢 +  𝑦𝑢𝜏) 

Computation: 

 (𝑐0, 𝑐1) ← (𝑥0, 𝑦0) 
 𝑝𝑠𝑒𝑢𝑑𝑜𝑇𝑁𝐴𝐹0 ←  0 

 For 𝑢 from 1 to 𝑁′ − 1 do 
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 (𝑐0, 𝑐1) ← (𝑥𝑢, 𝑦𝑢) 

  𝑖 ← 0 
              While 𝑐0 ≠ 0 or 𝑐1 ≠ 0 do 

                                     If 𝑐0 is odd then 

\text{\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;𝜐𝑖 ←  2 − (𝑐0 − 2 𝑐1 𝑚𝑜𝑑 4) 

\text{\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;𝑐0 ←  𝑐0 − 𝜐𝑖 

\text{\;\;\;\;\;\;\;\;\;\;\;\;}else 

\text{\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;𝜐𝑖 ← 0  

                           Endwhile 

\text{\;\;\;\;\;\;  \;𝑅 ← 𝑐0  

\text{\;\;\;\;\;\;  }(𝑐0, 𝑐1) ← (𝑐1 +
𝑡⋅ 𝑐0

2
, −

𝑅

2
) 

\text{\;\;\;\;\;\;  } 𝑖 ← 𝑖 + 1 

 text{\;\;\;\;\;\;   }𝑗 ← 𝑖  
             Output  𝑝𝑠𝑒𝑢𝑑𝑜𝑇𝑁𝐴𝐹𝑢(𝜐0, 𝜐2, … , 𝜐𝑗−1) 

 
The programming of Algorithm 2 using Maple 13 is shown in the Diagram 2 

in Appendix. Through the above algorithm, the number of bits of 𝑁′ can be 

used as a guide to find an integer 𝑢 which is a multiplier of scalar 

multiplication. For example, if  𝑎 = 0,            𝜌0 = 1,          𝜌1 = −1 and 

𝑚 = 163, then 𝑁’ = 1169201309864722334562947381626363161783 

6683539492.  

 

The maximum number of bits available for integer 𝑢 in 

 (-3334746503586958025881129-mod 1824026374634505274957943 ) is 

about 163 bits. In other words, we can get all integers  𝑢 with their sizes 

between 1 to 163 bits.  The question now, does all integers 𝑢 from 1 to 

𝑁′ − 1 suitable to be used as the multipliers for scalar multiplication? 

According to Solinas, 2000, the sizes of the practical multiplier for ECC is 

between 96 to 128 bits for 𝑚 = 163.  It is not necessary to examine all points 

𝑢 from 1 to 𝑁′ − 1.That is, the integers 𝑢 should be in element of 

[39614081257132168796771975168,34028236692093846346337460743176

8211455].  

 

That means, there are 340282366881324382206242438634996236288 

choice of multipliers that might be used in the scalar multiplication. Several 

options  𝑢 can be made randomly by doing part by part looping. For example, 

to obtain the pseudoTNAF for 𝑢 in Table 1, the command ‘ for 𝑢 from 0 to 

𝑁′ − 1 do’ and ‘for 𝑢 from 1 to 𝑁′ − 1 do’ can be replaced by the command 

‘for  u from 79228162514264337593543950335 to 7922816251426433759 

3543950339 do'.  
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TABLE 1:  Density of  pseudoTNAF for some integers 𝑢 modulo  (1 − 𝜏)
𝜏163−1

𝜏−1
  with their sizes 

 are 96 and 97 bits 

 

𝑢 
Size of 

bits 

Length of 

pseudoTNAF 

Hamming 

weight 

Density 
(5decimal 

places) 

79228162514264337593543950335 96 157 29 0.18471 

79228162514264337593543950338 96 157 28 0.17834 

79228162514264337593543950336 97 157 30 0.19108 

79228162514264337593543950337 97 157 29 0.18471 

79228162514264337593543950339 97 157 27 0.17197 

 

From the above table, the average Hamming weight among integer 𝑢 of 

length 157 is 
29+28+30+29+27

28.6.
5

  This value is equal to 

0.18471+0.17834+0.19108+0.18471+0.171
0.182162,

5
   the average density 

among integer 𝑢 of length 157)  multiplied by the length 157.  With a few 

multiplier  𝑢 that randomly chosen will not be able to give an estimation of 

the actual average Hamming weight of pseudoTNAF with maximum length.  

The question remains how such estimation can be made? This will be 

discussed in detail in the next topic. 

 

6. AVERAGE HAMMING WEIGHT AMONG PSEUDOTNAF 

OF MAXIMUM LENGTH 

Gordon, 1998, has shown that the average Hamming weight of 

TNAF of all length m integers of [1, 𝑁 (𝜏𝑚 − 1) − 1] is approximately 
𝑚

3
(1 +  𝑜 (1)) when 𝑚 →   ∞.  This estimation is a product of multiplying 

the average density 
1

3
 +  𝑜 (1) with the maximum length (i.e. 𝑚). By taking 

the same average density, Solinas, 2000, has shown that the average 

Hamming weight of RTNAF of all length 𝑚 + 𝑎  integers of [1, 𝑁(
𝜏𝑚−1

𝜏−1
) −

1] is about 
𝑚

3
 when 𝑚 →   ∞. Such average is a product of multiplying the 

average density  
1

3
 +  𝑜 (1) with the maximum length (i.e. 𝑚 + 𝑎).  Now, our 

study provides an estimation of average density of pseudoTNAF via the 

following proposition. The average is estimated to be equal to 
1

3
 +  𝑜 (1) as 

Gordon, 1998, with some modifications against the arguments given by him. 
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Proposition 2.  The average density of  pseudoTNAF is approximately 

1
(1).

3
o   

 

Proof. 

Integer reduction of {0,1, … , |𝜌′| 𝑁(𝑟′ + 𝑠′𝜏) − 1} cover all congruence 

classes modulo 𝜌(
𝜏𝑚−1

𝜏−1
). Integer |𝜌′| 𝑁(𝑟′ + 𝑠′𝜏) is the number of lattice 

points in the Voronoi region of 𝜌𝑁(
𝜏𝑚−1

𝜏−1
)𝑍(𝜏) as in Corollary 1. Every 

integers of {0,1, … , |𝜌′| 𝑁(𝑟′ + 𝑠′𝜏) − 1} are divided by 𝜌(
𝜏𝑚−1

𝜏−1
)  to get a 

total of  |𝜌′| 𝑁(𝑟′ + 𝑠′𝜏) lattice points that can be obtained through the 

Algorithm 1.  Each lattice points of length  𝑙 ̅are complete distributed to some 

Voronoi region of 𝜏𝑙+̅3 𝑍 (𝜏) that overlaps with the Voronoi region of  

𝜌 (
𝜏𝑚−1

𝜏−1
). Then, pseudoTNAF of each points obtained from the Algorithm 2. 

The number of pseudoTNAF of  𝑙 ̅ > 2 is greater than 4 and less than 

𝑁(𝜏𝑙+̅3). Thus, the average density of the maximum length can be identified 

and it is approximately 
1

(1).
3

o    ∎ 

 

Finally, the average Hamming weight among pseudoTNAF of maximum 

length can be estimated. This is explained in the following theorem. 

 

Theorem 2. The average Hamming weight among pseudoTNAF of all 

integers modulo 𝜌 (
𝜏𝑚−1

𝜏−1
) with maximum length is approximately (

1

3
 +

 𝑜 (1)) (𝑙𝑜𝑔2 𝑁(𝜌) + 𝑚 + 𝑎). 

 

Proof. 

The maximum length of the pseudoTNAF expansion can be obtained from 

Theorem 2.7 of Yunos et al., 2014, i.e.  𝑙𝑜𝑔2 𝑁(𝜌) + 𝑚 + 𝑎. Whereas the 

average density of pseudoTNAF is around 
1

(1)
3

o  obtained from 

Proposition 2.  Therefore,   The average Hamming weight is      

 

(
1

3
 +  𝑜 (1)) (𝑙𝑜𝑔2 𝑁(𝜌) + 𝑚 + 𝑎).  ∎ 
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7. CONCLUSION 

Proposition 1 has proved that pseudoTNAF is equivalent to TNAF in 

set 𝐸𝑎  (𝐹2𝑚). Therefore, the pseudoTNAF can be used as a multiplier to the 

scalar multiplication with condition (3)  so that scalar multiplication is not 

towards to infinity.  Now, the operational costs when using pseudoTNAF can 

be estimated via the average Hamming weight of pseudoTNAF.  That is 

approximately  (
1

3
 +  𝑜 (1)) (𝑙𝑜𝑔2 𝑁(𝜌) + 𝑚 + 𝑎).  

 

We also developed one algorithm for finding all pseudoTNAF in 

modulo 𝜌 (
𝜏𝑚−1

𝜏−1
).  Retrieval from this algorithm is important to get the 

lowest operational costs of scalar multiplication for a certain 𝜌 and 𝑚 that 

will be the subject of our future discussion. 

 

REFERENCES 

Avanzi, R. M., Heuberger, C. and Prodinger, H. (2005). Minimality of the 

Hamming Weight of the 𝜏-NAF for Koblitz Curves and Improved 

Combination with Point Halving. http://eprint.iacr.org/2005/ 225.pdf 

 

Brumley, B.B. and Jarvinen, K. (2007). Koblitz Curves and Integer 

Equivalents of Frobenius Expansions. Lecturer Notes in Computer 

Science. 4876: 126-137. Springer.   

 

Gordon, D.M. (1998). A Survey of Fast Exponentiation Methods. Journal of 

Algorithms 27, Article no  AL970913, 129-146. 

 

Hankerson, D., Menezes, A., and Vanstone, S. (2004). Guide to Elliptic 

Curve Cryptography. Springer-Verlag.  

 

Hakuta, K., Sato, H. and Takagi, T. (2010). Explicit Lower bound for the 

Length of Minimal Weight 𝜏-adic Expansions on Koblitz Curves. 

Journal of Math-for-Industry. 2 (2010A-7): 75-83.   

 

Joye, M. and Tymen, C. (2001). Protection against Differential Analysis for 

Elliptic Curve Cryptography: An Algebraic Approach, in 

Cryptography Hardware and Embedded Systems-CHES’01, Lecturer 

Notes in Computer Science. 2162:377-390. Springer-Verlag. 

 

 



Faridah Yunos et al. 

 

86 Malaysian Journal of Mathematical Sciences 

 

Koblitz, N. (1987). Elliptic curve cryptosystem, in Mathematics 

Computation. 48 (177): 203-209. 

 

Koblitz, N. (1992).  CM curves with good cryptographic properties.  Proc. 

Crypto’91: 279-287. Springer-Verlag.  

  

Li, M., Qin, B., Kong, F. and Li, D. (2007). Wide-W-NAF Method for  

Scalar Multiplication on Koblitz Curves. Eighth ACIS International 

Conference on Software Engineering, Artificial Intelligence, 

Networking, and Parallel/ Distributed Computing: 143-148. 

 

Lin, T. C. (2009). Algorithm on Elliptic Curves over fields of Characteristic 

Two with Non-Adjacent Forms. International Journal of Network 

Security. 9(2): 117-120. 

 

Ratsimihah, J.R. and Prodinger, H. (2005). Redundant Representation of 

Numbers. http://resources.aims.ac.za/archive/2005/joel.ps 

 

Roy, S. S., Robeiro, C., Mukhopadhyay, D., Takahashi, J. and  Fukunaga, T. 

(2011). Scalar Multiplication on Koblitz Curves Using 𝜏2 -NAF. 

http://eprint.iacr.org/2011/318.pdf 

 

Solinas, J. A. (1997). An Improved Algorithm for Arithmetic on a Family of 

Elliptic Curves, in B. Kaliski, editor, Advance in Cryptology-

CRYPTO’97. Lecture Notes in Computer Science. 1294: 357-371. 

Springer-Verlag. 

 

Solinas, J. A. (2000). Efficient Arithmetic on Koblitz Curves, in Kluwer 

Academic Publishers, Boston, Manufactured in the Netherlands, 

Design, Codes, and Cryptography. 19:195-249. 

 

 Yunos, F. and Mohd Atan, K. A. (2013). An Average Density of 𝜏-adic Naf 

(𝜏 -NAF) Representation: An Alternative Proof. Malaysian Journal 

of Mathematical Sciences. 7(1): 111 - 124. 

 

Yunos, F., Mohd Atan, K. A., Md. Said, M. R. and Kamel Ariffin, M. R . 

(2014). A Reduced τ -NAF (RTNAF) Representation for Scalar 

Multiplication on Anomalous Binary Curves (ABC).   Pertanika 

Journal of Science and Technology.  22(2): 125-141. 

 

 

 



Pseudo 𝜏 - Adic Non Adjacent Form for Scalar Multiplication on Koblitz Curves 
 

 Malaysian Journal of Mathematical Sciences 87 

 

APPENDIX 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 
 

 

𝑓𝑖 ≔  𝑓𝑙𝑜𝑜𝑟 (𝜆𝑖 +
1

2
) ; 

𝜂2 ∶= 2 ⋅ 𝜂0 + 𝑡 ⋅ 𝜂1; 
Ω0 ∶= 𝜂2 ≥  1;  𝑒𝑣𝑎𝑙𝑏(Ω0); 

Ω3 ∶= (𝜂0 − 3 ⋅  𝑡 ⋅ 𝜂1) ≥  1; 𝑒𝑣𝑎𝑙𝑏(Ω3); 

𝑤 ∶=  𝑓0 + ℎ0;   𝑧 ∶=  𝑓1 + ℎ1; 

𝑃𝑢: =  𝑥𝑢 + 𝑦𝑢 ⋅ 𝜏; 
𝑁[𝑃𝑢]: = 𝑥𝑢

2 + 𝑡 ⋅  𝑥𝑢 ⋅  𝑦𝑢 + 2 ⋅  𝑦𝑢
2; 

𝐴𝑙𝑙𝑃𝑜𝑖𝑛𝑡𝑠 ∶=  𝑠𝑒𝑞(𝑂𝑢  =  𝑃𝑢, 𝑢 =  0 . . 𝑁𝑒𝑤𝑁 − 1); 
𝑁𝑜𝑟𝑚𝐹𝑜𝑟𝐸𝑣𝑒𝑟𝑦𝑃𝑜𝑖𝑛𝑡𝑠 ∶= 𝑠𝑒𝑞(𝑁𝑜𝑟𝑚[𝑂𝑢] = 𝑁[𝑃𝑢], 𝑢 = 0 . . 𝑁𝑒𝑤𝑁 − 1); 

𝑟: = 𝑎𝑛𝑦 𝑖𝑛𝑡𝑒𝑔𝑒𝑟; 𝑠: = 𝑎𝑛𝑦 𝑖𝑛𝑡𝑒𝑔𝑒𝑟; 𝑎: = 0 or 1; 𝑡 = (−1)1−𝑎; 

𝐹: = 𝑔𝑐𝑑(𝑟, 𝑠);  #𝐹 is 𝜌′ 

𝐺: =
𝑟

𝐹
;  𝐻 ≔

𝑠

𝐹
;  #𝐺 is 𝑟′ and  𝐻 is 𝑠′ 

𝑁𝑒𝑤𝑁: = 𝐹 ⋅  (𝐺2 + 𝑡 ⋅  𝐺 ⋅  𝐻 + 2 ⋅  𝐻2);  #𝑁𝑒𝑤𝑁 is 𝑁′ 
for 𝑢 from 0 to 𝑁𝑒𝑤𝑁 − 1 do 

𝑘: = 𝑟 ⋅ 𝑢 + 𝑡 ⋅  𝑠 ⋅  𝑢 ; 𝑙: = −𝑠 ⋅  𝑢; ℎ: = 𝑟2 + 𝑡 ⋅  𝑟 ⋅  𝑠 + 2 ⋅  𝑠2; 

𝜆0: =
𝑘

ℎ
; 𝜆1: =

𝑙

ℎ
; 

for 𝑖 from 0 to 1 do 

𝜂𝑖 ∶= 𝜆𝑖 − 𝑓𝑖; ℎ𝑖 ∶=  0; 
end do; 

Ω1 ∶= (𝜂0 − 3 ⋅  𝑡 ⋅ 𝜂1)  <  −1; 𝑒𝑣𝑎𝑙𝑏(Ω1); 
Ω2 ∶= (𝜂0 + 4 ⋅  𝑡 ⋅ 𝜂1) ≥  2; 𝑒𝑣𝑎𝑙𝑏(Ω2); 

Ω4 ∶= (𝜂0 + 4 ⋅  𝑡 ⋅ 𝜂1) <  −2; 𝑒𝑣𝑎𝑙𝑏(Ω4); 
Ω5 ∶= 𝜂2  <  −1; 𝑒𝑣𝑎𝑙𝑏(Ω5); 

if Ω0 then 

if Ω1 then ℎ1 ∶=  𝑡; 

else ℎ0 ∶= 1; 
end if; 

else 

if Ω2 then ℎ1 ∶=  𝑡; 
end if; 

end if; 

if Ω5 then 

if  Ω3 then ℎ1 ∶=  −𝑡; 
else ℎ0 ∶=  −1; 
end if; 

else 

if Ω4 then ℎ1 ∶= −𝑡 

end if; 

end if; 

𝑥𝑢: = 𝑢 − 𝑟 ⋅  𝑤 + 2 ⋅  𝑠 ⋅  𝑧;  𝑦𝑢: = −𝑠 ⋅  𝑤 − 𝑟 ⋅  𝑧 − 𝑡 ⋅  𝑠 ⋅  𝑧; 

end do; 



Faridah Yunos et al. 

 

88 Malaysian Journal of Mathematical Sciences 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
Diagram 2:  The Programming of Algorithm 2 using Maple 13 

 
 

Diagram 2:  The Programming of Algorithm 2 using Maple 13 

 

 

 

 Diagram 1:  The Programming of Algorithm 1 using Maple 13 

 

𝑐0 ∶= 𝑥0;   𝑐1 ∶= 𝑦0;  𝑝𝑠𝑒𝑢𝑑𝑜𝑇𝑁𝐴𝐹0  ∶=  0;  𝐿𝑒𝑛𝑔𝑡ℎ𝑝𝑠𝑒𝑢𝑑𝑜𝑇𝑁𝐴𝐹0 ∶=  1; 
 𝐻𝑎𝑚𝑚𝑖𝑛𝑔𝑊𝑒𝑖𝑔ℎ𝑡0 ∶=  0; 𝐷𝑒𝑛𝑠𝑖𝑡𝑦0 ∶=  0; 

𝑐0: = 𝑥𝑢;  𝑐1: = 𝑦𝑢;  𝑖: =  0; 

𝑜 ≔ 𝑡𝑦𝑝𝑒(𝑐0, 𝑜𝑑𝑑);  𝑒𝑣𝑎𝑙𝑏(𝑜);  
𝑖𝑓 𝑜 𝑡ℎ𝑒𝑛 

𝑓 ≔ 𝑐0 − 2 ⋅  𝑐1; 
𝑑 ∶=  𝑐𝑜𝑛𝑣𝑒𝑟𝑡(𝑓, 𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙); 
 𝑒 ∶=  𝑚𝑜𝑑𝑝(𝑑, 4);  
𝜐𝑖 ∶=  2 − 𝑒;  
𝑐0 ∶=  𝑐0 − 𝜐𝑖; 

𝑅: = 𝑐0; 

𝑐0 ≔ 𝑐1 +
𝑡 ⋅  𝑐0

2
; 

𝑐1 ≔ −
𝑅

2
; 

 𝑖 ≔ 𝑖 + 1; 
𝑗: = 𝑖; 

𝑝𝑠𝑒𝑢𝑑𝑜𝑇𝑁𝐴𝐹𝑢: = [𝑠𝑒𝑞(𝜐𝑖 , 𝑖 = 0. . 𝑗 − 1)]; 

#Find 𝑥𝑢   and 𝑦𝑢 using Diagram 1 for 𝑢 from 0 to 𝑁𝑒𝑤𝑁 − 1. 

for 𝑢 from 1 to 𝑁𝑒𝑤𝑁 − 1 do 

while 𝑐0 <> 0 or  𝑐1 <> 0 do 

else 

𝜐𝑖: = 0; 

end if;  

end do;  

 


