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ABSTRACT 

This work was intended as an attempt to extend the results on localization of 
Fourier-Laplace series to the spectral expansions of distributions on the unit sphere. 
It is shown that the spectral expansions of the distribution on the unit sphere can be 
represented in terms of decompostions of Laplace-Beltrami operator. It was of 
interest to establish sufficient conditions for localization of the spectral expansions 
of distribution to clarify the latter some relevant counter examples are indicated.   
 
Keywords: Distributions, Fourier-Laplace series, localization, Riesz means, Laplace-
Baltrami operator.  

 

 

1.  INTRODUCTION 

Let NS  be unit sphere in 1.NR +   
 

1 2 2 2 2

1 2 1= { :| | = ... = 1}.N N

N
S x R x x x x+

+∈ + + +  

 

The sphere NS is naturally equipped with a positive measure ( )d xσ  and 

with an elliptic second order differential operator -
s

∆ , namely the Laplace-
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Beltrami operator on the sphere. This operator is symmetric and 
nonnegative, and it can be extended to a nonnegative self-adjoint operator 

on the space ( )2

N
L S . Where ( )2

N
L S  denoted the 2L -space associated 

with the measure ( )d xσ  on the sphere. For the self-adjoint extension of the 

Laplace-Beltrami operator we use again the same symbol 
s

∆ and by 

{ }, = 0,1,2,....
k

kλ  we denote the set of the eigenvalues of the Laplace-

Beltrami operator ,
s

∆ which is increasing sequence of nonnegative 

eigenvalues = ( 1), = 0,1,2,...
k

k k N kλ + − with finite multiplicities 

1

0 1

( )! ( 1)!
=1, = , = , 2

! ! !( 2)!

N

k

N k N k
a a N a k k

N k N k

−+ + −
− ≈ ≥

−
 (and written as 

such) tending to infinity. We denote by ( )k

j
Y x  the eigenfunctions of the 

Laplace-Beltrami operator corresponding to 
k

λ :  

 
( ) ( )( ) = , = 1,2,..., ; = 0,1,2,... .k k

s j k j k
Y x Y j a kλ∆  

 
The system of eigenfunctions of the Laplace-Beltrami operator form an 

orthonormal basis in  ( )2

N
L S . To any measurable function f  we assign its 

spectral expansion:  

                                   =0

( ) = ( , ),
k

k

f x Y f x
∞

∑                                        

where  

( ) ( )

=0

( , ) = ( ) ( ) ( ) ( ), = 0,1,2,...

a
k

k k

k j j

j N
S

Y f x Y x f y Y y d y kσ∑ ∫  

The operator  

( ) = ( ) ( , , ) ( )
N

S

E f x f y x y d yλ λ σΘ∫
 

 

is called spectral expansions of f , where  

( ) ( )

< =1

( , , ) = ( ) ( ).

a
k

k k

j j

j
k

x y Y x Y y
λ λ

λΘ ∑∑  

  

In this work we investigate spectral expansions related to 

distributions. We denote by ( ) ( )=N N
D S C S

∞  the space of infinite times 

differentiable functions with the topology of uniformly convergence with 
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respect to derivatives of all order. Let ( )' N
D S  denotes the conjugate space 

of ( )N
D S  i.e. the space of the linear functionals defined on ( )N

D S  which 

are called distributions on sphere. From ellipticity of Laplace-Beltrami 

operator we obtain that ( )N
E C Sλϕ

∞∈  for all ( )N
C Sϕ ∞∈ . 

With the help of the latter remark we define: 
 

Definition. The spectral expansions of the distribution ( )' N
f D S∈  is 

distribution ( )' N
E f D Sλ ∈  defined as follows: 

 

< , >=< , >,E f f Eλ λϕ ϕ  

for any ( )N
D Sϕ ∈ . 

 
The correctness of this definition can be established using the fact 

that the operator λE  is linear and bounded from ( )N
D S  to ( )' N

D S . 

Furthermore we have  
 

Theorem 1.1  Let ( )N
D Sϕ ∈ , then the partial sums of the Fourier-Laplace 

series of the ϕ  converges in the topology of the space ( )N
D S   

 

( ) ( ).
n

E x xϕ ϕ→  

 
From here we obtain the following  
 

Theorem 1.2  Let ( )' N
f D S∈ , then the partial sums of the Fourier-

Laplace series of the f  converges in the topology of the space ( )' N
D S   

 

( )< ( ), ( ) > < ( ), ( ) >, .N

nE f x g x f x g x g D S→ ∀ ∈  

 

  Our aim is to prove convergence of  E fλ  in classical means, but 

it can be proved only in domains where f  coincides with local integrable 

functions. 
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For any distribution ( )' N
f D S∈  we assign its Riesz means of the 

spectral expansions of f  as follows  

=0 =1

( ) = < , ( , , ) > = 1 ( ) < , ( ) >,

an k
k kk

n j j

k jn

E f x f x y n Y x f Y y

α

α α λ

λ
+

 
Θ − 

 
∑ ∑  

 where < , ( ) >k

j
f Y y  is the value of the functional f  on the eigenfunction 

( )k

j
Y y  of the Laplace-Beltrami operator.  

 

Ashurov and Anvarjon (2011) considered the spectral expansions 

of functions from Nikol’skii classes ( )a N

p
H R  related to selfadjoint 

extensions of elliptic differential operators A(D) of order m  in .NR  They 

then constructed a continuous function from Nikol’skii class with >p a N⋅  

such that the Riesz means of the spectral expansion diverge at the origin. 
This result demonstrates the sharpness of the >p a N⋅  condition by 

Alimov (1976) for uniform convergence of spectral expansions, related to 
elliptic differential operators. 

 
 In 1983 Meaney (1984) presented a localization theorem for 

expansions in eigenfunctions of the Laplace–Beltrami operator on a 

compact two-point homogeneous space. When 1=X S  the theorem proved 
is just the usual localization principle for pseudo functions. The proof of his 
theorem mimics that of the one-dimensional case. In his paper, he manages 
to avoid the issue of localization of summability methods, as treated in 
Bonami and Clerc (1973). 

 
Results in the work of Zhizhiashvili and Topuriya (1979) discuss 

the theory of Fourier-Laplace series on a N-dimensional sphere where 

3.N ≥ The theory of the Fourier-Laplace series has been developed 
intensively in various directions. From the entire variety of problems 
investigated in this field, the woks in Zhizhiashvili and Topuriya (1979)  
restrict the presentation of the theory of these series on a N-dimensional 
sphere 3.N ≥  

 
Anvarjon, Norashikin in Anvarjon and Norashikin (2012) proved a 

localization theorem for nonspherical partial sums, that is, for Fourier series 
under summation over domains bounded by level surfaces of elliptic 
polynomials. The result provides a natural and intrinsic characterization of 
the approximation of the functions by Fourier–Laplace series. 
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For the latest investigations related to the convergence problems of 
the spectral expansions of the elliptic differential operators we refer the 
readers to Ashurov and Anvarjon (2010), Ashurov et al. (2010), Anvarjon 
(2010), Alimov (2006) and what we personally believe that provides a more 
complete insight is Alimov et al. (1992). 

 

We define the Sobolev space ( )s N

pH S
 
as follows: 

for 1 < <p ∞ , > 0s , ( )s N

pH S  is the collection of all ( )N

pf L S∈  such 

that  ( ) 2=
s

s
f I h

−
− ∆  for some ( )N

ph L S∈  with the norm  

 

( ) ( )
.s N N

p pH S L S
f h=  

 

If < 0s ; ( )s N

pH S  is the collection of all ( )' N
f D S∈  of the form 

( )=
k

s
f I h− ∆  with ( )2k s N

ph H S
+∈ , where k  is a natural number such 

that 2 > 0k s+  and 
 

2( ) ( )
.s N k s N

p pH S H S
f h +=  

 

 If = 0s , ( ) ( )0 =N N

p pH S L S . 

 
If = 2p , we have  

( ) .)(>)(,<1=

2
=1

2

0=2







∞








⋅+ ∑∑
N

SL

k

j

k

j

k
a

j

l

k

k

N
S

s
H

xYYff λ��  

 

 It is important to remark here that the Nikolskii classes ( )2

l N
H S  

are Hilbert spaces and Schwartz space ( )N
D S  is dense in ( )2 , > 0l N

H S l . 

The equivalent definition of the norm in Nikolskii spaces ( )2 , > 0l N
H S l

−

 
may be given by the following  

 

1
2

2
2

( )
0 ( )

( )

,
supN

l N
l N

H S
u H S

H S

f u
f

u
−

≠ ∈

< >
=                                  (2) 
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2. MAIN RESULTS 

The main results of the work are the following:  
 

Theorem 2.1  Let 2 , > 0lf H l−∈  and f  vanishes in some domain 

.NV S⊂  If 
1

,
2

N
lα

−
≥ + then the Riesz means ( )

n
E f xα  uniformly 

converges to  0  on any compact .K V⊂   
 

 In the case when distribution coincides with normal function we have,  
 

Theorem 2.2  Let a distribution 2 , > 0lf H l−∈  coincides with the 

continuous function ( )g x  in some domain .NV S⊂   If 
1

2

N
lα

−
≥ +  then  

( ) = ( )lim n
n

E f x g xα

→∞

 

in any compact .K V⊂  
 

Proof of Main Results 

The proof of the main facts are based on the following Lemmas.  
 

Lemma 2.3  Let NV S⊂  be a domain and K V⊂  be any compact set. 

Then uniformly on x K∈  one has  
 

( )

1

2

\
2

( , , ) .
N

N
L S V

x y n Cn
α

α
−

−

Θ ≤  

 

Proof. The proof is straightfoward. From ( )\ = ØN
S V K∩  we conclude 

that there exist 0 > 0r  such that, for any \Ny S V∈  and x K∈  one has 

0( , ) .x y rγ ≥  Based on the later we divide the integration region \NS V  into 

two parts as follows:  
1

2
2

\

( , , ) ( )
N

S V

x y n d y
α σ

 
 Θ ≤
 
 
∫  

 
1 1

2 2

2 2

1 2

1 1
0

( , , ) ( ) ( , , ) ( ) = .

r
n n

x y n d y x y n d y I I
α α

γ π π γ π

σ σ

≤ ≤ − − ≤ ≤

   
   

≤ Θ + Θ +   
   
   

∫ ∫  
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To estimate the 1I  and 2I  we use the following:  

 

Lemma 2.4  Let ( , , ),x y nαΘ  be the kernel of Riesz means of the spectral 

expansions 

 

1. If  ,
2 1 2

n

n

π π
γ− <

+
 ,n → ∞  then one has 

 

( ) ( )( ) ( ) ( )( )

( 1)/2 ( 3)/2

1 1( 1)/2 ( 1)/2
( , , ) = (1)

sin sin /2 sin sin /2

N N

N N

n n
x y n O

α

α α
γ γ γ γ

− −

+ +− +


Θ +



 

 

( )( )

1

1
;

sin /2
N

n

γ

−

+


+

  

 
2. if 0 γ π≤ ≤ , > 1n  then one has  

 

( , , ) = (1) ,Nx y n O nαΘ  
 

3. if 00 γ γ π≤ ≤ ≤ , > 1n  then one has  

 
1( , , ) = (1) ,Nx y n O nα α− −Θ  

 
for the proof see Anvarjon (2011). 
 

Using this Lemma we first estimate 1I  as follows  

 

( ) ( )
1 3

1 1
2 2

1 1 2

1 1
0 0

sin ( ) sin ( )
N N

N N

r r
n n

I c n d y c n d y
α α

γ π γ π

γ σ γ σ
− −

− −− + − −

≤ ≤ − ≤ ≤ −

≤ +∫ ∫

 
 

1
1 2

3 1

1
0

( ) .
N

r
n

c n d y c n
α

γ π

σ
−

−
−

≤ ≤ −

+ ≤∫  
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For the estimation of 2I  we use (3) of Lemma 2.4. We have  

 

1
1 1 2 2

2 4

1

( ) = .
N N

N N

n

I c n d y Cn n Cn
α

α α

π γ π

σ
− − −

− − − −

− ≤ ≤

≤ ≤∫  

 
Finally the norm of the Riesz means of the spectral function of the Laplace-
Beltrami operator can be estimated as follows:  

( )

1

2
1 2\

2

( , , ) .
N

N
L S V

x y n I I Cn
α

α
−

−

Θ ≤ + ≤  

Lemma 2.3 is proved. 
 
We denote 

                              

( ) ( ) ( )2

2

, , = 1 , ,
l

l sx y n x y n
α αΘ − ∆ Θ                    

  
 Using the summation by parts we have  
 

( )2

=0 =12

( , , ) = 1 1 ( ) ( )

an l k
k kk

l k j j

k jn

x y n Y x Y y

α

α λ
λ

λ

 
Θ − + 

 
∑ ∑  

 

( ) ( ) ( ) ( ) ( )
1

2 2 2
1

=0

= 1 1 , , 1 , , .
n l l l

k k n

k

x y k x y n
α αλ λ λ

−

+

 
+ − + Θ + + Θ  

∑
 

The norm of ( )
2

, ,
l

x y n
αΘ  can be estimated as follows  

2

2

1

2 2
1

02

( , , ) (1 ) (1 ) ( , , )
l ln

l k k
L

kL

x y n x y kα αλ λ
−

+

=

Θ ≤ + − + Θ∑  

 

2

2(1 ) ( , , ) .
l

n
L

x y nαλ+ + Θ                                  (4) 

 

For the second summand we have  
 

2

1

2 2

( \ )
(1 ) ( , , ) (1 ) .

l N

l N
l

n
L S V

x y n C n
α

αλ
−

− +

+ Θ ≤ +  
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Here we have used Lemma 2.4. For any > 0l  the following estimation 
holds  

( ) ( ) 1
2 2

11 1 (1 ) , = 1, 2, ...,
l l

l

k k
C k k Kλ λ −

++ − + ≤ +  

 

Applying the latter to the first summand in (4) gives 
 

2

11 1
12 2 2

1 1 2( \ )
0 1

(1 ) (1 ) (1 ) (1 ) .
l N

l l Nn n
l

k k k
L S V

k k

c k c k
α

αλ λ
−− − −

−

+

= =

 
+ − + Θ ≤ + + 

 
∑ ∑  

 

 
 Finally we obtain  
 

2

1

2

2 ( \ )

( , , ) .
l N

N
l

l

L S V

x y n Cn
α

α
−

− +

Θ ≤  

 

Lemma 2.5  Let ( )2 , > 0l N
f H S l

−∈  and let V  be some domain in .NS   If 

= 0f  in ,V  then one has  

 

1

2( ) ,
N

l

n l
E f x Cn f

α
α

−
− +

−
≤  

 

uniformly in any compact .K V⊂  
 

Proof. From that f  vanishes in the domain ,NV S⊂  and from (2) we 

obtain for any ( )N
u C S

∞∈   

 

( )\2
< , > .l N

l H S V
f u f u

−
≤                           (5) 

 Note that the operators ( ) 21 , > 0
l

s l
−

− ∆  are continuous from 2L  to 2 , .lH i e  

for any 2u L∈  we have,  

2 2

2

2(1 ) .l

l

sH L

L

u u u
−

= − ∆ ≤                                (6) 
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Taking into account (5) and (6) one has  
 

2 ( \ )
( ) , ( , , ) ( , , )

l Nn l H S V
E f x f x y n f x y nα α α

−
= < Θ > ≤ Θ  

 

2

1
1

2

2 ( \ )

( , , ) (1 ) ,
N

N

ll l

L S V

f x y n C n f
α

α
−

− +

− −
Θ ≤ +  

 

where 
1

.
2

N
lα

−
≥ +  

 

Proof of Theorem 2.2. 

 

Let ( )2 , > 0l N
f H S l

−∈  and f  coincides with g  in ,NV S⊂  where ( )g x  

is continuous function on ( ).N
S  For all functions ( )N

g C S∈  Riesz means 

( )
n

E f xα  uniformly converges to g  on any compact .NK S⊂  

 
Let consider a new distribution ( ) = ( ) ( ),F x f x g x x V− ∈  and 

( ) = ( ), \ .NF x f x x S V∈  It is obvious that ( )( ) l N
F x H S

−∈  and vanishes 

on .V  Then for any compact K V⊂  we have  

 
1

1
2( ) (1 ) .

N

n l
E F x C n F

α
α

−
− +

−
≤ +  

 

By choosing ,lα , such that 
1

>
2

N
lα

−
+  we can make ( ) 0

n
E F xα → , as 

n → ∞ . 
 
The representation 

( ) = ( ) ( )
n n n

E f x E F x E g xα α α+
 

 

 and the fact that ( )
n

E g xα  uniformly converges to )(xg  on any compact 

K V⊂  completes the proof of Theorem 2.2.  
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