Some results on the gamma function for negative integers.

Abstract

The Gamma function $\Gamma(\mathrm{s})(-\mathrm{r})$ is defined by $\Gamma(\mathrm{s})(-\mathrm{r})=\mathrm{N}-\lim \varepsilon \rightarrow 0 \int_{\varepsilon} \infty \mathrm{t}-\mathrm{r}-1$, $\ln \mathrm{s} \mathrm{te}-\mathrm{tdt}$ for $\mathrm{r}, \mathrm{s}=0,1,2, \ldots$, where N is the neutrix having domain $\mathrm{N}^{\prime}=\{\varepsilon: 0<\varepsilon<\infty\}$ with negligible functions finite linear sums of the functions $\varepsilon \lambda \ln \mathrm{s}-1 \varepsilon, \ln \mathrm{~s} \varepsilon: \lambda<0, \mathrm{~s}=1,2, \ldots$ and all functions which converge to zero in the normal sense as CMMI9.-1.epsilon1 tends to zero. In the classical sense Gamma functions is not defined for the negative integer. In this study, it is proved that for $r=1,2, \ldots$, where $\varphi(r)=\Sigma r i=11 / i$. Further results are also proved.

Keyword: Gamma function; Neutrix; Neutrix limit.

