
AMO - Advanced Modeling and Optimization, Volume 12, Number 1, 2010

Improved Hessian Approximation with Modified Quasi-Cauchy

Relation for a Gradient-type Method

Wah June Leong†, Mahboubeh Farid‡,∗ and Malik Abu Hassan†

†Department of Mathematics, University Putra Malaysia 43400 Serdang, Selangor,
Malaysia

‡Institute for Mathematical Research, University Putra Malaysia 43400 Serdang,
Selangor, Malaysia

In this work we develop a new gradient-type method with improved Hessian approximation for
unconstrained optimization problems. The new method resembles the Barzilai-Borwein (BB)
method, except that the Hessian matrix is approximated by a diagonal matrix rather than the
multiple of the identity matrix in the BB method. Then the diagonal Hessian approximation
is derived based on the quasi-Cauchy relation. To further improve the Hessian approximation,
we modify the quasi-Cauchy relation to carry some additional information from the values and
gradients of the objective function. Numerical experiments show that the proposed method
yields desirable improvement.

Keywords: Diagonal updating; modified quasi-Newton equation; quasi-Cauchy relation;
Barzilai-Borwein method

AMS Subject Classification: 90C30; 65K05

1. Introduction

In this paper, we consider the unconstrained optimization problem

min f(x), x ∈ Rn (1)

where f : Rn → R is a continuously differentiable function with gradient ∇f(x) =
g(x). Secant (or quasi-Newton) method for solving (1) has the following iterative
scheme:

xk+1 = xk −B−1
k gk, k = 0, 1, 2, . . . , (2)

where gk = ∇f(xk) denotes the gradient of f at xk and Bk is an approximation to
the Hessian matrix,∇2f(xk). To ensure that B has a correct curvature information,
Bk+1 the update of Bk should satisfy the secant or quasi-Newton equation

Bk+1sk = yk (3)

where sk = xk+1 − xk and yk = gk+1 − gk.
Barzilai and Borwein [2] proposed a new gradient method which is derived from

a two-point approximation to the secant equation underlying the quasi-Newton

AMO - Advanced Modeling and Optimization. ISSN: 1841-4311

∗Corresponding author: Mahboubeh Farid (mahboubeh@inspem.upm.edu.my).

37

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universiti Putra Malaysia Institutional Repository

https://core.ac.uk/display/153801642?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

W. J. Leong, M. Farid and M. A. Hassan

methods. By regarding Bk = αkI and forcing it to satisfy the secant equation,
they obtained the following choice of αk:

αk =
sT
k−1sk−1

yT
k−1sk−1

. (4)

Due to its simplicity, less computational work, low memory requirement and nu-
merical efficiency the BB method has attracted many attentions (see [3] and [7],
for examples).

This work is motivated from the application of gradient method to the strictly
convex quadratic function f(x) with constant Hessian matrix A. The gradient
method with steplength λk is the iterative procedure

xk+1 = xk − λkgk. (5)

We can view the gradient method as quasi-Newton method with steplength 1,
and the Hessian approximation as a scaled identity, αkI with λk = α−1

k . The
updating scheme (5) on the other hand, can also be viewed as the standard gradient
(steepest descent) method, which chooses the steplength αk such that αk = gT

k Agk

gT
k gk

or the BB method, which takes the steplength, αk = sT
k Ask

sT
k sk

. Although both αk are
the Rayleigh quotients of A that give points in the interval spectrum of A, their
performances vary a lot. Hence, it will be interesting to study the case where the
Hessian is approximated by a diagonal matrix with a larger interval spectrum that
might better overlap the interval spectrum of the Hessian matrix. Arm with this
encouragement, in this paper we attempt to obtain a diagonal updating formula
that will be used within the updating scheme (2). The formulation of the diagonal
updating will be given in Section 2. It follows by computational results in Section
3 to illustrate the merit of the new algorithm.

2. Diagonal Updating via Modified Quasi-Cauchy Relation

Before we set out to derive the desired diagonal updating formula, recall that by
the secant equation (3), we see that y is an approximation to ∇2f(x)s. Since y is
a vector and the standard mean-valued theorem might not holds for vector-valued
functions, we do not know whether there will exist x̄ ∈ Rn such that y = ∇2f(x̄)s or
not. However, Taylor theorem and mean-valued theorem ensure that the existence
of such x̄ so that sT y = sT∇2f(x̄)s. Hence, it might be reasonable to let our
diagonal matrix satisfies only the quasi-Cauchy relation [9]:

sT
k Bk+1sk = sT

k yk. (6)

Furthermore, without evaluating additional functions or gradients, the only Hessian
information we have is y, and this is only approximation information. Thus, in
order to better approximate the Hessian matrix, we can incorporate additional
information from both functions and gradients to y. Two type of modifications
on y are considered: The first type is given by Li and Fukushima [6]) where y is
replaced by

ŷk = yk + νk ‖gk‖ sk (7)

38

Improved Hessian Approximation with Modified Quasi-Cauchy Relation

with νk = 1 + max{− sT
k yk

‖sk‖2 , 0}. In the second type, we consider a modification of
Wei et al. [8] where

ŷk = yk + ωksk (8)

with ωk = 2(f(xk)−f(xk+1))+(gk+1+gk)T sk

(sT
k yk)2

yky
T
k .

We can now give our updating formula for the diagonal Hessian approximation.
For algorithmic purpose, we choose to derive the updating formula for the inverse
Hessian approximation, Uk+1 by letting it satisfies, instead the modified quasi-
Cauchy equation, ŷT

k Uk+1ŷk = ŷT
k sk as follows:

Theorem 2.1 Assume that Uk > 0 is a positive definite diagonal matrix and Uk+1

is the updated version of Uk, which is also diagonal. Suppose that sk 6= 0 and ŷk is
defined either by (7) or (8). Then the optimal solution of the following minimization
problem:

min
1
2
‖Uk+1 − Uk‖2

F

s.t. ŷT
k Uk+1ŷk = ŷT

k sk (9)

and Uk+1 is diagonal

is given by

Uk+1 = Uk +

(
ŷT

k sk − ŷT
k Ukŷk

)

tr(G2
k)

Gk, (10)

where Gk =diag
(
ŷ2

k,1, ŷ
2
k,2, . . . , ŷ

2
k,n

)
and ŷk,i is the ith component of the vector ŷk.

Proof Let Ωk = Uk+1−Uk. The Lagrangian function for (9) in term of Ωk is given
by

L(Ωk, µ) =
1
2
‖Ωk‖2

F + µ
(
ŷT

k Ωkŷk + ŷT
k Ukŷk − ŷT

k sk

)
(11)

where µ is the Lagrange multiplier associated with the constraint. Differentiating
L with respect to each component of Ωk and setting the results to zero yields

Ωk = −µGk (12)

It follows that ŷT
k Ωkŷk = −µŷT

k Gkŷk = −µ tr(G2
k) and invoking the constraint, we

have

µ =

(
ŷT

k Ukŷk − ŷT
k sk

)

tr(G2
k)

. (13)

Finally, by substituting (13) into (12) we obtain (10). ¥

Note that there is no guarantee that the diagonal matrix Uk+1, updated through
(10) is always positive-definite. Furthermore, it can be shown that (see [5] for

39

W. J. Leong, M. Farid and M. A. Hassan

details) if

uk+1,m <
u2

k,M

2uk,m
(14)

where uk,m, uk,M , uk+1,m and uk+1,M are the smallest and largest diagonal com-
ponent of Uk and Uk+1, respectively, then possibility of non-monotonic behavior
occurs in the sequence {f(xk)} might be observed. Hence, some strategies are
needed to safeguard these difficulties. The details of the algorithm are given as
follows:

M-DiaGRAD Algorithm

• Step 0. Given an initial point x0 and a positive definite diagonal matrix U0. Set
k = 0.

• Step 1. If ‖gk‖ ≤ ε then stop.
• Step 2. If k = 0, compute x1 = x0− g0

‖g0‖ . Else if k ≥ 1, compute xk+1 = xk−Ukgk

and update Uk+1.

• Step 3. Check whether Uk+1 < 0 or uk+1,m <
u2

k,M

2uk,m
.

If yes, set Uk+1 = ρI where ρ = min
(

2uk,m

u2
k,M

,
ŷT

k sk

ŷT
k ŷk

)
. Otherwise retain Uk+1 that

is computed in Step 2.
• Step 4. set k := k + 1 and return to step 1.

We shall also establish the convergence of the M-DiaGRAD algorithm when
applied to the minimization of a strictly convex quadratic function with constant
Hessian matrix A. Note that if Uk+1 > 0, then we have

yT
k A−1yk = yT

k Uk+1yk ≤ uk+1,M‖yk‖2.

Thus we assume that sT
k Ask ≤ u−1

k+1,m‖sk‖2.

Theorem 2.2 Let {xk} be a sequence generated by the M-DiaGRAD Algorithm
and x∗ is the unique minimizer of a strictly convex quadratic function f with
constant Hessian matrix A. Then either gk = 0 holds for some finite k ≥ 1 or
limk→∞‖gk‖ = 0.

Proof Consider the Taylor expansion of f at xk+1:

f(xk − Ukgk) = f(xk)− gT
k Ukgk +

1
2
gkUkAUkgk. (15)

It follows that

f(xk+1) ≤ f(xk)− c‖gk‖2, (16)

where c = uk,m − 1
2u2

k,Mu−1
k+1,m. If c > 0 (or uk+1,m >

u2
k,M

2uk,m
), we have f(xk+1) ≤

f(xk) for all k and since f is bounded below, it follows that

lim
k→∞

f(xk)− f(xk+1) = 0.

Else if c ≤ 0 or Uk+1 < 0, then we let Uk+1 = ρI where ρ = min
(

2uk,m

u2
k,M

,
ŷT

k sk

ŷT
k ŷk

)
.

40

Improved Hessian Approximation with Modified Quasi-Cauchy Relation

Hence, (16) becomes

f(xk+1) ≤ f(xk)− c̄‖gk‖2.

where c̄ = u−1
k,M −

(
u−2

k,mρ−1
)

/2. With the choice of our ρ, we have that c̄ ≥ 0.
This also implies that f(xk+1) ≤ f(xk) for all k. As f(xk) − f(xk+1) → 0, then
limk→∞ ‖gk‖ = 0. ¥

3. Numerical Results

We report the performance of M-DiaGRAD algorithm and its comparison to the
modified BB method with α̂k = sT

k−1sk−1

ŷT
k−1sk−1

. All of these methods belong to a class
of gradient methods without line searches. A set of 28 standard unconstrained
optimization problems given in Table 1, were used with dimension varying from
10 up to 10000. The full description of these test problems can be found in [1].
All algorithms were coded in MATLAB 7.0 and were executed on a PC with Core
Duo CPU. All runs were terminated if ‖gk‖ ≤ 10−4. The routine was also forced
to stop when the number of iteration exceed 1000. We implement two versions of
the modified BB and M-DiaGRAD algorithms: BB(1) and M-DiaGRAD(1) use ŷk

that is defined by (7) whereas BB(2) and M-DiaGRAD(2) use (8) to compute ŷk.
The performances of modified BB and M-DiaGRAD method, relative to iteration,
are given using the performance profiling of Dolan and Morè [4]. More detailed
are listed in table 1 and table 2. The symbol ”-” in tables indicates that the
method fails to converge within 1000 iterations. We observed from Figure 1 that
the M-DiaGRAD algorithms obtain vast improvement over the BB method with an
average of 40% decreases in number of iterations. It is also worth noting that such
improvement can be achieved only with an extra n storage and a slight increment
in computational costs.

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

τ

p(
r

≤
τ)

BB(1)BB(2)

M−DiaGRAD(1)

M−DiaGRAD(2)

Figure 1. Performance profile based on iterations.

4. Conclusion

We have presented two gradient-type methods for unconstrained optimization
based on the modified quasi-Cauchy equations. These methods can be considered
as an extension of the BB method with improved Hessian approximation. Using a

41

W. J. Leong, M. Farid and M. A. Hassan

simple strategy, the new methods are globally converged when minimizing a strictly
convex quadratic function. Numerical experiments on a large number of problems
indicate that our methods are very promising.

Acknowledgements

This work is supported in part by the Malaysian Fundamental Research Grant
Scheme (no. 05-10-07-383FR) and the first author also acknowledges support by
the joint Chinese Academy of Sciences (CAS) and Academy of Sciences for the
Developing Worlds (TWAS) Fellowship (no. 3240157252).

References

[1] N. Andrei, An unconstrained optimization test functions collection, Adv. Model. Optim. 10 (2008)
147-161.

[2] J. Barzilai and J.M. Borwein, Two point step size gradient methods, IMA J. Numer. Anal. 8 (1988)
141-148.

[3] Y.H. Dai and L.Z. Liao, R-linear convergence of the Barzilai and Borwein gradient method, IMA J.
Numer. Anal. 22 (2002) 1-10.

[4] E.D. Dolan and J.J. More, Benchmarking optimization software with perpormance profiles, Math.
Program. 91 (2002) 201-213.

[5] M.A. Hassan, W.J. Leong and M. Farid, A new gradient method via quasi-Cauchy relation which
guarantees descent, J. Comput. Appl. Math. (2008) doi:10.1016/j.cam.2008.11.013.

[6] D.H. Li and M. Fukushima, A modified BFGS method and its global convergence in nonconvex
minimization, J. Comput. Appl. Math. 129 (2001) 15-35.

[7] M. Raydan, On the Barzilai and Borwein choice of steplength for the gradient method, IMA J. Numer.
Anal. 13 (1993) 618-622.

[8] Z. Wei, G.Li and L. Qi, New quasi-Newton methods for unconstrained optimization problems, Appl.
Math. Comput. 175 (2006) 1156-1188.

[9] M. Zhu, J.L. Nazareth and H. Wolkowicz, The quasi-Cauchy relation and diagonal updating, SIAM
J. Optim. 9 (1999) 1192-1204.

42

Improved Hessian Approximation with Modified Quasi-Cauchy Relation

Table 1. BB and MODIFYMONOCAUCHY TYPE1
Test Function (Dimension) Initial point x0 BB(1) BB(2) M-DiaGRAD(1) M-DiaGRAD(2)
Extended Freudenstein and Roth (10) x0 = (1, 1, ..., 1) - 386 46 22
Extended Freudenstein and Roth (100) x0 = (1, 1, ..., 1) - 353 37 22
Extended Freudenstein and Roth (1000) x0 = (1, 1, ..., 1) - 408 36 448
Extended Freudenstein and Roth (10000) x0 = (1, 1, ..., 1) - 87 29 23
Extended Trigonometric (10) x0 = (0.2, 0.2, ..., 0.2) 6 - 8 6
Extended Trigonometric (100) x0 = (0.2, 0.2, ..., 0.2) 46 - 23 21
Extended Trigonometric (1000) x0 = (0.2, 0.2, ..., 0.2) 78 - 43 59
Extended Trigonometric (10000) x0 = (0.2, 0.2, ..., 0.2) - - 68 53
Extended Beale (10) x0 = (1, 0.8, 1, 0.8, ..., 1, 0.8) - - 172 180
Extended Beale (100) x0 = (1, 0.8, 1, 0.8, ..., 1, 0.8) - - 229 229
Extended Beale (1000) x0 = (1, 0.8, 1, 0.8, ..., 1, 0.8) - - 197 261
Extended Beale (10000) x0 = (1, 0.8, 1, 0.8, ..., 1, 0.8) - - 181 294
Perturbed Quadratic (10) x0 = (0.5, 0.5, ..., 0.5) 45 25 18 19
Perturbed Quadratic (100) x0 = (0.5, 0.5, ..., 0.5) 703 87 86 90
Perturbed Quadratic (1000) x0 = (0.5, 0.5, ..., 0.5) - 351 322 304
Raydan 1 (10) x0 = (1, 1, ..., 1) 18 20 14 18
Raydan 1 (100) x0 = (1, 1, ..., 1) 156 157 64 88
Raydan 1 (1000) x0 = (1, 1, ..., 1) - - 179 184
Raydan 2 (10) x0 = (1, 1, ..., 1) 7 6 7 6
Raydan 2 (100) x0 = (1, 1, ..., 1) 13 6 8 6
Raydan 2 (1000) x0 = (1, 1, ..., 1) 30 6 8 6
Raydan 2 (10000) x0 = (1, 1, ..., 1) 80 6 8 7

Diagonal 1 (10) x0 = (1
n

, 1
n

, ..., 1
n

) 36 22 24 20

Diagonal 1 (100) x0 = (1
n

, 1
n

, ..., 1
n

) 776 523 185 -

Diagonal 2 (10) x0 = (1
1 , 1

2 , ..., 1
n

) 18 15 20 23

Diagonal 2 (100) x0 = (1
1 , 1

2 , ..., 1
n

) 68 70 61 64

Diagonal 2 (500) x0 = (1
1 , 1

2 , ..., 1
n

) 121 - 145 144
Diagonal 5 (10) x0 = (1.1, 1.1, ..., 1.1) 7 5 7 5
Diagonal 5 (100) x0 = (1.1, 1.1, ..., 1.1) 14 5 5 5
Diagonal 5 (1000) x0 = (1.1, 1.1, ..., 1.1) 31 5 5 4
Diagonal 5 (10000) x0 = (1.1, 1.1, ..., 1.1) 84 5 6 5
Extended Himmelblau (10) x0 = (1, 1, ..., 1) 152 18 12 12
Extended Himmelblau (100) x0 = (1, 1, ..., 1) 430 20 12 12
Extended Himmelblau (1000) x0 = (1, 1, ..., 1) - 21 12 12
Extended Himmelblau (10000) x0 = (1, 1, ..., 1) - 21 12 12
Generlized Rosenbrock (10) x0 = (−1.2, 1,−1.2, 1, ...,−1.2, 1) - - 18 20
Generlized Rosenbrock (100) x0 = (−1.2, 1,−1.2, 1, ...,−1.2, 1) - - 19 24
Generlized Rosenbrock (1000) x0 = (−1.2, 1,−1.2, 1, ...,−1.2, 1) - - 20 28
Generlized Rosenbrock (10000) x0 = (−1.2, 1,−1.2, 1, ...,−1.2, 1) - - 19 26
Generlized PSC1 (10) x0 = (3, 0.1, 3, 0.1, ..., 3, 0.1) 592 36 23 20
Generlized PSC1 (100) x0 = (3, 0.1, 3, 0.1, ..., 3, 0.1) - 38 27 21
Generlized PSC1 (1000) x0 = (3, 0.1, 3, 0.1, ..., 3, 0.1) - 39 26 23
Generlized PSC1 (10000) x0 = (3, 0.1, 3, 0.1, ..., 3, 0.1) - 40 27 24
Extended PSC1 (10) x0 = (3, 0.1, 3, 0.1, ..., 3, 0.1) 319 - 15 15
Extended PSC1 (100) x0 = (3, 0.1, 3, 0.1, ..., 3, 0.1) 959 - 15 14
Extended PSC1 (1000) x0 = (3, 0.1, 3, 0.1, ..., 3, 0.1) - - 13 14
Extended PSC1 (10000) x0 = (3, 0.1, 3, 0.1, ..., 3, 0.1) - - 12 14
Diagonal 3 (10) x0 = (1, 1, ..., 1) 50 79 19 19
Diagonal 3 (100) x0 = (1, 1, ..., 1) 469 147 62 85
Diagonal 3 (1000) x0 = (1, 1, ..., 1) - - 253 166
Hager (10) x0 = (1, 1, ..., 1) 11 11 9 11
Hager (100) x0 = (1, 1, ..., 1) 70 26 21 22
Hager (1000) x0 = (1, 1, ..., 1) 685 75 46 45
Hager (10000) x0 = (1, 1, ..., 1) - - 113 128
Generlized Tridiagonal 1 (10) x0 = (2, 2, ..., 2) 35 29 23 26
Generlized Tridiagonal 1 (100) x0 = (2, 2, ..., 2) 59 36 23 26
Generlized Tridiagonal 1 (1000) x0 = (2, 2, ..., 2) 132 37 24 21
Generlized Tridiagonal 1 (10000) x0 = (2, 2, ..., 2) 370 32 25 24
Extended Three Exponential Terms (10) x0 = (0.1, 0.1, ..., 0.1) 21 12 10 8
Extended Three Exponential Terms (100) x0 = (0.1, 0.1, ..., 0.1) 32 12 8 9
Extended Three Exponential Terms (1000) x0 = (0.1, 0.1, ..., 0.1) 67 12 12 8
Extended Three Exponential Terms (10000) x0 = (0.1, 0.1, ..., 0.1) 182 12 10 8
Generlized Tridiagonal 2 (10) x0 = (−1,−1, ...,−1) 160 - 69 29
Generlized Tridiagonal 2 (100) x0 = (−1,−1, ...,−1) - - 47 33
Generlized Tridiagonal 2 (1000) x0 = (−1,−1, ...,−1) - - 55 103
Generlized Tridiagonal 2 (10000) x0 = (−1,−1, ...,−1) - - 112 54
Broydan Tridiagonal (10) x0 = (−1,−1, ...,−1) 165 - 39 24
Broydan Tridiagonal (100) x0 = (−1,−1, ...,−1) 61 - 34 28
Broydan Tridiagonal (1000) x0 = (−1,−1, ...,−1) 280 - 48 27
Broydan Tridiagonal (5000) x0 = (−1,−1, ...,−1) 525 - 56 36
Almost Perturbed Quadratic (10) x0 = (0.5, 0.5, ..., 0.5) 43 25 13 15
Almost Perturbed Quadratic (100) x0 = (0.5, 0.5, ..., 0.5) 687 95 60 48
Almost Perturbed Quadratic (1000) x0 = (0.5, 0.5, ..., 0.5) - 282 - 250

Tridiagonal perturbed quadratic (10) x0 = (1
n

, 1
n

, ..., 1
n

) 112 - 287 75

Tridiagonal perturbed quadratic (100) x0 = (1
n

, 1
n

, ..., 1
n

) 515 - 547 207
Extended Block Diagonal BD1 (10) x0 = (0.1, 0.1, ..., 0.1) 14 14 9 9
Extended Block Diagonal BD1 (100) x0 = (0.1, 0.1, ..., 0.1) 16 14 9 9
Extended Block Diagonal BD1 (1000) x0 = (0.1, 0.1, ..., 0.1) 30 14 9 9
Extended Block Diagonal BD1 (10000) x0 = (0.1, 0.1, ..., 0.1) 75 14 10 10
Quadratic QF2 (10) x0 = (1, 1, ..., 1) 9 - 6 6
Quadratic QF2 (100) x0 = (1, 1, ..., 1) 9 - 5 5
Quadratic QF2 (1000) x0 = (1, 1, ..., 1) 9 - 5 5
Quadratic QF2 (10000) x0 = (1, 1, ..., 1) 10 - 4 4

43

W. J. Leong, M. Farid and M. A. Hassan

Table 2. BB and MODIFYMONOCAUCHY TYPE1
Test Function (Dimension) Initial point x0 BB(1) BB(2) M-DiaGRAD(1) M-DiaGRAD(2)
Extended Tridiagonal 2 (10) x0 = (1.5, 1.5, ..., 1.5) - - 54 60
Extended Tridiagonal 2 (100) x0 = (1.5, 1.5, ..., 1.5) - - 89 85
Extended Tridiagonal 2 (1000) x0 = (1.5, 1.5, ..., 1.5) - - 93 94
Extended Tridiagonal 2 (10000) x0 = (1.5, 1.5, ..., 1.5) - - 95 78
Penalty 1 (10) x0 = (1, 2, ..., n) - 39 24 21
Penalty 1 (100) x0 = (1, 2, ..., n) - 72 32 29
Penalty 1 (1000) x0 = (1, 2, ..., n) - 142 56 41
Penalty 1 (10000) x0 = (1, 2, ..., n) - 146 70 53
Penalty 2 (20) x0 = (1, 2, ..., n) 683 15 12 11
Penalty 2 (100) x0 = (1, 2, ..., n) - 39 21 20
Penalty 2 (400) x0 = (1, 2, ..., n) 683 61 28 31
Penalty 2 (10000) x0 = (1, 2, ..., n) - 109 50 35
EG 2 (10) x0 = (1, 1, ..., 1) 22 - 13 28
EG 2 (100) x0 = (1, 1, ..., 1) 691 - 35 35
EG 2 (1000) x0 = (1, 1, ..., 1) - - 42 42
EG 2 (10000) x0 = (1, 1, ..., 1) - - 86 86
Diagonal 4 (10) x0 = (1, 1, ..., 1) 232 3 5 4
Diagonal 4 (100) x0 = (1, 1, ..., 1) 712 3 7 4
Diagonal 4 (1000) x0 = (1, 1, ..., 1) - 3 7 4
Diagonal 4 (10000) x0 = (1, 1, ..., 1) - 3 9 4

44

