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ABSTRACT
This paper investigates several asymptotic confidence interval estimates, based on the Wald, 
likelihood ratio and the score statistics for the parameters of a parallel two-component system 
model, with dependent failure and a time varying covariate, when data is censored.  This model is 
an extension of the bivariate exponential model.  The procedures are investigated via a coverage 
probability study using the simulated data.  The results clearly indicate that the interval estimates, 
based on the likelihood ratio method, work better than any of the other two methods when dealing 
with the censored data.
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INTRODUCTION
The main limitation for most models, with censored data, is the fact that exact confidence intervals 
are impossible to compute.  One alternative is to use large sample intervals, based on the asymptotic 
normality of the maximum likelihood estimates.  However, there are some concerns over the use of 
the intervals which are based on asymptotic normality.  Jeng and Meeker (2000) pointed out that 
its actual coverage probability could be significantly different from the nominal specification for 
a small to moderate number of failures, particularly for the one-sided confidence bounds. Cox and 
Hinkley (1979) mentioned that one of the disadvantages of using the Wald statistic is that it is not 
invariant under the transformation of the parameter of interest, unlike the methods which are based 
on the likelihood ratio and the score tests.
	 This paper investigates the interval estimates based on the Wald, likelihood ratio and the 
score methods, when they are applied to the parameters of the bivariate exponential model with 
dependent failure, time varying covariate and censored data.  This is an extension of the bivariate 
exponential model by Freund (1961).  Most of the studies, with parametric models involving time 
varying covariates, are in the area of political science and sociology.  Works involving time varying 
covariates and duration dependence were done and discussed by authors such as Petersen (1986), 
Beck (1999), Bennet (1999), Box-Steffensmeier and Jones (1997), Tuma and Hannan (1984), 
Blossfield et al. (1989), Yamaguchi (1991), Courgeau and Leli è vre (1992), as well as Kalbfleisch 
and Prentice (1980).
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MATERIALS AND METHODS

Bivariate Model with Time Varying Covariate
Let T1 and T2 be random variables representing the lifetimes of two components, A and B from a 
parallel system with dependent failure.  Similarly, m  and r are the values of the random variables 
representing the total number of levels of the covariate in [0, min(t1, t2)] and [0, min(t1, t2)] 
respectively, with an initial value of m=1.  The hazard rate of component A is  h=exp(-b0-b1x)and the 
hazard rate of the component B is g=exp(-w0-w1x), where -b0, b1, w0  and  w1 are unknown parameters.  
If component A fails before component B, the hazard rate of component B then changes as a function 
of the covariates to g' = exp(-w*

0-w*
1x), and similarly if component B fails first, then the hazard rate 

of component A changes to h’ =exp(-b*
0-b*

1x).  The joint density function of  T1 and T2 is:

	 This paper is divided into 4 sections; Section 1 looks into some of the background studies 
related to the current work and the objectives of this research; Section 2 explores several asymptotic 
confidence interval estimates based on the Wald, likelihood ratio and the score statistics for the 
parameters of the time varying covariate model via coverage probability study using simulated data.  
Meanwhile, the result of the simulation study is discussed in Section 3, and finally Section 4 offers 
some concluding remarks and suggestions for future work.

Asymptotic Interval Estimation
The Wald Method
Let  θ̂  be the maximum likelihood estimator for parameter  and  the log-likelihood function of θ.  Under 
mild regularity conditions,  θ̂ is asymptotically normally distributed with mean q  and covariance 
matrix I-1 (θ ), where I (θ ) is the Fisher information matrix, evaluated at the true value of the parameter 
θ,  (Cox and Hinkley, 1979).  The matrix  I (θ  ) which is not available, can be replaced by the observed 
information matrix I ( )it  whose  (j, k)th element can be obtained from the second partial derivatives of 
the log-likelihood function evaluated at   .  If z

2
1

a
-   is the 1

2

a
-a kquantile of the standard normal 

distribution, the  100(1-α )% confidence interval for  θj   is given by the following:
θ̂
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The LR Method
The confidence interval, based on the likelihood ratio statistic (LR), has been described by many 
authors such as Cox and Hinkley (1979), Lawless (1982), Neslon (1990), Doganaksoy and Schmee 
(1993a) as well as Ostrouchov and Meeker (1988).  Recently, there has been more emphasis on 
using the corrected version of the LR intervals such as the corrected signed square root of the 
likelihood ratio statistic by Diciccio (1988) and Bartlett’s correction to the likelihood ratio statistic 
by Barndorff-Nielsen and Cox (1984). 
	 For a scalar parameter of interest q, the likelihood ratio statistic for testing the null hypothesis,  
H0 : q = q0  versus Ha : q !  q0  is given as:

							                 .
where ɭ is the log-likelihood function,  h  is the vector of nuisance parameters, ( ,i ht t )is the maximum 
likelihood estimator of (q, h) , and ῆ is the restricted maximum likelihood estimator of  h  under 
H0.  For a large sample size,  Y is approximately

 ( )1

2

|  
under  H0  and an approximate 100(1-a)% 

confidence interval for q can be obtained by finding the two values of  q0, for which H0 is not rejected 
at the a level of significance, that is, the values that satisfy:

with the lower confidence limit, qL< q and the upper confidence limit, qU  > q.  The general algorithm 
to obtain the LR confidence limits can be found in Venzon and Moolgavkar (1988).

The Score Method
The score statistic for testing hypothesis was introduced by Rao (1948).  It was further discussed 
by Cox and Hinkley (1979). Let’s reconsider the hypothesis, H0 : q=q0 versus Ha : q ≠q0 for testing 
a certain parameter of interest q.  The score statistic is asymptotically equivalent to the likelihood 
ratio statistic and is therefore obtained by considering the score vector at point q0, S(q0, ῆ).  A score 
vector which is close to 0 at point q0  will indicate that is it also close to  q0  and thus in favour of 
H0.  For a parameter of interest q, the score statistic at point q0 is given as:

where ῆ  is the restricted maximum likelihood estimator of γ under H0 and I-1 (q0, ῆ) is the inverse of 
the observed information matrix evaluated at point (q0, ῆ).  For a large sample,  Q is approximately   

( )1

2

|  and an approximate 100(1-a)% confidence interval for q  can be obtained by finding the two 
values of q0, for which  H0  is not rejected at α level of significance, that is, the values that satisfy:

with the lower confidence limit, qL< q  and the upper confidence limit, qU > q .  Under some regular 
conditions, the score has an asymptotic normal distribution with mean 0 and variance-covariance 
matrix equals to the information matrix.
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Simulation and Coverage Probability Study
The simulation study was conducted using N = 2000 samples of size n = 150, 200, 250, 300 and 400 
to compare the performance of the Wald, score and likelihood ratio confidence interval estimates.  
In this research, the maximum likelihood estimators of all the parameters were computed using the 
Newton Raphson iterative method, which was implemented using the FORTRAN programming 
language.
	 Consider an example with at most two levels of the covariate  x, for each observation.  These 
were simulated independently from the Standard Normal distribution.  Let m and r  be the values 
of the random variables representing the total number of the covariate levels in [0, min(t1, t2)] 
and [0, max(t1, t2)]  respectively, with initial value of m=1.  Recall that 0<m≤r, so  m can take 
two possible values of 1 and 2.  For each simulated observation, the number of covariate levels is 
determined by the values of m  and r, where m is dependent on  (min(t1, t2|x) and r is dependent 
on both (min(t1, t2|x) and (max(t1, t2|x)).  Since the covariate can only change its value once, then 
r≤2. 
	 A total of 8 parameters were estimated.  The values of 5, 1, 4.8 and 1.5 were chosen as the 
parameters of b0, b1, w0 and  w1  whereas the values of 4.8, 1.5, 3.5 and 0.7 were chosen as the 
parameters of  b0, b1, w0,  w1.  Three random numbers from the uniform distribution on the interval 
(0,1), uio, ui1 and , were generated to produce ti1 and ti2.  Suppose there are both censored and 
uncensored lifetimes for  subjects.  Three types of data will be considered.  The first is when both 
ti1 or ti2 are uncensored, while the second is when both ti1 and ti2 are censored and finally in the case 
when only  ti1 and ti2  is censored.
	 First, generate ai1~exp(v) where the value of v can be adjusted to obtain larger or smaller intervals 
of ai1.  In a real situation, the time intervals during which a covariate value remains constant, may 
vary or be fixed from one individual to another, depending on the covariate.  If the covariate was, for 
example, the presence of a certain symptom, or status such as adult or juvenile, it would certainly be 
different among subjects.  On the other hand, if the covariate was age at the beginning of the year, 
the intervals will then be the same for each individual.  In this study, the intervals were assumed to 
vary between the individuals. Then,

Following that, if tiA< tiB, ti1= tiA .  Then, if  ui0 ≤1-e-hi1ai1,

* **

otherwise.

otherwise.

for

for
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If  ui0 >1-e-hi1ai1,	 . Otherwise if  tiB < tiA, ti2 = tiB. Then, if  ui1 ≤1-e-gi1ai1  

If  

	 The censoring time, ci~exp(μ), where the value of  μ  would be adjusted to obtain the desired 
approximate censoring proportion in the data of the present study.  In this research, the two levels 
of approximate censoring proportions, cp=0.10 and cp=0.30, were used to see how they affected 
the performance of the interval estimates.  The values of cp=0.10 and cp=0.30 were chosen to 
represent both low and high levels of censoring proportions, respectively.  The coverage probability 
is the probability that an interval contains the true parameter value.  The study was conducted by 
calculating the left and right estimated error probabilities for each of the parameter estimates.  The 
estimated left (right) error probability was calculated by adding the number of times the left (right) 
endpoint was more (less) than the true parameter value, divided by the total number of samples, 
N.
	 Following Doganaksoy and Schmee (1993), if the total error probability is greater than 
α + 2.58 s.e (at ), the method is then termed as anticonservative, and if it is lower than α-2.58 
s.e (at ), the method is termed as conservative.  The estimated error probabilities are known as 
symmetric when the larger error probability is less than 1.5 times the smaller one.

RESULTS AND DISCUSSION
The summary of the simulation results, comparing the performances of the Wald, LR and score 
intervals, is given in Tables 1 and 2.  These tables display the total number of anticonservative, 
conservative and asymmetrical intervals, generated by each of these methods at different nominal 
error probabilities, and censoring proportion.  Tables 3 and 4 provide some of the more detailed 
results and show how the intervals performed at different sample sizes.  Figs. 1 through 4 give a 
graphical view of some of the coverage probabilities for each of the methods when α= 0.05 and 
cp=10%.  Tables 1 and 2 show that all the intervals produced 1 anticonservative and 2 conservative 
intervals, but only when the nominal level, α is high.
	 The LR method clearly generates intervals which are more symmetrical than the other two 
methods.  It only produced 1 asymmetrical interval when the censoring proportion in the data is low 

for

otherwise.

otherwise.

for
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Table 1
Summary of the number of interval estimates at α = 0.05 

Cp=0.10 Cp=0.30
Type of interval

Wald LR Score Wald LR Score

Anticonservative(A) 0 0 0 0 0 0
Conservative(C) 0 0 0 0 0 0
Asymetrical 9 1 9 9 3 9

Table 2
Summary of the number of interval estimates at α = 0.10 

Cp=0.10 Cp=0.30
Type of interval

Wald LR Score Wald LR Score

Anticonservative(A) 1 1 1 0 0 0

Conservative(C) 1 1 1 1 1 1

Asymetrical 6 1 5 4 0 4

and α is 0.05, whereas the Wald and score generated 9 asymmetrical intervals.  The high censoring 
level in the data seems to affect the LR more than the other methods, but only when α  is low where 
it starts to produce more asymmetrical intervals.  However, this number is still much lower than the 
number of asymmetrical intervals generated by the Wald and score intervals.
	 Both Wald and score methods gave almost similar results, but the score method appears to 
be slightly more symmetrical than the Wald.  However, the Wald has more intervals with the total 
error probability closer to the nominal level than the score intervals.  The increase in the censoring 
proportion does not seem to affect the performances of the Wald and score intervals.  When both  α 
and censoring proportion is high, the performances of all the intervals seem to be slightly improved, 
where they produce fewer asymmetrical intervals, particularly the LR interval.  The reason for this 
is probably the highly censored data that generates wider intervals because of the larger standard 
errors of the parameter estimates.  This produces more intervals that include the true parameter 
value.
 	 All the methods seem to generate more conservative and anticonservative intervals, but fewer 
asymmetrical intervals when α is high.  They also seem to converge to the nominal level at almost 
the same rate, but the LR intervals perform slightly better than the other two when the size of the 
sample is lower.

CONCLUSIONs
Overall, the LR method appears to perform best since it has the least number of asymmetrical 
intervals.  It should be the preferred method, specifically when the censoring level in the data is 
low.  Although the high censoring level and low value of α  seem to affect the LR in that it produces 
more asymmetrical intervals, the number of these asymmetrical intervals are still relatively low.  
Similarly, the LR intervals are still more symmetrical than the intervals produced by the other two 
methods. 
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    Wald LR Score

   

Left 
Error

Right 
Error

Total 
Error

Left 
Error

Right 
Error

Total 
Error

Left 
Error

Right 
Error Total Error

  150 0.0235 0.0280 0.0515 0.0305 0.0250 0.0555 0.0240 0.0280 0.0520

b0  200 0.0215 0.0250 0.0465 0.0275 0.0230 0.0505 0.0225 0.0255 0.0480

  250 0.0250 0.0270 0.0520 0.0290 0.0220 0.0510 0.0250 0.0270 0.0520

  300 0.0225 0.0265 0.0490 0.0245 0.0230 0.0475 0.0225 0.0265 0.0490

  400 0.0265 0.0275 0.0540 0.0280 0.0225 0.0505 0.0270 0.0280 0.0550

  150 0.0230 0.0300 0.0530 0.0230 0.0305 0.0535 0.0225 0.0300 0.0525

  200 0.0195 0.0280 0.0475 0.0195 0.0280 0.0475 0.0195 0.0275 0.0470

 b1
   250 0.0250 0.0200 0.0450 0.0245 0.0200 0.0445 0.0250 0.0200 0.0450

  300 0.0190 0.0260 0.0450 0.0190 0.0260 0.0450 0.0190 0.0260 0.0450

  400 0.0235 0.0255 0.0490 0.0225 0.0255 0.0480 0.0235 0.0255 0.0490

  150 0.0215 0.0300 0.0515 0.0270 0.0235 0.0505 0.0215 0.0305 0.0520

  200 0.0250 0.0330 0.0580 0.0295 0.0260 0.0555 0.0255 0.0330 0.0585

 w0
250 0.0205 0.0365 0.0570 0.0270 0.0290 0.0560 0.0205 0.0370 0.0575

  300 0.0210 0.0290 0.0500 0.0275 0.0275 0.0550 0.0215 0.0300 0.0515

  400 0.0210 0.0285 0.0495 0.0275 0.0245 0.0520 0.0220 0.0290 0.0510

  150 0.0210 0.0245 0.0455 0.0215 0.0240 0.0455 0.0210 0.0245 0.0455

  200 0.0255 0.0275 0.0530 0.0255 0.0275 0.0530 0.0255 0.0280 0.0535

w1
250 0.0315 0.0200 0.0515 0.0315 0.0200 0.0515 0.0315 0.0205 0.0520

  300 0.0260 0.0190 0.0450 0.0255 0.0185 0.0440 0.0260 0.0195 0.0455

  400 0.0240 0.0235 0.0475 0.0240 0.0245 0.0485 0.0240 0.0235 0.0475

  150 0.0210 0.0335 0.0545 0.0295 0.0285 0.0580 0.0215 0.0340 0.0555

  200 0.0170 0.0360 0.0530 0.0225 0.0300 0.0525 0.0170 0.0365 0.0535

b0
* 250 0.0155 0.0295 0.0450 0.0180 0.0250 0.0430 0.0160 0.0305 0.0465

300 0.0190 0.0250 0.0440 0.0225 0.0240 0.0465 0.0190 0.0250 0.0440
400 0.0180 0.0300 0.0480 0.0200 0.0255 0.0455 0.0190 0.0310 0.0500
150 0.0225 0.0240 0.0465 0.0245 0.0255 0.0500 0.0235 0.0240 0.0475
200 0.0305 0.0275 0.0580 0.0305 0.0265 0.0570 0.0305 0.0275 0.0580

b1
* 250 0.0205 0.0225 0.0430 0.0210 0.0225 0.0435 0.0205 0.0225 0.0430

300 0.0170 0.0230 0.0400 0.0170 0.0235 0.0405 0.0170 0.0230 0.0400
400 0.0205 0.0300 0.0505 0.0205 0.0300 0.0505 0.0205 0.0305 0.0510
150 0.0195 0.0370 0.0565 0.0235 0.0310 0.0545 0.0195 0.0380 0.0575
200 0.0185 0.0340 0.0525 0.0205 0.0265 0.0470 0.0185 0.0345 0.0530

w*
0

250 0.0185 0.0345 0.0530 0.0215 0.0295 0.0510 0.0185 0.0350 0.0535
300 0.0280 0.0305 0.0585 0.0310 0.0265 0.0575 0.0280 0.0315 0.0595

  400 0.0255 0.0335 0.0590 0.0290 0.0285 0.0575 0.0255 0.0335 0.0590

  150 0.0255 0.0315 0.0570 0.0245 0.0310 0.0555 0.0250 0.0315 0.0565

  200 0.0235 0.0275 0.0510 0.0240 0.0280 0.0520 0.0240 0.0280 0.0520

w*
0  250 0.0285 0.0215 0.0500 0.0280 0.0215 0.0495 0.0285 0.0215 0.0500

  300 0.0290 0.0235 0.0525 0.0290 0.0240 0.0530 0.0290 0.0235 0.0525

  400 0.0255 0.0325 0.0580 0.0255 0.0325 0.0580 0.0255 0.0325 0.0580

Table 3
Estimated error probabilities at a = 0.05, cp=0.10, A=“Anticonservative”, C=“Conservative”
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Table 4
Estimated error probabilities at a = 0.05, cp=0.30, A=“Anticonservative”, C=“Conservative”

    Wald LR Score

    Left 
Error

Right 
Error

Total 
Error

Left 
Error

Right 
Error

Total 
Error

Left 
Error

Right 
Error

Total 
Error

  150 0.0220 0.0330 0.0550 0.0320 0.0285 0.0605 0.0235 0.0335 0.0570

b0  200 0.0245 0.0300 0.0545 0.0305 0.0210 0.0515 0.0245 0.0305 0.0550

  250 0.0200 0.0230 0.0430 0.0245 0.0200 0.0445 0.0215 0.0230 0.0445

  300 0.0265 0.0285 0.0550 0.0325 0.0260 0.0585 0.0265 0.0295 0.0560

  400 0.0255 0.0285 0.0540 0.0315 0.0260 0.0575 0.0255 0.0285 0.0540

  150 0.0210 0.0225 0.0435 0.0220 0.0225 0.0445 0.0205 0.0225 0.0430

 b1
200 0.0185 0.0235 0.0420 0.0185 0.0235 0.0420 0.0185 0.0235 0.0420

     250 0.0245 0.0250 0.0495 0.0245 0.0250 0.0495 0.0245 0.0250 0.0495

  300 0.0235 0.0215 0.0450 0.0230 0.0230 0.0460 0.0235 0.0215 0.0450

  400 0.0260 0.0270 0.0530 0.0255 0.0270 0.0525 0.0260 0.0270 0.0530

  150 0.0200 0.0265 0.0465 0.0290 0.0215 0.0505 0.0205 0.0265 0.0470

  200 0.0200 0.0290 0.0490 0.0245 0.0255 0.0500 0.0200 0.0290 0.0490

w0  250 0.0270 0.0315 0.0585 0.0300 0.0290 0.0590 0.0270 0.0315 0.0585

  300 0.0200 0.0295 0.0495 0.0245 0.0265 0.0510 0.0200 0.0300 0.0500

  400 0.0240 0.0305 0.0545 0.0290 0.0270 0.0560 0.0245 0.0310 0.0555

  150 0.0215 0.0250 0.0465 0.0215 0.0250 0.0465 0.0215 0.0250 0.0465

  200 0.0240 0.0265 0.0505 0.0240 0.0265 0.0505 0.0240 0.0265 0.0505

w1  250 0.0330 0.0190 0.0520 0.0330 0.0190 0.0520 0.0330 0.0190 0.0520

  300 0.0235 0.0170 0.0405 0.0240 0.0165 0.0405 0.0235 0.0170 0.0405

  400 0.0275 0.0230 0.0505 0.0280 0.0230 0.0510 0.0275 0.0230 0.0505

  150 0.0200 0.0305 0.0505 0.0255 0.0260 0.0515 0.0210 0.0315 0.0525

  200 0.0150 0.0375 0.0525 0.0185 0.0300 0.0485 0.0150 0.0380 0.0530

b*
0

250 0.0175 0.0295 0.0470 0.0235 0.0255 0.0490 0.0180 0.0305 0.0485
300 0.0185 0.0275 0.0460 0.0230 0.0210 0.0440 0.0185 0.0275 0.0460
400 0.0185 0.0345 0.0530 0.0220 0.0305 0.0525 0.0185 0.0345 0.0530
150 0.0215 0.0180 0.0395 0.0210 0.0175 0.0385 0.0210 0.0185 0.0395
200 0.0290 0.0230 0.0520 0.0275 0.0225 0.0500 0.0295 0.0225 0.0520

b*
1

250 0.0205 0.0230 0.0435 0.0210 0.0230 0.0440 0.0205 0.0230 0.0435
300 0.0155 0.0240 0.0395 0.0150 0.0240 0.0390 0.0155 0.0240 0.0395
400 0.0250 0.0290 0.0540 0.0255 0.0280 0.0535 0.0255 0.0290 0.0545
150 0.0195 0.0410 0.0605 0.0235 0.0325 0.0560 0.0205 0.0420 0.0625

w*
0

200 0.0175 0.0335 0.0510 0.0210 0.0255 0.0465 0.0175 0.0345 0.0520
250 0.0230 0.0300 0.0530 0.0265 0.0230 0.0495 0.0230 0.0305 0.0535
300 0.0200 0.0295 0.0495 0.0235 0.0245 0.0480 0.0200 0.0295 0.0495

  400 0.0250 0.0305 0.0555 0.0280 0.0270 0.0550 0.0250 0.0305 0.0555

  150 0.0205 0.0220 0.0425 0.0205 0.0210 0.0415 0.0205 0.0230 0.0435

 w*
1

200 0.0235 0.0315 0.0550 0.0235 0.0290 0.0525 0.0235 0.0315 0.0550

  250 0.0255 0.0200 0.0455 0.0265 0.0195 0.0460 0.0260 0.0200 0.0460

  300 0.0245 0.0290 0.0535 0.0245 0.0295 0.0540 0.0245 0.0290 0.0535

  400 0.0255 0.0290 0.0545 0.0250 0.0285 0.0535 0.0255 0.0290 0.0545
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Fig. 1: Estimated error probabilities for b0  at a= 0.05 and cp=0.1

Fig. 2: Estimated error probabilities for b1  at a= 0.05 and cp=0.1

Fig. 3: Estimated error probabilities for w0  at a= 0.05 and cp=0.1

Fig. 4: Estimated error probabilities for w1  at a= 0.05 and cp=0.1
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	 Thus, the Wald method can be considered when both a and the censoring proportion are high, 
or when a simpler and faster method is required.  It is probably not advisable to consider applying 
the Wald intervals in other settings because it generally generates the most number of asymmetrical 
intervals.  The score method may perform as good as the Wald, but it involves a lot of computational 
effort.  Thus, this method should not be considered, unless as a measure of comparison.  These 
findings are consistent with the results of  Doganaksoy and Schmee (1993) who found the Wald 
intervals to be highly asymmetrical as compared to the LR, when dealing with censored data.  
However, the LR method involves a great deal of computational effort, which may not actually justify 
its improved performance when compared to the much more straightforward Wald method.
	 The discussion on the model involving time varying covariates has been restricted to two 
intervals, during which the covariates value remains constant.  It would be possible to carry out 
further work to include models involving more intervals and this could be programmed relatively 
easily.  The model can also be extended to consider the case, in which the components have the 
Weibull lifetime distribution. 
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