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ABSTRACT
This paper investigates the confidence intervals of R2

MAD, the coefficient of determination based on 
median absolute deviation in the presence of outliers.  Bootstrap bias-corrected accelerated (BCa) 
confidence intervals, known to have higher degree of correctness, are constructed for the mean and 
standard deviation of R2

MAD for samples generated from contaminated standard logistic distribution.  
The results indicate that by increasing the sample size and percentage of contaminants in the samples, 
and perturbing the location and scale of the distribution affect the lengths of the confidence intervals.  
The results obtained can also be used to verify the bound of R2

MAD.
     
Keywords: Bootstrap, R2

MAD, confidence interval, contaminated standard logistic distribution 

INTRODUCTION
In statistics, the median absolute deviation (MAD) is a resistant measure of the variability of a 
univariate sample.  It can be used to estimate the scale parameter of a distribution, for which variance 
and standard deviation do not exist, such as the Cauchy distribution.  Even when working with 
distributions for which the variance exists, the MAD has advantages over the standard deviation.  
For instance, the MAD is more resilient to outliers in a data set.  For standard deviation, the distances 
from the mean are squared.  Then, on the average, large deviations are weighted more heavily.  In 
the MAD, the magnitude of the distances of a small number of outliers is irrelevant.  Recently, 
problem related with robust statistic is often discussed and investigated by many researchers.  
Among other, Crouxa et al. (2002) discussed the breakdown behaviour of the maximum likelihood 
(ML) estimator in the logistic regression model, while Bondell (2008) constructed a new family of 
procedures to estimate the parameters in the general semi-parametric biased sampling model and 
then compared it to the existing robust logistic regression procedures via a simulation study and 
real data example.  For the R2

MAD, a review of the statistical literature indicates that the coefficient 
of determination based on the median absolute deviation is seldom discussed, especially in relation 
to its application.  Many researchers are more interested in investigating the sampling properties, as 
well as the confidence intervals of the coefficient of determination (R2) and the adjusted coefficient 
of determination (R2).  According to Ohtani (2000), the sampling properties of the R2 and R2

have been examined by Koerts and Abrahamse (1970), Rencher and Pun (1980), Cramer (1987), 
Carrodus and Giles (1992), Meepagala (1992), Ohtani and Hasegawa (1993), Ohtani (1994), and 
Srivastava and Ullah (1995), whereas their confidence intervals were examined by Helland (1987) 
who proposed a simple approximate confidence interval.  Ohtani (2000) considered estimating the 
standard errors of R2 and R2 , and constructing  their confidence intervals using bootstrap method.
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 In general, bootstrapping is a statistical method used to estimate the sampling distribution of 
an estimator by sampling with replacement from the original sample, most often with the purpose 
of deriving robust estimates of standard errors and confidence intervals of a population parameter.  
It has become an important tool in statistical inference since the pioneering article by Efron (1979).  
In 2004, Hossain and Khan discussed the non-parametric bootstrapping procedure for the multiple 
logistic regression model associated with Davidson and Hinkley’s (1997) “boot” library in R 
statistical software.  They estimated the sampling distribution of a statistic empirically without 
making any assumptions about the form of the population, and without deriving the sampling 
distribution explicitly using the non-parametric bootstrapping.  As stated in Press and Zellner 
(1978), R2 is rarely accompanied by a measure of precision.  It is difficult to calculate since the 
distribution of R2 is rather complex and dependent on unknown parameters.  Then, Ohtani (2000) 
stated that the bootstrap method proposed by Efron (1979) is often useful and easier to execute 
than the Bayesian method when the calculation of precision and the construction of a confidence 
interval are difficult.  Thus, the bootstrap method is considered in this study as a tool for the 
construction of the confidence intervals of R2

MAD. 
 In this paper, the confidence intervals of the mean and standard deviation of the sampling 
distribution of R2

MAD, based on the samples from the contaminated standard logistic distributions, 
are constructed using the bootstrap method.
 In the next section, a short background of the standard logistic distribution and the R2

MAD is 
given, and this is followed by a simulation study (Section 2), the bootstrap procedure (Section 3) 
as well as discussions of the results (Section 4) and the conclusion (Section 5).

R2
MAD FROM CONTAMINATED STANDARD LOGISTIC DISTRIBUTION

The Standard Logistic Distribution 
The logistic distribution has been used for various growth models and for a certain type of 
regression which is appropriately known as logistic regression.
 In the probability theory and statistics, the logistic distribution is a continuous probability 
distribution with no shape parameter.  Hence, the probability density function (pdf) of the logistic 
distribution has only one shape (i.e. the bell shape) which resembles the normal distribution but 
with heavier tails.
 In general, let x be a random variable, which is generated from logistic distribution, then the 
probability density function (pdf) of the logistic distribution is given by:
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 Therefore, for the standard logistic distribution ,0 1n v= =^ h, the pdf is 
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The Median Absolute Deviation Correlation Coefficient, rMAD 

This section presents a correlation analogue of the MAD, rMAD.  Let (X, H) be a bivariate distribution 
with parameters, , , , .h hx nn v t  
 Define 

( )' med xx xi i= -    ( )' med hh hi i= -

           
and  ( )MAD med x med xi ix = - and  ( )MAD med h med hh i i= - ;

 i = 1, 2, …, n,  where med(.) is the median function.

 According to Gideon (2007), the definition of rMAD is as follows: 
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 Then, 22 )( MADMAD rR = .  Gideon verified that it is evidently not true that r 1MAD # .  Thus, 
rMAD may sometimes go beyond + 1 or – 1.

Generation of R2
MAD for the Standard Logistic Distribution 

Let X(i) be the ith order statistics and Ti is a set of constants ( i = 1, …,n ).  A regression test is a 
graphical method which is related to probability plots, in which the order statistics X(i) (on the 
vertical axis) are plotted against Ti  (on the horizontal axis).  After that, a straight line is fitted to the 
points, and R2 will indicate the association between X(i) and Ti.
 Suppose ( ) ( )F x F w0 /  with ( )/w x n v= - , where μ is the location parameter and σ  is 
the scale parameter.  When a sample of values Wi are taken from F(w), with 0=μ  and 1=σ , 
the sample Xi is then constructed from F0(x) by calculating:

 
 

X W( ) ( )i in v= + ,    i = 1, …, n.

Now, let
( )E Wm ( )i i= .

Then  
   ( )E X m( )i in v= +   (2)
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and a plot of X(i) against mi is approximately a straight line with an intercept μ on the vertical axis 
and slope σ, as shown in Fig. 1.
 Nevertheless, for logistic distribution, mi is difficult to calculate.  Therefore, the expression (2) 
can be replaced by: 

   X T( )i i in fv= + +   (3) 

where εi is the error term.  When T = mi , εi will have mean zero.
 However, an approximate value of mi is used for the samples from the standard logistic 
distribution, 

   log{ /( )}H i n 1i = + ,                                   (4)

which is given by D’Agostino and Stephens (1986). 

 Then, each pair (Xi, Hi) is substituted into formula (1) for the standard logistic distribution in 
the previous section.
  The study proceeded with the simulation of data to obtain the sampling distribution of 
R2

MAD from the contaminated standard logistic distribution.  The sampling distribution of R2
MAD 

is simulated for the logistic contaminants (logistic (2, 0.2), logistic (0, 0.2) and logistic (2, 1)) 
and normal contaminants (normal (3, 0.2)).  The contaminants percentages used are 5%, 15%, 
and 25% with n equals to 20, 40, and 100.  For n = 20 with 5% logistic (2, 0.2) contaminants, 
the contaminated sample contained 95% of the sample from the standard logistic distribution and 
5% sample from the logistic (2, 0.2) distribution.  The same procedure was used for the other 
contaminations.
 In this study, the contamination in the generation of samples is important as it can be used to 
observe the effect of the sample size, percentage of contamination and distribution of contaminant 
on the confidence intervals for the mean and standard deviation of R2

MAD.  The logistic (2, 0.2), 
logistic (0, 0.2), and logistic (2, 1) contaminants were therefore chosen to determine the behaviour 
of the confidence intervals for the mean and standard deviation of R2

MAD, when the values of location 
and scale of logistic distribution increased, whereas any values could be chosen as the location and 
scale of the normal contaminants, provided they were not far from the parameter values of logistic 
contaminants.

Fig. 1
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 For the cases without outliers, the following steps are used in calculating R2
MAD for the standard 

logistic distribution.
Step 1.  Using S-plus, a random sample of order statistics  , , ...,X X X n1 2] ] ]g g g" , is generated from 

the standard logistic distribution with  0n =  and  1v =  for the sample of size n.
Step 2. Calculate the approximate value of mi, i.e., Hi, using formula (4). 
Step 3.   Regress Xi ’s on Hi ’s and calculate rMAD using (1).  This is followed by the calculation of 

R2
MAD.

Step 4. Steps 1 – 3 are repeated 1000 times to generate (1000) R2
MAD for the standard logistic 

distribution.
Step 5. Steps 1 – 4 are repeated for the different sample sizes (n = 20, 40, 100 ).

 However, for cases with outliers, the samples of order statistics generated for use in the 
calculation of R2

MAD are obtained from the contaminated standard logistic distribution for logistic 
(2, 0.2), logistic (0, 0.2), logistic (2, 1), and normal (3, 0.2).  Similar procedures in the simulation 
for the cases without outlier (Steps 2 – 5) are repeated.  Then, (1000) R2

MAD for the standard logistic 
distribution with 5%, 15% and 25% contaminants are obtained for n = 20, 40, 100, respectively.

BOOTSTRAP CONFIDENCE INTERVALS FOR THE MEAN AND STANDARD 
DEVIATION OF R2

MAD

Bootstrap Procedure 
In this study, the bias-corrected accelerated (BCa) confidence intervals were computed by 
simulation with the sample sizes of 20, 40, and 100, since it possessed a higher degree of correctness 
as compared to other types of bootstrap confidence intervals.  According to Efron (1987), the BCa 
bootstrap confidence interval is known to lead to second-order accuracy in correctness, while the 
percentile (P), the bias-corrected (BC), and the asymptotic normal confidence intervals have the 
first-order accuracy only.   
  The implementation of the bootstrap procedure can be summarized as follows: Let  ) a

it
] g

indicates the 100•a th percentile of B bootstrap replications , , ..., .B1 2
) ) )

i i it t t] ] ]g g g   The percentile 
interval  ,
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lo up

1
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 In this study, the step above was repeated 1000 times (B = 1000), and then the averages and 
standard errors of the mean and standard deviation of the R2

MAD were obtained.  Furthermore, 95% 
confidence intervals for the mean and standard deviation of the R2

MAD could be calculated.
 The R2

MAD, which was used in the bootstrap procedure above, was generated using the method 
presented in the previous section.  The bootstrap estimates of the mean and standard deviation of 
R2

MAD and their confidence intervals for the various cases considered in this investigation were 
obtained using the S-plus software. 
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RESULTS AND DISCUSSION
This section presents a discussion on the results of the bootstrap estimates for the mean and standard 
deviation of the sampling distribution of R2

MAD simulated for various sample sizes, percentage of 
contamination, as well as distribution of the contaminants, location and scale of the distribution, 
from which the samples were drawn.  Tables 1, 2, 3, 4, and 5 show 95% confidence intervals of 
R2

MAD for the cases with and without outliers.  Tables 6 and 7 show the range of confidence intervals 
for the mean and standard deviation of R2

MAD, respectively.
 As expected for the cases without outliers, Table 1 shows that the range of the confidence 
intervals for the mean and standard deviation of R2

MAD has become smaller when the sample size 
increases.  For the cases with outliers, on the other hand, Tables 2, 3, 4 and 5 show that there are 
some similar results just like for the cases without outlier.  The range of the confidence intervals 
for the mean and standard deviation of R2

MAD become smaller when the sample size increases.  
The same pattern prevails for each type of the contaminants (see Tables 6 and 7).  Meanwhile, 
for each sample size, the results showed that increasing the percentage of contaminants would 
widen the confidence intervals for the mean and standard deviation of R2

MAD for each type of 
contaminants, except for the confidence intervals for the standard deviation of R2

MAD with logistic 
(2, 1) contaminants (see Tables 6 and 7).
 In the cases with normal contaminants, the results show that the confidence intervals for the 
mean of R2

MAD are wider as compared to the cases with logistic contaminants.  The trend can be 
seen more clearly when it is compared to logistic (2, 1) contaminants, as indicated in Tables 6.  For 
the standard deviation, however, the range of the confidence intervals for the normal contaminants 
does not show any specific trend as compared to the cases with logistic contaminants, as given in 
Table 7.
 For the cases with logistic contaminants, on the other hand, the range of the confidence 
intervals for the mean and standard deviation of R2

MAD increases with an increase in the location of 
the logistic distribution as shown in Tables 6 and 7.  Meanwhile, increasing the scale of the logistic 
distribution was found to widen the confidence intervals for the mean and standard deviation of 
R2

MAD for the samples with 5% contaminations.  For the samples with 15% and 25% contamination, 
however, the range of the confidence intervals for the mean and standard deviation of R2

MAD was 
found to decrease with the increase in the scale of the logistic distribution, as indicated in Tables 6 
and 7.  In all the constructed BCa ’s, R2

MAD is bounded between -1 and 1.

TABLE 1 
95% Confidence intervals of R2

MAD for cases without outliers

N Observed BCa (95%)

20 mean 0.8099 ( 0.8044, 0.8157 )

sd 0.09474 ( 0.08967, 0.09993 )

40 mean 0.8468 ( 0.8416, 0.8514 )

sd 0.07802 ( 0.07352, 0.08291 )

100 mean 0.8966 ( 0.8934, 0.8998 )

sd 0.04993 ( 0.04669, 0.05359 )
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TABLE 2
 95% Confidence intervals of R2

MAD for cases with logistic (2, 0.2) contaminants

n Contaminant Observed BCa (95%)

20 mean 5% 0.7999 ( 0.7935, 0.806 )

15% 0.7973 ( 0.79, 0.8034 )

25% 0.7798 ( 0.7718, 0.7871 )

sd 5% 0.1001 ( 0.09538, 0.1064 )

15% 0.1042 ( 0.09896, 0.1105 )

25% 0.1253 ( 0.1184, 0.1324 )

40 mean 5% 0.8486 ( 0.8437, 0.8532 )

15% 0.8375 ( 0.8323, 0.8428 )

25% 0.8043 ( 0.797, 0.8107 )

sd 5% 0.08016 ( 0.07583, 0.08518 )

15% 0.08438 ( 0.07979, 0.0894 )

25% 0.1094 ( 0.104, 0.1164 )

100 mean 5% 0.8976 ( 0.8946, 0.9006 )

15% 0.8809 ( 0.8773, 0.8844 )

25% 0.8426 ( 0.8376, 0.8476 )

sd 5% 0.0494 ( 0.04668, 0.05245 )

15% 0.0581 ( 0.0548, 0.06213 )

25% 0.07979 ( 0.07524, 0.0846 )

TABLE 3
 95% Confidence intervals of R2

MAD for cases with logistic (0, 0.2) contaminants

n Contaminant Observed BCa (95%)
20 mean 5% 0.8005 ( 0.7945,  0.8063 )

15% 0.7921 ( 0.7845,  0.7973 )

25% 0.7809 ( 0.7738,  0.7874 )

sd 5% 0.09811 ( 0.09291,  0.1032 )

15% 0.1053 ( 0.09955,  0.1107 )

25% 0.1069 ( 0.1014,  0.1127 )

40 mean 5% 0.8501 ( 0.8453,  0.8546 )

15% 0.8346 ( 0.829,  0.8393 )

25% 0.8234 ( 0.8182,  0.829 )
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sd 5% 0.073 ( 0.06845,  0.078 )

15% 0.08091 ( 0.07599,  0.085 )

25% 0.0864 ( 0.08186,  0.09121 )

100 mean 5% 0.8972 ( 0.8942,  0.9005 )

15% 0.8806 ( 0.8773,  0.8836 )

25% 0.8593 ( 0.8557,  0.863 )

sd 5% 0.04961 ( 0.04706, 0.05267 )

15% 0.05056 ( 0.04789,  0.0536 )

25% 0.05913 ( 0.05602,  0.06256 )

TABLE 4 
95% Confidence intervals of R2

MAD for cases with logistic (2, 1) contaminants

n Contaminant Observed BCa (95%)
20 mean 5% 0.7983 ( 0.7914,  0.8042 )

15% 0.8033 ( 0.7972,  0.8093 )

25% 0.8017 ( 0.796,  0.8079 )

sd 5% 0.1014 ( 0.09669,  0.108 )

15% 0.09906 ( 0.0934,  0.1048 )

25% 0.1001 ( 0.09489, 0.1051 )

40 mean 5% 0.8464 ( 0.8414, 0.8513 )

15% 0.8446 ( 0.839,  0.849 )

25% 0.8468 ( 0.8412,  0.8514 )

sd 5% 0.07908 ( 0.07467,  0.08404 )

15% 0.07882 ( 0.07462,  0.08395 )

25% 0.07769 ( 0.07359,  0.082 )

100 mean 5% 0.8975 ( 0.8944,  0.9005 )

15% 0.8963 ( 0.893,  0.8991 )

25% 0.8926 ( 0.8893, 0.8958 )

sd 5% 0.05049 ( 0.0473, 0.05402 )

15% 0.05162 ( 0.04829, 0.05629 )

25% 0.05237 ( 0.04934,  0.05593 )

Table 3 continued
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TABLE 5
 95% Confidence intervals of R2

MAD for cases with normal (3, 0.2) contaminants

n Contaminant Observed BCa (95%)
20 mean 5% 0.7982 ( 0.7915, 0.8045 )

15% 0.8055 ( 0.7989, 0.8117 )

25% 0.7941 ( 0.7869, 0.8026 )

sd 5% 0.1011 ( 0.09564, 0.1071 )

15% 0.107 ( 0.1008, 0.1137 )

25% 0.1216 ( 0.1147, 0.1289 )

40 mean 5% 0.8473 ( 0.8426, 0.8523 )

15% 0.8391 ( 0.8338, 0.8444 )

25% 0.8219 ( 0.8156, 0.8274 )

sd 5% 0.07848 ( 0.074, 0.08299 )

15% 0.08671 ( 0.08248, 0.09124 )

25% 0.099 ( 0.09409, 0.1051 )

100 mean 5% 0.8955 ( 0.8925, 0.8985 )

15% 0.8805 ( 0.8765, 0.8843 )

25% 0.8471 ( 0.8425, 0.851 )

sd 5% 0.05051 ( 0.0479, 0.05347 )

15% 0.06278 ( 0.05962, 0.06738 )

25% 0.07173 ( 0.06882, 0.07524 )

TABLE 6
 The range of the confidence intervals for the mean of R2

MAD

Contaminant Contamination n Range 

Logistic (2, 0.2) 5% 20 0.0125

40 0.0095

100 0.006

15% 20 0.0134

40 0.0105

100 0.0071

25% 20 0.0153

40 0.0137

　 　 100 0.01
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Logistic (0, 0.2) 5% 20 0.0118

40 0.0093

100 0.0063

15% 20 0.0128

40 0.0103

100 0.0063

25% 20 0.0136

40 0.0108

　 　 100 0.0073

Logistic (2, 1) 5% 20 0.0128

40 0.0099

100 0.0061

15% 20 0.0121

40 0.01

100 0.0061

25% 20 0.0119

40 0.0102

　 　 100 0.0065

Normal (3, 0.2) 5% 20 0.013

40 0.0097

100 0.006

15% 20 0.0128

40 0.0106

100 0.0078

25% 20 0.0157

40 0.0118

　 　 100 0.0085

Table 6 continued
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TABLE 7
 The range of the confidence intervals for the standard deviation of R2

MAD

Contaminant Contamination n Range 

Logistic (2, 0.2) 5% 20 0.01102

40 0.00935

100 0.00577

15% 20 0.01154

40 0.00961

100 0.00733

25% 20 0.014

40 0.0124

　 　 100 0.00936

Logistic (0, 0.2) 5% 20 0.01029

40 0.00955

100 0.00561

15% 20 0.01115

40 0.00901

100 0.00571

25% 20 0.0113

40 0.00935

　 　 100 0.00654

Logistic (2, 1) 5% 20 0.01131

40 0.00937

100 0.00672

15% 20 0.0114

40 0.00933

100 0.008

25% 20 0.01021

40 0.00841

　 　 100 0.00659

Normal (3, 0.2) 5% 20 0.01146

40 0.00899

100 0.00557

15% 20 0.0129

40 0.00876

100 0.00776

25% 20 0.0142

40 0.01101

　 　 100 0.00642
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CONCLUSIONS
As expected, the range of the confidence intervals for the mean and standard deviation of R2

MAD 
becomes smaller when the sample size increases for both the cases with and without outliers, based 
on the results presented in the previous section.  The same trend can be seen for each distribution 
of the contaminants.  Meanwhile, increasing the percentage of contaminants widens the confidence 
intervals for each sample size, except for the confidence intervals for the standard deviation of 
R2

MAD with logistic (2, 1) contaminants.  Increasing the location and scale of the distribution of 
logistic contaminants has also been found to affect the range of confidence intervals for the mean 
and standard deviation of R2

MAD.  The results obtained are used to verify the bound of R2
MAD, i.e. 

whether or not MADr  is always less than 1.
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