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ABSTRACT 

The propagation, diffraction, scattering, penetration and interaction phenomena of 
electromagnetic waves are governed by the well known Maxwell's equations. The 

applications of Maxwell's equations can be found in many disciplines in science and 
engineering particularly in antenna design and analysis. Finite Difference Time 
Domain (FDTD) is a popular numerical simulation technique for solving problems 
related to Maxwell’s equations. Recently, there is other formulation that can 
potentially be used to solve Maxwell’s equations in source free region.. The new 
formulation, namely the scalar Wave-Equation Finite-Difference Time-Domain (WE-
FDTD), is numerically and mathematically equivalent to the conventional FDTD. 
Unlike the conventional FDTD, the scalar WE-FDTD allows computing any single 
field component without the necessity of computing other field components. 

Therefore, significant savings in the computational time and memory storage can be 
achieved. In this paper, we presented the explicit formulation of the scalar WE-FDTD 
for free space wave propagation on one dimensional model problem using full-sweep, 
half-sweep and quarter-sweep  approaches which successfully implemented for 
solving elliptic problems. We analyzed and compared the performance of the scalar 
WE-FDTD with all approaches to the conventional FDTD method in terms of the 
computational accuracy and simulation time. The results found that the proposed 
formulation significantly reduced the computational time of the method but posed 

less accuracy as compared to the conventional FDTD method.   
 
Keywords:  Maxwell's equation, Finite Difference Time Domain (FDTD), scalar 
wave-equation. 

 

 

INTRODUCTION 

Finite-Difference Time-Domain (FDTD) method nowadays is one of 
the most widely used numerical time-domain techniques in 

electromagnetism, as such antenna design, optics, etc. The primary 
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advantage of the FDTD method is that it is a direct solution of Maxwell's 

equations. The FDTD method, also known as Yee’s algorithm (K.S.Yee 

(1966)), computes the field components by discretizing the Maxwell’s curl 
equations both in time and space, and then solving the discretized equations 

in a time marching sequence by alternatively calculating the electric and 

magnetic fields in the computational domain. Therefore no system of linear 
equations must be solved and the equations used in the FDTD method are 

fully explicit. 

 
Recently, the FDTD method has been extended to other formulation 

which can potentially be used to solve Maxwell's equations. The formulation 

is based on scalar-wave equation which is both mathematically and 

numerically equivalence to conventional Yee algorithm in source free 
regions (Aoyagi et al. (1993)). Unlike the conventional FDTD approach, the 

new formulation, called the scalar Wave-Equation FDTD (WE-FDTD), 

allows computing any single field component without the necessity of 
computing other field components. Therefore, significant savings in the 

computational time and memory storage can be achieved. In this paper, the 

explicit formulations based on the scalar WE-FDTD are presented to solve 

electromagnetic wave propagation problem in source free region. These 
formulations are based on the concept of full-sweep, half-sweep and quarter-

sweep introduced by Abdullah (1991) and Othman et al. (2000).  Some 

numerical simulations were carried out using a model of one-dimensional 
problem to analyze the accuracy of the formulations and its execution time 

relative to conventional FDTD method. 

 

 
Figure 1:  FDTD grid cell showing the staggering of electric and magnetic field components 

in space. 
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FORMULATIONS 

The Maxwell's curl equations in free space can be written as: 

  
t

E
H

∂

∂
=×∇ 0ε      (1) 

t

H
E

∂

∂
−=×∇ 0µ      (2) 

 

where H is the normalized magnetic field, E is the normalized electric field, 

µ0 and ε0 are the permittivity and the permeability of magnetic and electric 
field in free space respectively. For one-dimensional free-space environment 

using Ex and Hy fields in z-direction, the equations become 
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Equations (3) and (4) can be discretized in both space and time using 

central difference approximation to give the FDTD algorithm written in 

explicit form (Yee (1966)) as 
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where t∆  is the time step size and ∆  is the space cell size in z-direction. The 

relative locations of the Ex and Hy  field components in a uniform, Cartesian 

grid is defined by Yee cell (figure 1). To reduce the computational 

complexity of the Yee FDTD algorithm described above, equations (5) and 
(6) can be combined in a source free one-dimensional region as: 
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where 0c is the speed of electromagnetic waves in free space. Equation (7) 

forms the basic of scalar WE-FDTD algorithm by discretizing (7) using the 

central difference approximation in both time and space, leads to the 
standard five points explicit formula 
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r 0  is a courant number that will determine the stability of the 

algorithm (8) based on the Courant-Frederich Levy (CFL) conditions 1≤r . 

Equation (8) is called the full-sweep scalar WE-FDTD algorithm. Another 
type of formulation based on equation (7) also can be obtained by 

discretizing the equation using the same approximation with the grid spacing 

2 ∆  and leads to the half-sweep formulation of scalar WE-FDTD : 
 

)()]2()2([
4

1
)()

2

1
2()( 1221 kEkEkErkErkE n

x
n
x

n
x

n
x

n
x

−+ −−+++−=   (9) 

 
By using the same approximation scheme as full-sweep and half-

sweep formulations, but now with the grid spacing 4 ∆  leads to the quarter-
sweep formulation of the scalar WE-FDTD  
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Both the half-sweep and the quarter-sweep approaches are inspired 

from Abdullah (1991) and Othman (2000), which have been successfully 

implemented for solving large and sparse linear system on the elliptic 
problems. The implementation of the half-sweep and quarter-sweep 

algorithms only applicable on the interior grid points. The remaining points, 

however, can be directly calculated at the required time step. The solution 
domain for the standard FDTD and the scalar WE-FDTD are shown in 

figure 2. 

 

Theoretically, the half-sweep formulation (9) and the quarter-sweep 
formulation (10) give opportunity to solve only half and quarter of the 

solution domain respectively, therefore can reduce the execution time of the 

algorithms to nearly half and quarter compared to the full-sweep algorithm 
(8).  
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Figure 2: The solution domain for (a) FDTD and (b-d) WE-FDTD. 

 

 

NUMERICAL EXPERIMENT AND RESULTS 

The implementation of scalar WE-FDTD on one-dimensional wave 

propagation in free space medium is analyzed using Gaussian pulse as the 

point source. The pulse is excited at the middle of the solution domain of 2 

meter, truncated with PEC boundary conditions. The numerical simulations 
were carried out using different grid size and courant numbers, r = 0.5, 0.75 

and 1.0 to identify the optimum value of r that gives the least maximum 

error. The results of wave propagation from the simulation are shown in 
figure 3 and figure 4 at different time level. From the experiment, the 

optimum value of the courant number is obtained at r =1.0 which posses the 

least maximum error in terms of accuracy of the algorithms (figure 5). 
 

It is shown that the scalar WE-FDTD for all approaches are 

numerically equivalence and compatible to the conventional FDTD 

especially at r =1.0 (optimum value). The comparison of simulation time 
between the FDTD and the scalar WE-FDTD methods for various grid size 

is shown in figure 5. It was found that, the scalar WE-FDTD with full-

sweep, half-sweep, and quarter-sweep approaches significantly reduce the 
simulation time especially when the grid size becomes larger. The quarter-

(a) Standard FDTD. 

 

 

 

 

 

 

 
 

 

(b) Standard WE-FDTD (full-sweep) 

 

 

 

 

 

(c) Standard WE-FDTD (half-sweep) 

 

 

 

 

 

(d) Standard WE-FDTD (quarter-sweep) 
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sweep approach used in the scalar WE-FDTD provide more advantage in 

terms of processing time but give less accuracy in its formulation.  

 

CONCLUSION 

It can be concluded that the scalar WE-FDTD gives an alternative 
method for solving problems related to electromagnetism. In this paper, the 

performance of the scalar WE-FDTD in terms of the simulation time can be 

improved by using half-sweep and quarter-sweep approaches. A major 

advantage of the scalar WE-FDTD is that it allows computing any single 
field component without the necessity of computing other field components. 

To remove the CFL stability conditions in the WE-FDTD method, the 

unconditionally stable methods can be applied in the algorithm. In order to 
extend the applicability of the scalar WE-FDTD method, the inspiration 

from the existing iterative and high speed algorithms are necessary to 

developed a new scheme for WE-FDTD that can increase the performance 

of the algorithm. 
 

ACKNOWLEDGEMENTS 

The authors would like to thank the Ministry of Higher Education of 

Malaysia under the Fundamental Research Grant Scheme (FRGS) number. 

02-01-07321FR for financial support. Also special thanks to Lab of 

Computational Science and Informatics, Institute for Mathematical Research 
(INSPEM) for the High Performance Computing (HPC) facilities. 

 

REFERENCES 

A.R. Abdullah. 1991. The four points explicit decoupled group (EDG) 

method: a fast Poisson solver. Int. Journal Computer Math. 38: 61-
70. 

 

M. Othman and A.R. Abdullah. 2000. An efficient four points modified 
explicit group Poisson solver. Int. Journal Computer Math., 76: 203-

217. 

 

Paul H. Aoyagi, Jin-Fa Lee and R. Mittra. 1993. A Hybrid Yee 
Algorithm/Scalar-Wave Equation Approach. IEEE Trans. Microwave 

Theory and Tech. 41(9): 1593-1600. 

 
Yee, K.S. 1966. Numerical solution of initial boundary value problem 

involving Maxwell's equations in isotropic media. IEEE Trans. 

Antennas Propagation. AP-14: 302-307. 



Half- and Quarter-Sweep Implementation of Finite-Difference Time-Domain Method 

 

Malaysian Journal of Mathematical Sciences 

 
51 

 

 

 
 

(a) 

 

 
 

(b) 

 
 

(c) 

 

Figure 3: Wave propagation of the FDTD and the WE-FDTD methods from the center of 
solution domain after T=100 time steps with courant number (a) r=0.5, (b) r =0.75 (c) r=1.0 

respectively. 
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Figure 4: Wave propagation of the FDTD and the WE-FDTD methods from the center of 

solution domain after T=300 time steps with courant number (a) r=0.5, (b) r =0.75 (c) r=1.0 
respectively. 
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Figure 5: Comparison of the processing time between FDTD and scalar WE-FDTD versus the 
grid size after 100 time steps. 

 
 

 


