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ABSTRACT 

In population-based cancer studies, cure is said to occur when the mortality (hazard) 
rate in the diseased group of individuals returns to the same level as that expected in 
the general population. The optimal method for monitoring the progress of patient 
care across the full spectrum of provider settings is through the population-based 
study of cancer patient survival, which is only possible using data collected by 
population-based cancer registries. The probability of cure, statistical cure, is defined 
for a cohort of cancer patients as the percent of patients whose annual death rate 

equals the death rate of general cancer-free population. Recently models have been 
introduced, so called cure fraction models, that estimates the cure fraction as well as 
the survival time distribution for those uncured. The colorectal cancer survival data 
from the Surveillance, Epidemiology and End Results (SEER) program, USA, is 
used. The aim is to evaluate the cure fraction models and compare these methods to 
other methods used to monitor time trends in cancer patient survival, and to highlight 
some problems using these models. 
 
Keywords: Relative survival, Survival mixture cure rate model, Cure fraction, SEER 

Stat, CANSURV. 

 

 

INTRODUCTION 

An important way of analyzing the improvements in cancer treatment 

is to look at time trends in cancer patient survival. When analyzing time 
trends in cancer patient survival the focus lies on estimating the change in 

net survival. The net survival at a certain point in time is the proportion of 

patients who would have survived up to that point if the cancer of interest 

was the only possible cause of death. There are two ways to estimate the net 
survival, using cause-specific survival or relative survival. In cause-specific 

survival the time from diagnosis until death from the cancer of interest is 

studied and all individuals that die from something else are censored. In 
relative survival all deaths are considered events and the whole mortality in 

the cancer group is compared to the mortality in the general population to 

find the excess mortality due to the cancer of interest. Relative survival is 
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the method mostly used when analyzing cancer patient survival, and the 

most common estimate for the net survival is the 5-year relative survival 
ratio (RSR). Cure models have been introduced that estimate the cure 

fraction and the survival for the uncured.  Many countries today have 

population-based cancer registries. In Malaysia, as well as the other modern 
countries, it is been notify the registry of all new cancer cases by the 

National Cancer Registry (NCR) which supported by the Ministry of Health 

(MOH). The Malaysian cancer registry contains data on virtually all most 

cancers diagnosed. The registry holds data about the patient as age at 
diagnosis, sex and birth date as well as information about the tumor, 

anatomical location, histology, stage and basis of registration. The 

underlying cause of death is recorded for all cases, using death certificate 
information from Malaysian National Registry Department (MNRD).  

Several approaches to modelling relative survival exist, section 2 briefly 

describes the most commonly used regression approaches and gives an 

outline of the theory for the fitting methods used. The two most common 
cure models, the Mixture model and the Non-mixture model are presented in 

section 3. An application on female breast cancer presented in section 4 

followed by results and conclusion in section 5. 

 

RELATIVE SURVIVAL 

Relative survival is becoming the method of choice for estimating 
cancer patient survival using population-based cancer registries although its 

utility is not restricted to studying cancer (Dickman and Adami 2006). 

Estimating cause-specific mortality (and its analogue cause-specific 
survival) using cancer registry data is problematic because information on 

cause-of-death is often unreliable or unavailable (Gamel and Vogel 2001). 

We instead estimate the net mortality associated with a diagnosis of cancer 
in terms of excess mortality, the difference between the total mortality 

experienced by the patients and the expected mortality of a comparable 

group from the general population.  Relative survival is the observed 

survival among the cancer patients (when all deaths are considered as 
events) divided by the expected survival in a comparable group of the 

general population. The expected survival is usually estimated from 

nationwide population life tables stratified by age, sex, calendar time and 
where, applicable, race.  Even though these tables include the mortality from 

the cancer of interest, it has been shown that this doesn't effect the 

estimations in practice. 
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Estimating expected survival 

Expected survival can be thought of as being calculated for a cohort of 
patients from the general population matched by age, sex and calendar 

period. There are three different methods for estimating the expected 

survival, with the differences between them being how long each individual 
is considered to be 'at risk' for the purpose of estimating expected survival. 

In practice there are small differences between the methods, and in most 

cases they give similar results. The three methods are  Ederer I, Ederer II  

(Ederer et al. 1961), and the Hakulinen (Hakulinen 1982). 
 

Ederer I: The matched individuals are considered to be at risk indefinitely 

(even beyond the closing date of the study). The time at which a cancer 
patient dies or is censored has no effect on the expected survival. Under this 

method, the cumulative expected survival proportion from the date of 

diagnosis to the end of the  ith interval is given by 

 

1

1

1

1
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∗ ∗
== ∑  

where  
1

n   is the total number of patients alive at the start of follow-up and  

( )
i

H h
∗   is the expected probability of surviving to the end of the  ith interval 

for a person in the general population and, given by 
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where  ( )
j

H h   is the expected survival probability for the hth patient in the  

jth interval. That is, the expected 5-year survival proportion is estimated as 

the average of the expected 5-year survival probabilities for every individual 

in the life table. 
 

Ederer II: The matched individuals are considered to be at risk until the 

corresponding cancer patient dies or is censored, which allows for 
heterogeneous observed follow-up times. It estimates interval-specific 

expected survival proportions for each interval, based on those patients alive 

at the start of the interval. The cumulative expected survival is then 
estimated as the product of the interval-specific survival proportions. The 

cumulative expected survival is given by  

1 ,i

ji j
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where  1
1 ( )i

i

n

hj jn
G G h

∗
== ∑   is the average of the annual expected survival 

probabilities  ( )
j

G h   of the patients alive at the start of the  jth interval. 

Note, both Ederer I and Ederer II give a biased estimate of the relative 

survival ratio. 
 

Hakulinen: If the survival time of a cancer patient is censored then so is the 

survival time of the matched individual. However, if a cancer patient dies 

the matched individual is assumed to be `at risk' until the closing date of the 

study. This method was proposed to get an unbiased estimate of the relative 
survival ratio, Hakulinen (1982). It creates a biased estimate of the expected 

relative survival, but the bias is similar to the bias of the observed survival 

proportion and therefore the biases cancel each other out and results in an 
unbiased estimate. If the survival time of a cancer patient is censored so is 

the survival time of the matched individual, but if a cancer patient dies the 

matched individual remains 'at risk' until the end of the study. The following 
steps were used to derive the expected survival proportion using the 

Hakulinen method. Let  
j

k   be the number of patients with a potential 

follow-up time which extends beyond the beginning of the  jth interval. Let 

the rest  
ja

k   of these  
j

k   patients have a potential follow-up time which 

extends past the end of the  jth interval and the last  
jb

k   be potential 

withdrawals during the  jth interval. It follows that  1 1,k n=    1j ja
k k+ =   and  

j ja jb
k k k= +  . We will use the notation  

ja
K  to refer to the set of  

ja
k   

patients and  h   to index the  
ja

k   patients in the set  
ja

K  . The expected 

number of patients alive and under observation at the beginning of the  jth 

interval is given by 
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For the  
jb

k   patients with potential follow-up times ending during the  jth 

interval, it is assumed that each patient is at risk for half of the interval, so 

the expected probability of dying during the interval is given by  
*

1
i

H−  .  

The expected number of patients withdrawing alive during the  jth interval is 

therefore given by 
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The expected number of patients dying during the  jth interval, among the  

jb
k   patients with potential follow-up time ending during the same interval is 

given by 
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and the expected total number of patients dying during the  jth interval is 

given by 
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The expected interval-specific survival proportion is then written as 
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and, finally, the expected survival proportion from the beginning of follow-

up (usually diagnosis) to the end of the ith interval is obtained by calculating 

 

1 .i

ji j
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All three methods give similar estimates for follow-up times up to 10 years, 

but for longer follow-up the Hakulinen method is slightly better. If the 

estimates are done separately for different age groups the methods give 
similar results even for follow-up beyond 10 years. It doesn't matter what 

method is used, but in practice Ederer II estimates are usually used. 
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The relative survival ratio (RSR) is defined as the observed survival divided 

by the expected survival. The cumulative relative survival ratio at time  t  ,  

i
r , is calculated as the observed survival proportion at time  t  ,  

i
B  , divided 

by the expected survival proportion at time  t  ,  .
i

H ∗   That is, 

 

.
∗

=
i

i
i

H

B
r

 

It can be interpreted as the proportion of patients still alive after  i   years of 

follow-up if the cancer of interest was the only possible cause of death. This 
is a useful measure for showing the cumulative probability of surviving up 

to a given time. An often used measure of cancer patient survival is the 5-

year cumulative RSR. Another useful measure is the interval-specific 
relative survival ratio, that describes the RSR in specific intervals from 

follow-up (usually annual intervals). For most cancers a plot of the 

cumulative RSR will flatten out after some time from diagnosis, this is when 
the interval-specific RSR is equal to one. This indicates that the mortality in 

the patient group is the same as the mortality in the general population and 

they experience no excess mortality. This point is called the cure point and 

the patients still alive are considered statistically cured as shown in Figure 1.  
 

 

Figure 1:  Hypothetical cumulative relative survival curve 

 
This does not mean, however, that the patients are actually medically cured. 

Statistical cure applies at a group level, when the mortality is the same as in 
the general population, and there might be individuals that are not medically 

cured. For some cancers the patients continue to experience excess mortality 

and the interval-specific RSR never becomes one (and the cumulative RSR 
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doesn't flatten out), this can be because of excess mortality due to the cancer 

or due to other causes. The interval-specific RSR can also level out at a 
value greater than one. This may happen when deaths have been missing in 

the follow-up process, but it might also be explained by the 'healthy patient 

effect', these patients experience lower mortality than the general population 
because of having greater than average contact with the health system. 

 

Modelling Excess Mortality 

The relative survival model can be written as 
 

 (  |  ) (  |  ) (  |  ),S t S t R t∗= ×Z Z Z     (1) 

where  (  |  ),S t Z (  |  )S t∗ Z and (  |  )R t Z are observed, expected and 

relative survival,  t   is time since diagnosis and  Z   is the covariate vector. 

That is, the relative survival is the ratio between the observed survival in the 

cancer patient group and the expected survival. The mortality associated 

with relative survival is excess mortality. The hazard for a person diagnosed 
with cancer is modelled as  
     

(  |  ) (  |  ) (  |  ),h t h t v t∗= +Z Z Z                             (2) 

where (  |  )h t∗ Z is the expected hazard, and  (  |  )v t Z is the excess hazard 

due to the cancer.  The extended covariate matrix including the interval 

variables is called  X . The interest lies in modelling the excess hazard 

component,  v  , which is assumed to be a multiplicative function of the 

covariates, written as  exp( )βX  . The basic relative survival model is then 

written as 
            

( ) ( ) exp( ).h h β∗= +X X X                 (3) 

This means that the parameters representing the effect in each follow-up 

interval are estimated and interpreted in the same way as all the other 
parameters. Model (3) assumes proportional excess hazards, but non-

proportional excess hazards can be modelled by including time by covariate 

interactions in the model. To estimate the model in equation (3), the method 

used is modelling excess mortality using Poisson regression. The relative 
survival model assumes piecewise constant hazards which implies a Poisson 

process for the number of deaths in each interval. Since the Poisson 
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distribution belongs to the exponential family the relative survival model can 

then be estimated in the framework of generalized linear models using a 
Poisson assumption for the observed number of deaths. Model (3) is then 

written as 
     

ln( ) ln( )
j j j

d yµ β∗− = + X                (4) 

where  
j

d
∗
  is the expected and  

j
d   is the observed number of deaths for 

observation  j   and  ( )
j j

d Poisson µ∼   where  
j j j

yµ λ=  ,  
j

λ   is the 

average hazard for an interval  ,j   and  
j

y   is the person-time at risk in the 

interval. Model (4) implies a generalized linear model with outcome  
j

d , 

Poisson error structure, link  ln( )
j j

dµ ∗−   and offset  ln( )
j

y . The 

observations can be life table intervals, individual patients or subject-bands. 

The advantage of the Poisson regression approach is that since it is a 

generalized linear model we have regression diagnostics and can assess 
goodness of fit. 

 

CURE MODELS 

Recently new methods have been introduced to estimate the cure 
fraction. These new methods extend the earlier cure fraction models to 

incorporate the ideas of relative survival. The cure fraction is of big interest 

to patients and is a useful measure when looking at trends in cancer patient 

survival. Cure models estimate both the cure fraction and the survival 
function for the uncured. The two most common cure models are the 

Mixture model and the Non-mixture model. 

 

The Mixture Cure Fraction Model 

The most popular type of cure rate model is the mixture cure fraction model 

(mixture model) discussed by Berkson and Gage (1952). In this model, they 

assume a certain fraction   θ   of the population is "cured" and the remaining  

(1 )θ−   are not cured.   

 

 

The survival function for the entire population, denoted by  ( )S t   for this 

model is given by 
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),()1()( 1 tStS θθ −+=       (5) 

where  1( )S t   denotes the survivor function for the non-cured group in the 

population. Common choices for   ( )S t   are the exponential and Weibull 

distributions. We shall refer to the model in (5) as the standard cure rate 

model. Model (5) can be extended to include relative survival. In that case 

the overall survival for the patient group is written as 

 

{ },)()1()()( 1 tStStS θθ −+= ∗
 

where  ( )S t
∗   is the expected survival. Similarly the overall hazard is the 

sum of the background mortality rate and the excess mortality rate 

associated with the cancer of interest 
 

,
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where  ( )h t∗   is the expected mortality rate and  1( )f t   is the density 

function associated with  1( )S t  . For survival models, the log-likelihood 

contribution for the  ith subject with survival or censoring time  
i

t   and 

censoring indicator  
i

d , in terms of relative survival,  can be defined as 

 

( )ln
i

L =   

( ) ( )1
1

1

(1 ) ( )
ln ( ) ln ( ) ln (1 ) ( ) .

(1 ) ( )

i

i i i i

i

f t
d h t S t S t

S t

θ
θ θ

θ θ
∗ ∗ −

+ + + + − 
+ − 

 (6) 

  

As noted by De Angelis et al. (1997), ( )
i

S t∗   is independent from the model 

parameters and can be removed. Since  ( )
i

h t∗   is assumed to be known the 

likelihood can be simply defined for any standard distribution given the 

density function  1( )f t  , and the survival function,  1( )S t  , for the uncured 

group. 
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The Non-Mixture Cure Fraction Model 

The second type of cure fraction model is the non-mixture cure fraction 
model (non-mixture model), which defines an asymptote for the cumulative 

hazard, and hence for the cure fraction. The non-mixture model assumes that 

after treatment a patient is left with  
i

N   'metastatic-competent' cancer cells.  

i
N   is assumed to have a Poisson distribution with mean  λ  . That gives the 

cure fraction as  ( 0)P λ =  . When  λ  is not equal to  0 , let  
j

C   denote the 

time for the  jth metastatic-competent cell to produce a metastatic tumor 

with distribution function  ( ) 1 ( ).
C C

F t S t= −   The survival function can be 

written as 

 

 ( )( )
( ) exp ln( ) ( ) ,CF t

C
S t F tθ θ= =      (7) 

 

also referred to as promotion time cure model.   The hazard function is  
 

( ) ln( ) ( ),
C

h t f tθ= −  

where  ( )
C

f t   is a probability density function for  ( )
C

F t  . To enable 

relative survival cure models to be fitted the overall survival can be 

expressed as the product of the expected survival and disease related 

(relative) survival 
 

( )( )
( ) ( ) ( )exp ln( ) ln( ) ( )CF t

C
S t S t S t S tθ θ θ∗ ∗= = −   (8) 

 

and the overall hazard rate as  

( ) ( ) ln( ) ( ).
C

h t h t f tθ∗= −                 (9)  

 

Equation (8) can be rewritten as 
( )

( ) ( ) (1 )
1

CF t

S t S t
θ θ

θ θ
θ

∗
  −

= + −   −  
 

which is a mixture model and thus the survival distribution of the uncured 

patients can also be obtained from a non-mixture model by a simple 
transformation of the model parameters. The log-likelihood contribution for 

the ith subject with survival or censoring time  
i

t   and censoring indicator  

i
d   is for the non-mixture model written as 
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( ) ( ) ( ) ( ) ( )( )ln ln ( ) ln( ) ( ) ln ( ) ln ln ( ) .i i i i C i i i i C iL d h t f t S t S tθ θ θ∗ ∗= + + + −  

 

As for the mixture model the likelihood can be simply defined for any given 

standard parametric distribution given  ( )f t   and  ( )S t  . If the parameters 

in  ( )
C

f t   do not vary by covariates, equation (9) is a proportional hazards 

model. This is an advantage of the non-mixture model over the mixture 

model, as the mixture model does not have a proportional hazards model for 

the whole group as a special case. 
 

The parametric and semiparametric distributions and link function 

The survival function  1( )S t   for the non-cured group can takes the form of 

parametric or semiparametric distributions. Among the parametric models, 

lognormal (LN), loglogistic (LL), Weibull (WB), and Gompertz (GP) 

distributions are widely used to model the survival time. After 
reparameterization (Gamel et al 2000), these survival functions can be 

expressed as 

 

1

1

ln
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= 
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where  φ  denotes for normal function. The parameters (θ, µ, σ)  may depend 
on the covariates as 
 

{ }( )
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where  ,θβ ,µβ σβ   are vectors of regression parameters, in model (5), 

covariates X  can appear in  
( )

X
θ

,  
( )

X
µ

, 
( )

X
σ

 simultaneously. Moreover, 

when  ( ) 0,Xθ =   this model reduces to the standard parametric survival 

models. 

 

The survival function  
1
( )S t   can also be a semiparametric proportional 

hazards model, 

( )exp

1 0
(  |  ) ( ) ,

T
X

S t X S t
µβ

=  

where the baseline  
0
( )S t   is modeled by piecewise exponential distribution.  

A generalization of model (5) with a power function  δ   can be written as 

{ } ,)()1()( 1
δθθ tStS −+=  

where the power function  ( )( )
( ) exp ,

T
x X

δ
δδ β=   used in the estimation of 

completeness index of cancer prevalence. 
 

TABLE 1: Relative Survival. SEER 17. Female Breast Cancer Includes Cases 

Diagnosed in 1973-2003 

 

Interval 
Alive at 

start 
Died 

Lost 

follow

-up 

Observed Expected Relative SE Observed SE Relative 

Interval Cum Interval Cum Interval Cum Interval Cum Interval Cum 

<2 521,391 52,106 77,051 89.2% 89.2% 95.8% 95.8% 93.1% 93.1% 0.0% 0.0% 0.0% 0.0% 

[2 4) 392,234 41,137 73,757 88.4% 78.9% 95.5% 91.4% 92.6% 86.3% 0.1% 0.1% 0.1% 0.1% 

[4 6) 277,340 27,577 35,132 89.4% 70.5% 95.1% 86.9% 94.0% 81.1% 0.1% 0.1% 0.1% 0.1% 

[6 8) 214,631 19,886 29,689 90.0% 63.5% 94.6% 82.3% 95.2% 77.2% 0.1% 0.1% 0.1% 0.1% 

[8 10) 165,056 14,945 25,068 90.2% 57.3% 94.2% 77.6% 95.8% 73.8% 0.1% 0.1% 0.1% 0.1% 

[10 12) 125,043 11,283 21,590 90.1% 51.6% 93.8% 72.8% 96.1% 70.9% 0.1% 0.1% 0.1% 0.1% 

[12 14) 92,170 8,272 13,808 90.3% 46.6% 93.4% 68.0% 96.7% 68.5% 0.1% 0.1% 0.1% 0.1% 

[14 16) 70,090 6,494 11,636 89.9% 41.9% 93.0% 63.2% 96.7% 66.3% 0.1% 0.1% 0.1% 0.2% 

[16 18) 51,960 4,728 9,659 90.0% 37.7% 92.7% 58.5% 97.1% 64.4% 0.1% 0.1% 0.1% 0.2% 

[18 20] 37,573 3,445 7,224 89.9% 33.9% 92.4% 53.8% 97.3% 62.9% 0.2% 0.1% 0.2% 0.2% 
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APPLICATION 

Aim of the study 

The purpose of this study is to analyze time trends in breast cancer patient 

survival. The interest lies in survival after diagnosis of cancer, and how the 

survival has changed over time. The focus lies on analyzing time trends 
using mixture cure models with different link functions. This is done by 

applying cure models to real data from the Incidence - SEER 17 Regs 

Public-Use, Nov 2005 Sub (1973-2003 varying), National Cancer Institute, 
USA, DCCPS, released April 2006. Recently developed methodology and 

the new SEER Stata and CANSURV software commands created by 

National Cancer Institute are used to estimate the cure fraction for many 
types of cancer. The aim is to evaluate in which cases the cure models work 

and when they do not, and to see what kind of information about the survival 

can be obtained using cure models that is not available using standard 

methods. 
 

Data description 

The Surveillance, Epidemiology, and End Results (SEER) Program of the 

National Cancer Institute annually collects cancer incidence and survival 
data from population-based cancer registries across the United States. These 

data are distributed in the SEER Public-Use databases. The SEER Registries 

routinely collect data on patient demographics, primary tumor site, 
morphology, stage at diagnosis, first course of treatment, and follow-up for 

vital status. The SEER Program is a comprehensive source of population-

based information in the United States that includes stage of cancer at the 

time of diagnosis and survival rates within each stage. In this study we are 
interested to include all female patients diagnosed with breast cancer 

between 1973 and 2003. The survival time is the time between diagnose and 

death, in this application, survival times are grouped into two annual 
intervals. The maximum follow-up time is 20 years, so the interval takes a 

value from {1,…,10}. When a patient is still alive at the end of the study or 

at the time the patient is lost to follow-up, then her survival time is censored. 
After excluding all death certificate only and autopsy only observations, 

since they have zero survival time 521,391 observations were left. These 

were divided into 7 age groups, less than 30 years (< 30), (30 – 39) years, 

(40 – 49) years, (50 -59) years, (60 – 69) years,  (70 – 79) years, and 80 
years and over (80 +), and the data were stratified upon these age groups. 

Moreover, four covariates were used in this study; diagnosis year (1973 – 

2003), race (all, White, Black, Other), Martial status (All status, Married, 
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Single, Divorced/Separated, Widow/Other) and stage, SEER uses a staging 

scheme; "SEER historic stage" which categorizes stage at diagnosis into 
(localized, regional, distant) and unstaged based on the extent of the cancer 

at the time of diagnosis. 

 
 

TABLE 2:  Parameter estimates of Cox and Weibull standard models 

 

Parameter 
Cox model Weibull model 

β̂  SE( β̂ ) β̂  SE( β̂ ) Median 

µ Intercept 

<30 
0µβ  2.195392 0.053961 2.713979 0.053071 15.089194 

[30 40) 
1µβ  2.491001 0.020951 2.907731 0.020330 18.315197 

[40 50) 
2µβ  2.830413 0.014948 3.216395 0.016475 24.938057 

[50 60) 
3µβ  2.725019 0.013226 3.106322 0.015126 22.338739 

[60 70) 
4µβ  2.714720 0.014302 3.047615 0.017167 21.065052 

[70 80) 
5µβ  2.681233 0.017979 3.093207 0.029949 22.047662 

[80 +) 
6µβ  2.189458 0.023437 3.013280 0.069064 20.354046 

σ Intercept 

<30 
0σβ    0.321583 0.029739  

[30 40) 
1σβ    0.243651 0.010937  

[40 50) 
2σβ    

0.187371 0.007827 
 

[50 60) 
3σβ    0.178560 0.007270  

[60 70) 
4σβ    

0.139026 0.008331 
 

[70 80) 
5σβ    0.146729 0.013105  

[80 +) 
6σβ    0.321583 0.029739  

 

Analysis and numerical results 

Both relative and cause-specific survival  were been used for the net 

survival, the results were almost the same. Only relative survival will 
presented here. Using the SEER Stat software, for each age group, frequency 

tables including number of patients alive at start, died, lost to follow-up, also 

observed, expected, relative, SE observed and SE relative survival for 
different variables were be calculated. The results are presented in Table (1). 

These tables will be used as input data files in the rest of our analysis using 
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CANSURV and S-Plus software. 

 
In order to look at survival by age groups over a long period of time, the 

analysis was done separately for these groups to see if the improvements in 

survival over time were different for different age groups. We fit the 
standard survival models (assumed no cure present) and cure models to the 

data.  Table (2) shows the parameter estimates for the standard survival 

models include the Weibull model and the Cox proportional hazards model. 
 

TABLE 3:  Parameter estimates, Cure rate (%) and Median survival time of  

Weibull  mixed cure model 

 

Parameter 
Age group 

<30 30-39 40-49 50-59 60-69 70-79 80+ 

Cure (θ) 

Intercept 
θβ̂  0.116 0.343 0.659 0.543 0.195 -2.733 -16.955 

SE( θβ̂ ) 0.051 0.021 0.019 0.022 0.058 4.316 3656.1 

µ
 Intercept µβ̂  1.072 1.212 1.377 1.405 1.785 2.999 3.013 

SE( µβ̂ ) 0.040 0.018 0.019 0.022 0.051 0.393 0.069 

σ  Intercept 
σβ̂  -0.169 -0.190 -0.172 -0.144 -0.037 0.141 0.319 

SE( σβ̂ ) 0.034 0.013 0.011 0.011 0.014 0.030 0.027 

Cure (%) 52.21 58.33 65.76 63.72 55.41 5.72 0.00 

Median 2.92 3.36 3.96 4.08 5.96 20.08 20.35 

 

The relative risk (hazard ratio) of dying of breast cancer is  exp( )βµ−   for 

the Cox model and  ( ){ }exp exp σβµ β−  for the standard Weibull model. 

For example, the risk of breast cancer death for the age group (40 – 50) 

relative to the age group (< 30) is  exp(2.830413) exp(2.195392) 1.8871÷ =   

from the Cox model and  

exp(3.216395/ exp(0.187371)) exp(2.713979/ exp(0.321583)) 2.0121÷ =  

from Weibull model. The median survival time for the Weibull model is  

exp( )(ln 2)σµ   which is presented in the last column of Table 2. The 

parameter estimates from the Weibull mixture cure model are listed in Table 

3, all the covariates are significant (p < 0.0007), it is included in all 
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parameters (θ, µ, σ).  In the last two rows the cure rates and the median 
survival times for uncured patients for each age group are calculated from 

the parameter estimates. After fitting the standard models to the data without 

modeling covariates, Figure 2 shows a comparison between the observed 
and estimated survival curves from the standard Cox semiparametric model, 

it is clear that Cox model fits the observed survival curves well and a plateau 

occurs in its tail. For all age groups, after fitting the Weibull mixture cure 
model to the data without modeling covariates, results shown in Figure 3.  

Except the oldest age group, the model seems to give a good fit of the data, 

and also the cure fractions for each group were presented. Moreover, the 
standard Weibull model assumes no cure, hence the estimated survival 

decreases until zero. 

 
 

<30 years age group 
30-39 40-49 

   

60-69 70-79 80+ age group 

 

Figure 2: Comparison between Cox standard models and life tables for different  age 

groups (year from diagnosis versus relative survival). 
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<30 years age group 30-39 50-59 

   

60-69 70-79 80+ age group 

 

Figure 3: Comparison between Weibull mixture cure models and life tables for different age 

groups (year from diagnosis versus relative survival). 

 

TABLE 4:  The estimates of the parameter µ covariate coefficients of Weibull 
mixed cure model 

 

Regression Variable Coefficient S.E. 
Wald-

2χ statistic 
p-value 

Age Group 

<30 -0.415762 0.010778 1487.91 0.00 

30-39 -0.207584 0.004300 2330.46 0.00 

40-49 0.095111 0.003283 839.09 0.00 

50-59 0.011508 0.003076 14.00 0.00 

60-69 0.018963 0.003323 32.56 0.00 

70-79 0.024411 0.004274 32.63 0.00 

80+ -0.254608 0.006559 1506.82 0.00 

SEER historic 
stage 

Localized 1.153424 0.004384 69208.92 0.00 

Distant -2.171440 0.002905 558620.46 0.00 

Regional -0.433691 0.002378 33269.36 0.00 

Martial status 

Single -0.146504 0.004269 1177.64 0.00 

Married 0.109338 0.002441 2007.05 0.00 

Sep/Div -0.152731 0.004325 1246.85 0.00 

Wid/Unkn -0.061440 0.003322 342.14 0.00 

Race White 0.044694 0.002129 440.65 0.00 
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Black -0.428422 0.004158 10615.83 0.00 

Other 0.137656 0.006127 504.74 0.00 

Log-Likelihood Value = -7592515.8 

 Table  
 

The Wald-
2χ   test was used as part of our exploratory data analysis, in 

order to identify of which covariates correlate with subsequent survival and 

then cure fraction θ and the parameters  µ and σ. As shown in Table 4, all 

covariates were found to be significant and affect the parameter µ in the 
Weibull cure model.  These are the covariates associated with a p-value less 

than 0.05. For the parameter θ all covariates were found to be significant 
except the stage (distant) with  p-value equal  0.986953. Also, the log-

likelihood value was calculated. 
 

Graphs over the change in 5-years relative survival ratio (RSR) for different 

age groups are presented in Figure 4. There is much random variation for the 
age group (< 30) but it easy to see that the 5-year RSR has increased for all 

ages and are now around one for all age groups. 

A big problem with cure models, is that these models don't fit the data and 
work well when the survival is too high. To overcome this problem, for each 

age group the data is stratified into localized, regional and distant stages. 

Figure 6 shows observed and estimated survival curves from the Cox 

mixture cure model, it doesn't seems to give a good fit specially in the stages 
(distant) and (localized), since the survival drops rapidly soon after 

diagnosis in the first stage, and the survival is too high in the second stage. 

In summary, cure modelling was carried out using both standard and mixture 
cure fraction model. Both methods gave similar results. For the oldest age 

group cure models don't seem to give a good fit, also these models don't 

work well when the survival drops rapidly soon after diagnosis and when the 

survival is too high. Because of this cure models cannot be used for stage-
specific analyzes since for most cancer sites the survival today is high for 

patients with localized cancer. 
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<30 years age group 30-39 40-49 

 

  

 

60-69 

 

70-79 

 

80+ age group 

   

 

Figure 4: Changes in 5-years relative survival ratio RSR for breast cancer patients. 

 

CONCLUSION 

This paper contains a full discussion of modelling, estimating and 
application of the survival cure models which is shown to be useful and easy 

to apply in the population-based cancer survival analysis. The relative 

survival is used as the measure of net survival, however, the computation for 
cause-specific survival can be regarded as a special case. The maximum 

likelihood estimates (MLEs) of the parameters are employed and obtained 

by the Newton-Raphson method with initial estimates for  (0)

θβ   obtained by 

fitting the logistic regression model, and similar the initial estimates for  
(0)

µβ   is obtained by  (0) ( )
log( )

i i
t X

µ
µβ ε= +   for uncensored patients. 

 

In this study, all plotting routines were carried out using CANSURV 
and S-Plus software. From the results in section 4 we note that there are still 

problems with cure models. One problem is that cure models don't seem to 

give a good fit when the survival drops rapidly soon after diagnosis as is 

seen for the stage (distant) for female breast cancer. A big problem with cure 
models, that still has no solution, is that these models don't work when the 

survival is too high as in stage (localized) for female breast cancer. Because 

of this cure models cannot be used for stage-specific analyzes since for most 
cancer sites the survival today is high for patients with localized cancer. A 

third problem is that there are no good diagnostic tools for testing if the cure 

models give a good fit to the data. In this study the cure models have been 
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compared to the observed survival curve to see if cure models give a good fit 

for a simple model and after that this model has been tested against a more 
complex model using likelihood-ratio test. The focus with cure models lies 

on that the cure fraction is estimated properly, but that is estimated from 

where the cumulative RSR flattens out and at that point there is not as much 
data as it is in the beginning of follow-up. All model diagnostics check 

whether the data fit the model and since most data is not at the cure point 

where it is most important that the model fit, these diagnostics are not as 

reliable as wanted. 
 

<30 years age group 

Distant Localized Regional 

 

50-59 age group 

Distant Localized Regional 

 

80+ age group 

Distant Localized Regional 

 

Figure 5: Comparison between Cox mixture cure models and life tables of different age 

groups for stage. (year from diagnosis vs relative survival) 
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Despite the problems associated with cure models, as long as these 

models are used with a critical mind and the results are compared with other 
estimates as life table estimates they give very interesting information. Most 

important when using cure models is that statistical cure can be assumed 

even when statistical cure is not reasonable. The benefits of using cure 
models when analyzing trends in cancer survival is that the cure fraction is 

not influenced by lead-time, that is usually a big problem in cancer patient 

survival analysis, and that looking at both the cure fraction and the survival 

of the 'uncured' can reveal a lot of information that looking at only one 
estimate can not. One of the most important reasons for using cure models is 

that it gives valuable information to cancer patients. Since many cancer 

patients today actually get cured of their cancer, the cure fraction is a very 
interesting measure for someone diagnosed with cancer. If and when the 

problems with the cure models are solved this will probably be the way of 

analyzing time trends in cancer patient survival in the future. 
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