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ABSTRACT 

This paper considers a game problem with many pursuers described by infinite 
systems of differential equations of second order. On the controls of players 

geometric constraints are imposed. The aim of the pursuers is to capture the evader, 
while the aim of the evader is the opposite. The theorem on evasion is proved in this 
paper. 
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INTRODUCTION 

Many investigations are devoted to the differential games, see for 
example [2]-[12]. Fundamental results were obtained by [8]-[10].  

Of special interests are differential games with many pursuers [3], 

[6]-[7], [11]. Pshenichniy [11] obtained the necessary and sufficient 

conditions for the capture of a single evader by a group of pursuers where 
the players have equal resources.  

 

Evasion differential games attract the attention of many authors, see 
for example [10], [12]. Some control problems and game problems in 

system with distributed parameters can be reduced to the ones described by 

infinite system of differential equations (for example, see [2], [4]). 
Chernous’ko [2] considered control problems in which geometric constraints 

are imposed on controls.  

 

It was found optimal pursuit time [4] for the game problem with one 
pursuer described by parabolic equation. Guaranteed pursuit time was 

obtained [5] for the game problem with one pursuer and described by 

infinite system of differential equations of second order.  
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In the present paper we investigate a game problem of m  pursuers 

and one evader described by infinite systems of differential equations of 

second order. It is the reformulation of the game problem for hyperbolic 

partial differential equations [2]. Geometric constraints are imposed on the 
controls of players. The theorem on evasion is proved in this paper. 

 

STATEMENT OF PROBLEM 

Let 1 2λ λ, ,...  be a sequence of positive numbers and r  be any given number. 

We introduce the space  
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Consider the differential game described by countable many differential 

equations  
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u u u= , ,...  is control parameter of the i th pursuer, 1 2i m= , ,..., ,  and 

1 2( )v v v= , ,...  is control parameter of the evader. Denote  
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Definition 1.  A function 1 2( ) ( ( ) ( ) )
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where 1 2 m
ρ ρ ρ, , ...,  and T  are given positive numbers, is called the 

admissible control of the i th pursuer.  

 

Definition 2.  A function 1 2( ) ( ( ) ( ) )v v v⋅ = ⋅ , ⋅ ,...  satisfying the constraint  
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where σ  is given positive number is called the admissible control of the 

evader.  

 

Definition 3. Assume that 2

1 2 2( ) ( ( ) ( ) ) (0 , )
r

w w w L T l⋅ = ⋅ , ⋅ , ... ∈ , .  The function 

1 2( ) ( ( ) ( ) ) 0z t z t z t t T= , ,... , ≤ ≤ ,  where each of the coordinate ( )
k

z t    

1) is continuously differentiable on (0 )T;  and satisfies initial conditions 
0(0)

k k
z z= ,  1(0)k k

zz = ;�   

2) has the second derivative ( )k tz��  almost everywhere on (0 )T;  satisfying 

almost everywhere equation  

( ) ( ) ( )k k k k
t z t w tz λ= − + ,��  

 

is called the solution of the system  

 
0 1( ) (0) (0) 1 2k kk k k k k k

z w t z z z kz zλ= − + , = , = , = , ,...�� �   (2) 

 

Equation (2) has the solution  
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Its derivative is  

 

0 1

0

( ) sin( ) cos( ) cos( ( )) ( )

t

k k k k k k k kt z t z t t s w s dsz α α α α= − + + −∫� .  (4) 

 

Let 2(0 )
r

C T l, ;  be the space of functions ( )z t ,  2:[0 ]
r

z T l, → , being 

continuous in the norm of 2

r
l .  If  
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then the following assertion can be proven analogous with [1] and it is not 

studied in this paper.  
 

Assertion. The functions 1 2( ) ( ( ) ( ) )z t z t z t= , ,... ,  and 1 2( ) ( ( ) ( ) )z t t tz z= , ,... ,� � �  

where ( )
k

z t  and ( )k tz�  are defined by the formulas (3)-(4), belong to 

2
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r
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r
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Definition 4. We say that evasion is possible in the game (1) from an initial 

position 0 1{ }z z, , where  
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if it can be chosen an admissible control ( )v ⋅  of the evader such that for any 

admissible controls of pursuers ( ) 1 2
i
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MAIN RESULT 

In this sections we present the theorem on evasion.  

 

Theorem 1.  If 
i

ρ σ≤  for all 1 2i m= , ,..., ,  then from any initial position 
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evasion is possible in the game (1).  

 

Proof.  Let ϑ  be an arbitrary positive number. We consider the system  
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where 
k k

α λ= ,  on the time-interval [0 ]ϑ, .  In order to obtain more simple 

a system we transform the system (5) setting  
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Further we consider the system (6). As 0 0 0
i r i r

x y|| || + || || ≠ ,  1 2i m= , ,..., ,  then 

we can pick a natural number M  for the M -dimensional vectors  
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0 0 0 0 0 0 0 0
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To prove the theorem it is sufficient to show that all 2M -dimensional 

vector-functions  
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Define  
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Using Cauchy-Schwartz inequality, substituting (9) into (7) and (8) we have  
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We assume the contrary, i.e. evasion is not possible in the game (1). 
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at some [0 ]τ ϑ∈ ,  and {1 }i m∈ ,.., .  Then  

 

 ( ( ) ) ( ( ) ) 0
i i

X p Y qτ τ, + , = .                (12) 

 

Using (10) and (12), we find that  

 

(i)   ( ) ( sin( ) cos( )) 1 1 2
( )

ik k k k k
u s p s q s i m k M

A s

σ
α α= − + , = ,..., ; = , ,..., ,  

 

almost everywhere on [0 ]τ,  that is, ( ) ( )
ik k

u s v s=  almost everywhere on 

[0 ]τ, ,  in contrast, Cauchy-Schwartz inequality gives the inequality 

( ( ) ) ( ( ) ) 0
i i

X p Y qτ τ, + , >  contradicting (12);  

 

(ii)  0( ) 0
i

X p, = ,  0( ) 0
i

Y q, = ,  1 2
i

i mρ σ= , = , ,..., .  

Setting ( ) ( ) 0 1
ik k

u s v s s i mτ= , ≤ ≤ , = ,..., ,  in (7) and (10), we get  

 

0 0

0 0

( ) ( ) ( ) ( ) ( )

t t

ik ik k k k k ikX t x v s sin s ds v s sin s ds xα α= + − = ,∫ ∫  

 
0 0

0 0

( ) ( ) ( ) ( ) ( )

t t

ik ik ik k k k ikY t y v s cos s ds v s cos s ds yα α= − + = ,∫ ∫  

so  

 
0 0( ) ( ) 0 1 2

i i i i
X t X Y t Y t i mτ= , = , ≤ ≤ , = , ,..., .  

 

In accordance with the choice 0 0 0 1
i i

X Y i m| | + | |≠ , = ,..., ,  and we have  

 

( ) ( ) 0 0 1
i i

X Y t i mτ τ τ| | + | |≠ , ≤ ≤ , = ,..., ,  

 

that contradicts (11). This completes the proof of the theorem.  
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