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Abstraect

A two dimensional magnetic field is suddenly moved
at a uniform velocity along a channel of infimite length
containing an electrically conducting solid metal with
magnetic permeability and magnetic diffusitivity under
the assumption of finite Reynolds number. An analytical
solution is obtained for the case of one Fourier-component
magnetic ficld. The numerical scheme is developed
with the implementation of the boundary conditions.
It is shown that in the steady state the numerical and
the analytical results agree well for magnetic Reynolds
number in the range of 1 to 1200. Itis found that as magnetic
Reynolds number increases the solid metal behaves more
and more like a perfect conductor where the field lines are
frozen in the moving solid metal. Pictures of evolution of
field-lines with time are plotted for various times.

Introduction

The  phenomenon of ‘flux  expulsion’ in
magnetohydrodynamics occurs athigh magnetic Reynolds
number whenever a flow with streamlines acts upon a mag-
netic field transverse to the flow. The purely kinematics
aspects have been widely studied by Zel’dovich (1957),
E. N. Parker (1963), R. L. Parker {1966) and Weiss
(1966). It is also known (Galloway, Proctor & Weiss
1978, Proctor & Galloway 1979) that flux expuision can
persist even in situations where the magnetic field has a
strong dynamic influence, I, A. Kamkar & I1. K. Moffatt
(1981} considered pressure-driven flow along a channel
in the presence of an applied magnetic field which is
periodic in the stream-wise direction and showed that
flux expulsion due to reconnection of field lines occurs
when the pressure gradient is sufficiently large which
finally leads to a runaway effect.

In the flow where it is assumed that the magnetic Reynolds
number, R is small the fluid velocity, #, does not affect
the applied magnetic field. But in this study we want to
consider the effects of finite, R on the fluid flow as well
as the imposed magnetic field.

For simplicity we first consider a solid metal which at
time ¢ = 0 is moved at a constant velocity U/ £. Because
this problem can be solved analytically it provides auseful
check on the numerical scheme we use later to investigate
flow where R 1s finite.
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In section 2 we formulate the solid conductor problem
and derive the dimensionless governing equation. We
investigate the analytical sclution of this problem in
section 3. In section 4 we derive the numerical scheme
used and the implementation of the boundary conditions.
The following section 5 gives numerical results and lastly
the conclusions are summarised in section 6.

Solid Conductor Problem

Consider a channel — @ <z <a of infinite length and
width containing a solid metal of magnetic permeability
4, electrical conductivity g, and magnetic diffusivity 7,
where 1 = 1/(op), being subjected to an applied two-
dimensional periodic magnetostatic field B which travels
parallel to the channel with a uniform velocity —{J&. The
magnetic boundary conditions are

ey N
(5%9) . = BD; by, cos[nk(z + U)]. (1)
‘We make the assumption that the edge effects of the
side walls y = * a, where b > a, may be neglected.
Now this problem is equivalent to the situation where the
applied magnetic field is stationary but at # = @, the
solid metal in the channel is suddenly moved at the
velocity I/ %

Together with the irrotational and divergence conditions,
viz.

V'XB,:O, V' B'=0 (2)
the governing induction equation is
oB'

o = V' x (v x B') + nV"?B.

By putting B’ = -V’ x § = -V’ x (¢'§) in the
induction equation, where ¥ is the magnetic stream
function, we obtain

O b X B =gV x B = V'

W + v X —n X = [Fe) (3)

where ¢ 1s some scalar field and # is constant in space
and time (which is likely for liquid metal). Taking
the y— component of (3) we get a simpler governing
equation
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where 8¢’ /Oy’ = 0, because the y — boundaries are
assumed to be perfectly conducting or short circuited,

so that the y — component of A'=0.
Non-dimensionalisation

To non-dimensionalize (4) we write
' =Lx, 2 =Lz ' =LBy+¢¥ where B and L
are the typical strength of the magnetic field and length
respectively, (4) then becomes

% 1 .
C;—f-!*ﬁ-V@” = —}—%——Vzw or
" (5)
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where v = .

To derive an alternative formulation in terms of Poisson
dx

az’o )’

where y is the magnetic stream function, the term v-V
becomes

Ix

brackets we let v = —V x (x@) = ( g
-

where the Poisson bracket notation is defined as
[, x] = ¥=X: — ¥= X Hence (5) can also be written
as

orts

— 4, x] = V2,
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This is the form of equation used in the later numerical
calculations.

Analytical Solution

We consider the simple case of one Fourier component
{because it has an analytical solution), where a solid
conductor is subjected to an applied magnetic field

(

where X = = + Ut, in a frame of reference stationary
relative to the applied magnetic field. Now we need to
obtain the magnetic stream function yr as a result of the
applied magnetic field (8). By writing B = V@ where
¢ is the magnetic potential function, the divergence
condition (2) gives the Laplace’s equation VZ¢ = 0,
whose solution can he shown to be

9

) = Bycosk(z+ Ut)
S S

= BpeoskX, (8)

Mo,z t) = Ho sinh(kz) cos kX,
kC1

)

where ¢ =cosh{ka). Since the magnetic field
B has zero divergence it can be expressed as
B = -V xg=(0y/0z,0,-0v/0X). Using (9) in
B = V¢ we have components of BB as

M By .o

i sinh{kz)sin(kX)

2 _ By conth
“EX o cosh{kz) cos(kX),

whose solution is

w(X, =) AAB—COI coshikz)sin{(kX).  (10)

It is important to note here that we choose our frame
of reference to be statiopary with respect to the applied
magnetic field, which is moving at a constant velocity
U#. From now onwards we use z io mean X just for
convenience.

At steady state 3B /0t = 0.1.e. 09 /3t = 0. So from (5)
and (10) we obtain

P
vzl‘rb = Rm.r_q:ia Lf’(:l: (1) -

B
— 20 sinka, (A1)
. k
respectively.

In order to solve {11) we try a solution of the form
o = Im[ f(2) e, (12)
resulting in £ " (z) — w*fz) =0, where @ =+.Jk* + kR i.

Writing vVAZ + kR, 1 = e + 3. where «, 3 are real,
leads to

of — 3% = K 208 = kR,,. (13)

and

The two solutions to these simultanecus equations (13)
can be shown to be

[k [k
= |—R ,B=]-0
“ zg’"ﬂ 2
k &
= | =R B=-1-0Q,
@ \/;;'"ﬂ 2

Where Q =R’ +k° —k.Now we can write

I (z) =Ae™ + Be ™"

where w = & + fi. (14)

From the boundary conditions (11) we get fi+a) =
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~B,/k, which when applied to (14} gives the values
of A and B. So the solution of (11) after some algebra
can be shown to be

u'):_

By R{z)sinkz + S(z) coskz

=

where

R(z) = cosh{az) cosh{aa) cos(B8z) cos{Ba)
+ sinh{az)} sinh{aa) sin(8z) sin(Sa),

s (15)

the corrector value 157 *! as in (18) at time step n + 1,
while using.the same values of x7; and V*¢7} as in

(17).
We first calculate the predictor step,

Tj)%+l* _ w:; . ( ) wnx )

1 T
+ o v 21#5‘2'3'Ai’ (i7)
where s

o Yy YRy e Phaa Wi
Tr”'s;' - 2 7f/’z -

. . A 2A
5(z) = sinh{az) cosh(aa) sin{8z) cos(Sa) " 2_ n n n
. . n_ Xitij T Xi-1 n_ X1l = Xij-1
— cosh(az) sinh{aa) cos{8z) sin(Ba), Xo =~ oxn -  XeT T gx
and
2 2 . . 2 2 and
P = cosh?(aa) cos?(Ba) + sinh” (o) sin” (Ba). ‘
igh — Vi — 20 T ¥y

Fieldlines are shown in Figure 1. It can be seen that as Vig = 2h2
the magnetic Reynolds number increases from 1 to 120, Yl — 29 U
more lines of force are swept in the direction of motion + 92 .
of the solid conductor. This is to be expected since as R
increases, the field lines tend to become more “frozen-in” The predictor values, %" +* are then used to calculate the

to the conductor.

Flgure 1: Contours of the analyhcal streamfunction for

corrector step +" 1, for the next time step ¢ + Az,

wn+1 _ 1/1,3 (wn—i—l* . WLH*XQ)At

vz% At,
i
where B (18)
n+1* n4-1x*
w’n-}-}* - rd’»‘H g ’l’bi 1.3
€ 24 ;

anAle nb Ll
nrte _ Yigrl ~ Wi
wz - 2A H

and V¢ remain unchanged. To ensure stability

the time step. Af, for 2-D must satisfy the Courant-
Friedrichs-Lewy condition

A

magnetic Reynolds number, R , which takes the values JAN A —— a9
from 1 to 120. The munber of contour lines is 30. The V2 || max

resolution is 50 by 50. The region is [0,1] by [-0.5,0.5].

Numerical scheme

where v} max 1S the modulus of the maximum velocity of
the fluid taken over all grid points. Since

|v|ma,x < U=
The problem is to solve the governing equation we find,
d’lp' + [yl = “_1_ V2¢ ! > 1.
at R ’ Hence, [ ]max
x(z,—a} =0, A
X(:I,', CL) = 2Ua. At < % . (20)
numerically on the domain [0,1] x [—a, a]. In addition, the time step must also satisfy the von Neumann
The numerical method used was the Russian scheme criterion fqr stability (Richtmyer & Morton 1967) arising
(Heerikhuisen [(2001) Appendix A]). Briefly the scheme from the viscous term, which leads to
works like this. Based on the induction equation (16) we A?
calculate the predictor step, ¢ +1*(17) at time step n + 1 At < 2 = R, A2 @1)
* Then we use the predicted values of 1™ "1* to calculate 4
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Boundary Values

The domain is [0,1] x [—a,a]. The calculations are
carried out over all the points of the mesh including the
boundaries. The poiat ;, z; corresponds to the point
with co-ordinates

p= (1= 1) % A, i=0,....,m+1
y=—at+(@G-1*A j=loon

fn the finite difference expression for V1)

TS R s Vi-1,j
2 h?
n i1 — 2y + i1
2 h2 ;

Vi

the calculations of the values of 1 on the boundaries i.¢.
#(i,0) and @i, n + 1), require the values of ) on the
ghostpoints. For example, in the caleulation for j = 1
(boundaryz = —a) we need to the values of ¥{i,2)
and the ghostpoint (%, 0). Similarly for j = n we need
the values (i, n — 1) and the ghost-point Wi, n+ 1}
We solve this by the “mitror image” technique where we
set

¢(3,0) = (i, 2},
Ppi,n+ 1)y =v(,n—-1), i=0,...,m+ 1.
The justification is the r—component of the applied
magnetic field on the boundaries z = =+ a is zero Le.

Oy Wigrl Vig-L
axz 2h

which implies that 3¢ does not change between the
points on either side of the boundaries namely
(i, 0), (i,2)and{i,n-1), (i,n+1).

o ¢ o o O O

G — ghostpoints
Figure 2. The mesh of the domain [0,1] {—a,a]
showing ‘the ghost points next to the boundaries
z=*a. ’

Numerical Results

The simulations were continued until a steady state was
reached for a given value of magnetic Reynolds pumber
in the range 1 to 120. The number of partitions is 50
by 50. When we compare the analytical streamlines
(the first column in Figure 3) for the steady state with
the mumerically calculated streamlines (in the second
column) for the same magnetic Reynolds number they
look remarkably similar (only a few are reproduced
here). As the magnetic Reynolds number increases
the solid metal behaves more and more like a perfect
conductor. The fieldiines in the shape of half-a-loop on
the boundaries are swept in the direction of the motion
and become flatter as R increases as shown in Figure 3.
For values of R of about 800, the fieldlines are swept
into a narrow layer on the boundaries. The collapsing
boundary layers look stable as R increases. To see
whether they are accurate for the given grid spacing we
increase the resolution of the magnetic fieldlines just
for the case of R_= 800. It is shown that the nparrow
layer of fieldlines on the boundaries has a thickness of
approximately within 8% of a, the channel width. When
the tesolutions are increased from 50 by 50 to 150 by
150, the thin boundary layers of magnetic field remain
within 4 grid points for 50 by 50; within 8 grid points for
100 by 100; and within 12 grid points for 150 by 150.

To study the evolution of fieldlines with time, at high
R, two simulations for R_= 42 and R = 200 were
carried out. For R_ = 800 it is clear from Figure 4 that
boih pairs of vortices travel the whole wavelength (of 1
unit length) in 1 time unit. Duting the travel “frozen-in”
effect is at work with reconnections of fieldlines taking
place on the boundaries. The initial fieldline shape
remains unchanged.

Some half loops are severed from the boundaries but
connect to form vortices where two new pairs of loops
are formed. After £ = 0.7 twelve new pairs of loops are
formed but as time goes on loops of vortices gradually
disappear through reconnection with the flux on the
boundaries and through ohmic losses. By ¢ = 3, only
one pair of loops is left. In the end what remains is a
thin layer of flux on the boundaries. The severing
of fieldlines mostly involves those that join the two
boundaries. Within just a period of 7= 2.0, only closed
loop fieldlines originating from the boundaries remain
and they are inclined in the direction of motion of the
solid metal, A similar flux expulsion effect was found by
Kamkar and Moffatt (1982). They studied a pressure-
driven flow along a channel in the presence of an applied
periodic magnetic field.

Conclusion

The numerical and analytical results agree well for the
case of one Fourier-component source, for R in the
range of 1 to 1200. We found that as R_increases the
solid metal behaves more and more like a perfect con-
ductor where the fieldlines are frozen in the moving
solid metal. The fieldlines are swept in the direction of
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the motion. It would be interesting to extend the present
problem to the case where we have a conducting fluid
instead a solid metal.

) Mumencal R 10

Figure 3: The left column shows the analytical field-lines
and the second column shows steady state numerical
fieldlines for increasing values of magnetic Reynolds
number (viz 1-800). The number of stream-function
contour lines is 30. The region is [0,1] = [-0.5, 0.5].
The number of partitions is 50 by 50.
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Figure 4: Evolution of fieldlines for # = 0.1 to 18.0
showing “frozen-in” effect of magnetic field at high R

= 800.
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