

UNIVERSITI PUTRA MALAYSIA

ENZYMATIC SYNTHESIS OF 3-O-ACYLBETULINIC ACID DERIVATIVES AND PREDICTION OF ACYLATION USING RESPONSE SURFACE METHODOLOGY AND ARTIFICIAL NEURAL NETWORK ANALYSES

MANSOUR GHAFFARI MOGHADDAM FS 2010 26

ENZYMATIC SYNTHESIS OF 3-0-ACYLBETULINIC ACID DERIVATIVES AND PREDICTION OF ACYLATION USING RESPONSE SURFACE METHODOLOGY AND ARTIFICIAL NEURAL NETWORK ANALYSES

By

MANSOUR GHAFFARI MOGHADDAM

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

February 2010

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

ENZYMATIC SYNTHESIS OF 3-O-ACYLBETULINIC ACID DERIVATIVES AND PREDICTION OF ACYLATION USING RESPONSE SURFACE METHODOLOGY AND ARTIFICIAL NEURAL NETWORK ANALYSES

By

MANSOUR GHAFFARI MOGHADDAM

February 2010

Chairman: Professor Faujan H. Ahmad, PhD

Faculty: Science

In this study, 3-*O*-acyl-betulinic acid derivatives were synthesized by the reaction of betulinic acid with various anhydrides using lipase as a biocatalyst in organic solvents. The reaction between betulinic acid and phthalic anhydride was chosen as the model reaction for optimization studies. The immobilized lipase from *Candida antarctica* (Novozym 435) was selected as a biocatalyst. The effects of different reaction parameters were investigated and optimized in the model reaction using *one-variable-at-a-time* technique for the first time. Optimum conditions to produce 3-*O*-phthalyl-betulinic acid up to 61.8% were observed at a reaction time of 24 hours; amount of enzyme, 176 mg; betulinic acid to phthalic anhydride molar ratio of 1:1; amount of celite, 170 mg and 6 mg of K₂CO₃ in a mixture of *n*-hexane-chloroform (1:1, v/v) as organic solvent at 55°C.

The response surface methodology (RSM), based on a five-level, four-variable central composite rotatable design (CCRD), was employed to evaluate the effects of synthesis

parameters of the model reaction. Using the RSM analysis, it was observed that the maximum yield of 3-*O*-phthalyl-betulinic acid (65.8%) could be obtained using 145.6 mg of enzyme, reaction temperature of 53.9°C, reaction time of 20.3 hours and betulinic acid to phthalic anhydride molar ratio of 1:1.11. The actual experimental value obtained was at 64.7%.

Artificial neural network (ANN) was successfully developed to model and predict the enzymatic synthesis of 3-*O*-phthalyl-betulinic acid. The network consists of an input layer, a hidden layer and an output layer. Inputs for the network were reaction time, reaction temperature, enzyme amount and substrate molar ratio, while the output was percentage isolated yield of ester. Four different training algorithms, belonging to two classes, namely gradient descent and Levenberg-Marquardt, were used to train ANN. The best results were obtained from the quick propagation algorithm (QP) with 4-9-1 topology. Based on the ANN analysis, the optimal conditions to obtain the highest yield were 148.3 mg enzyme, reaction temperature of 53.1°C, reaction time of 20.3 hours and betulinic acid to phthalic anhydride molar ratio of 1:1.24. The predicted and actual yields were 64.9 and 64.3%, respectively. In this work, the ANN and RSM analysis were investigated on the enzymatic synthesis of 3-*O*-phthalyl-betulinic acid for the first time.

Finally, several betulinic acid esters (compounds 57-66) were synthesized using the optimal operation conditions which were obtained by the RSM technique. Esterification of betulinic acid with various anhydrides was performed at 54°C in a mixture of *n*-hexane-chloroform (1:1, v/v) for 20.3 hours, catalyzed by Novozym 435, gave 24.7 to 79.3% yield. Five new compounds (58, 62, 64, 65 and 66) were synthesized for the first time in the present study.

In brief, the anti-cancer activity of betulinic acid (1) and its 3-*O*-acylated derivatives (compounds 57-66) were evaluated against human lung carcinoma (A549) and human ovarian (CAOV3) cancer cell lines. In particular, compounds (59), (61) and (63) were found to show IC₅₀ < 10 μ g/ml against A549 cancer cell line tested and showed better cytotoxicity than betulinic acid. In the ovarian cancer cell line, all betulinic acid derivatives prepared revealed weaker cytotoxicity than betulinic acid.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

SINTESIS ENZIMATIK TERBITAN ASID 3-O-ASILBETULINIK DAN ASILASI PREDIKSI MENGGUNAKAN KAEDAH TINDAK BALAS PERMUKAAN DAN RANGKAIAN NEURAL BUATAN

Oleh

MANSOUR GHAFFARI MOGHADDAM

Februari 2010

Pengerusi: Profesor Faujan H. Ahmad, PhD

Fakulti: Sains

Di dalam kajian ini, terbitan asid 3-*O*-asil-betulinik telah disintesiskan daripada tindak balas asid betulinik dan pelbagai anhidrida dengan menggunakan lipase sebagai biopemangkin dalam kehadiran pelarut organik. Tindak balas antara asid betulinik dan ftalik anhidrida telah dipilih sebagai model untuk kajian pengoptimuman. Lipase immobilized dari *Candida antarctica* (Novozim 435) telah dipilih sebagai biopemangkin. Sementara itu, kesan untuk pelbagai parameter juga telah dikaji dan dioptimumkan sebagai model tindak balas dengan menggunakan teknik *satu-variasi-pada-satu-masa* untuk pertama kali. Keadaan optimum untuk penghasilan asid 3- *O*-fthalil- betulinik sehingga 61.8% telah diperolehi dalam masa tindak balas 24 jam, kuantiti enzim 176 mg, asid betulinik kepada ftalik anhidrida nisbah molar 1:1, kuantiti celit 170 mg dan 6 mg K₂CO₃ dalam campuran klorofom-*n*-heksana (1:1, v/v) sebagai pelarut organic pada suhu 55°C.

Kaedah tindak balas permukaan (RSM) berdasarkan lima peringkat, empat pemalar bolehubah rekabentuk komposit putaran tengah (CCRD) telah digunakan untuk menilai kesan parameter sintesis. Menggunakan analisis RSM, hasilan maksimum asid 3-*O*-fthalil-betulinik (65.8%) telah didapati dengan menggunakan 145.6 mg enzim, suhu reaksi pada 53.9°C, masa reaksi pada 20.3 jam dan asid betulinik kepada ftalik anhidrida pada nisbah molar 1:1.11. Nilai untuk experimen sebenar yang terdapat adalah sebanyak 64.7%.

Rangkaian neural buatan (ANN) telah berjaya membangunkan pemodelan dan ramalan untuk sintesis enzimatik asid 3-*O*-fthalil-betulinik. Rangkaian ini mengandungi lapisan masukan iaitu lapisan terlindung dan lapisan keluaran. Masukan untuk rangkaian adalah masa reaksi, suhu reaksi, kuantiti enzim dan nisbah molar substrak, sementara keluaran adalah peratus hasilan ester yang terpisah. Empat latihan algoritma yang berbeza tertakluk kepada dua kelas, iaitu Gradient Descent dan Levenberg–Marquardt telah digunakan untuk percubaan ANN. Keputusan terbaik telah didapati dari algoritma Propagasi Maju (QP) dengan topologi 4-9-1. Berdasarkan analisis ANN, dan keadaan optimum untuk mendapatkan hasil tertinggi adalah 148.3 mg enzim, suhu reaksi pada 53.1°C, masa reaksi pada 20.3 jam dan asid betulinik kepada ftalik anhidrida pada nisbah molar 1:1.24. Hasil ramalan dan hasil sebenar masing-masingnya adalah 64.9 dan 64.3%. Dalam kajian ini, analisis ANN dan RSM telah dikaji ke atas sintesis enzimatik untuk asid 3-*O*-ftalil-betulinik pada pertama kali.

Akhirnya, beberapa ester asid betulinik (57-66 sebatian) telah disintesis dengan menggunakan keadaan operasi optimum yang terdapat dalam teknik RSM. Pengesteran untuk asid betulinik dengan pelbagai anhidrida telah dijalankan pada suhu 54°C dalam

campuran *n*- heksana-klorofom (1:1, v/v) bagi 20.3 jam dimangkinkan dengan Novozim 435, memberi 24.7% sehingga 79.3% hasilan. Lima sebatian baru (58, 62, 64, 65 and 66) telah disintesiskan untuk pertama kali dalam kajian semasa.

Secara ringkas, aktiviti anti-kanser untuk asid betulinik asid (1) dan derivatif 3-*O*-asilan (sebatian 57-66) telah dinilaikan ke atas karsinoma peparu manusia (A549) dan kanser sel stem ovari manusia (CAOV3). Sebatian (59), (61) and (63) menunjukkan IC₅₀ < 10 μ g/ml ke atas cubaan A549 kanser sel stem dan memperolehi sitotoksik yang lebih baik daripada asid betulinik. Dalam kanser sel stem ovari, semua derivative asid betulinik menunjukkan sitotoksik yang lemah daripada asid betulinik.

ACKNOWLEDGEMENTS

Foremost, I would like to express my deep and sincere gratitude to my supervisor, Professor Dr. Faujan H. Ahmad for the continuous support of my PhD study and for his patience, motivation and enthusiasm. His wide knowledge and his logical way of thinking, encouraging and personal guidance have provided a good basis for the present thesis. It has been a great pleasure to do research with him.

I would specially like to express my deepest gratitude to the members of my supervisory committee, Professor Dr. Mahiran Basri and Professor Dr. Mohd Basyaruddin Abdul Rahman for their detailed and constructive comments and for their important support throughout this work.

I wish to give my sincere gratitude to all the staff in the department of chemistry of Universiti Putra Malaysia for their help in my research. I would also like to thank Institute Biosciences (IBS) in Universiti Putra Malaysia for providing the facilities to carry out this study. My special appreciation is also extended to my colleagues Ms. Tang Sook Wah, Mr. Hamid Masoumi and Mr. Lim Chaw Jiang for their kind help and friendly attitude.

I would like to acknowledge the financial support provided by University of Zabol, Iran for this study.

Finally, I would like to thank my beloved wife and son, Mandana and Ilia for all their love, patience and support to finalize the study.

I certify that a Thesis Examination Committee has met on 25 February 2010 to conduct the final examination of Mansour Ghaffari Moghaddam on his thesis entitled "Enzymatic Synthesis of 3-*O*-Acylbetulinic Acid Derivatives and Prediction of Acylation using Response Surface Methodology and Artificial Neural Network Analyses" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Mohd. Aspollah Sukari, PhD

Professor Faculty of Science Universiti Putra Malaysia (Chairman)

Taufiq Yap Yun Hin, PhD

Professor Faculty of Science Universiti Putra Malaysia (Internal Examiner)

Gwendoline Ee Cheng Lian, PhD

Professor Faculty of Science Universiti Putra Malaysia (Internal Examiner)

Laily Din, PhD

Professor Faculty of Science and Technology Universiti Kebangsaan Malaysia (External Examiner)

BUJANG BIN KIM HUAT, PhD

Professor and Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date: 15 April 2010

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of Supervisory Committee were as follows:

Faujan H. Ahmad, PhD

Professor Faculty of Science Universiti Putra Malaysia (Chairman)

Mahiran Basri, PhD

Professor Faculty of Science Universiti Putra Malaysia (Member)

Mohd Basyaruddin Abdul Rahman, PhD

Professor Faculty of Science Universiti Putra Malaysia (Member)

HASANAH MOHD GHAZALI, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date: 13 May 2010

DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

MANSOUR GHAFFARI MOGHADDAM

Date: 22 March 2010

TABLE OF CONTENTS

ABSTRACT	ii
ABSTRAK	V
ACKNOWLEDGEMENTS	viii
APPROVAL	ix
DECLARATION	xi
LIST OF TABLES	XV
LIST OF FIGURES	xviii
LIST OF SCHEMES	xxiii
LIST OF ABBREVIATIONS	XXV

CHAPTER

1
5
5
6
8
10
13
15
15
19
23
24
25
27
28
30
31
32
33
33
35
36
37
39
41
42
43
43
44
44
46

Application of Artificial Neural Networks in Enzymatic Synthesis	47
MATERIALS AND METHODS	50
Chemicals and Materials	50
Study of Reaction Parameters on the Enzymatic Preparation of	51
3-O-Phthalyl-Betulinic Acid	
General Procedure	51
The Effect of Single Solvent System on Enzymatic Synthesis	52
The Effect of Mixed Solvent System on Enzymatic Synthesis	52
The Effect of Substrate Molar ratio on Enzymatic Synthesis	53
The Effect of Reaction Time on Enzymatic Synthesis	53
The Effect of Amount of Enzyme on Enzymatic Synthesis	54
The Effect of Bases on Enzymatic Synthesis	54
The Effect of Celite [®] 545 on Enzymatic Synthesis	54
The Effect of Reaction Temperature on Enzymatic Synthesis	55
Modeling and Optimization of 3-O-Phthalyl- Betulinic Acid	55
Enzymatic Synthesis Using Response Surface Methodology (RSM)	
Enzymatic Synthesis	55
Experimental Design and Statistical Analysis	50
Artificial Neural Network (ANN) Modeling Studies of	59
3-O-Phthalyl-Betulinic Acid Enzymatic Synthesis	
Experimental Design	59
Evaluation of Model Predictability	62
Enzymatic Synthesis of 3-O-Acyl-Betulinic Acid Derivatives	63
General Procedure	63
3-O-Phthalyl-Betulinic Acid (57)	64
3-O-(3-Methyl phthalyl)-Betulinic Acid (58)	65
3-O-Glutaryl-Betulinic Acid (59)	66
3-O-(3',3'-Dimethyl glutaryl)-Betulinic Acid (60)	68
3-O-Succinyl-Betulinic acid (61)	69
3-O-Maleyl-Betulinic Acid (62)	70
3-O-Acetyl-Betulinic Acid (63)	71
3-O-Butyryl-Betulinic Acid (64)	72
3-O-Isobutiryl-Betulinic Acid (65)	73
3-O-Valeryl-Betulinic Acid (66)	74
Biological Activity Assay	75
Procedure for Cytotoxic Assay	75
RESULTS AND DISCUSSION	71
General Considerations	77
Study of Reaction Parameters on the Enzymatic Synthesis of	78
3-O-Phthalyl-Betulinic Acid	
The Effect of Single Solvent System	78
The Effect of Mixed Solvent System	80
The Effect of Substrate Molar Ratio	82
The Effect of Reaction Time	83
The Effect of Amount of Enzyme	83
The Effect of Bases	87
The Effect of Celite	88
The Effect of Reaction Temperature	89

3

4

	Modeling and Optimization of 3-O-Phthalyl-Betulinic Acid	91
	Enzymatic Synthesis Using Response Surface Methodology (RSM)	
	Model Fitting and Statistical Analysis	91
	The Response Surface Plots	99
	The Yield of Ester <i>versus</i> Reaction Time and Reaction	101
	The Yield of Ester <i>versus</i> Reaction Time and Amount of Enzyme	102
	The Yield of Ester <i>versus</i> Reaction Time and Molar Ratio The Yield of Ester <i>versus</i> Reaction Temperature and Amount	104 105
	of Enzyme The Yield of Ester <i>versus</i> Substrate Molar Ratio and Reaction Temperature	107
	The Yield of Ester <i>versus</i> Substrate Molar Ratio and Amount of Enzyme	108
	Contour Plots	109
	Attaining the Optimum Conditions	115
	The Artificial Neural Network (ANN) Modeling Studies of	116
	5-O-Phinalyi-Beluinnic Acid Enzymatic Synthesis The ANN Model Training with Gradient Descent	120
	Packpropagation Algorithms	120
	The ANNI Model Training with Levenhous Mensuerate	102
	Deskaronesetion Algorithm	123
	Backpropagation Algorithm Selecting the Dest Neural Network Model	102
	Model Velidation	120
	The Comparison Botwan of Pasponse Surface Methodology	121
	(RSM) and Artificial Neural Network (ANN)	151
	Predictive Capabilities	131
	Optimization Study	136
	The Enzymatic Synthesis of 3-O-Acyl-Betulinic Acid Derivatives	137
	Studies on Biological Activity	140
	Spectral Characterization	144
	Betulinic Acid (1)	144
	3-O-Phthalyl-Betulinic Acid (57)	148
	3-O-(3'-Methyl phthalyl)-Betulinic Acid (58)	160
	3-O-Acetyl-Betulinic Acid (63)	171
	3-O-Succinyl-Betulinic Acid (61)	186
	3-O-Maleyl-Betulinic Acid (62)	197
	3-O-(3',3'-dimethyglutaryl)-Betulinic Acid (60)	207
	Esters 59, 64, 65 and 66	217
5	CONCLUSION AND RECOMMENDATIONS FOR FUTURE RESEARCH	230
	Conclusion	230
	Recommendations for Future Research	233
REFERE	ENCES	234
APPENDICES		252
BIODAT	'A OF STUDENT	264
LIST OF PUBLICATIONS 26		265

LIST OF TABLES

Table		Page
1	Representative Some Synthetic Methods Used in the Preparation of Betulinic Acid Derivatives	8
2	The Anti-HIV Activities of Some Betulinic Acid Derivatives	19
3	Cytotoxic Activity of Betulinic acid and Compounds (38-41) Against CEM, K562, HT 29, PC-3, and SK MEL2 Cells	21
4	Cytotoxic Activity of Betulinic Acid and Compounds (42-45) Against MEL-2 and KB Cell Line	22
5	Cytotoxicity of the Compounds (50-56) Against Influenza A and Herpes Simplex Type 1 Viruses (HSV-1)	26
6	Enzyme Commonly Used in Organic Synthesis	32
7	Some Reactions Catalyzed by Lipases	35
8	Coded and Actual Levels of Variables Considered for the Design of Experiment	57
9	Experimental Design for 5-Level 4-Variable Central Composite Rotatable Design (CCRD)	58
10	Experimental Data Values of the Variables Taken for Learning (Training), Testing and Validation of Artificial Neural Network	61
11	LogP Values of Used Organic Solvents	79
12	Central Composite Rotatable Second-Order Design in Coded Variables, Experimental Data, and Predicted Values for 4-Factor-5- Level Response Surface Analysis	92
13	Sequential Model Sum of Squares	94
14	Lack of Fit Tests	95
15	Model Summury Statistics	96
16	Analysis of Variance (ANOVA) and Regression Coefficients of the Quadratic Model Equation	97
17	Analysis of Variance (ANOVA) and Regression Coefficients of the Reduced Quadratic Model Equation	100
18	Optimum Conditions Derived by Response Surface Methodology (RSM)	115

19	Statistical Measures and Performances of Four Learning Algorithms on the Enzymatic Synthesis Betulinic Acid Ester	125
20	Predicted Values of the Best Neural Network and the Actual Values for the Isolated Yield of Ester	129
21	Actual and Predicted Model Values for Validation Data	130
22	Central Composite Design Matrix of Four Variables and the Experimentally Determined, RSM Model Predicted and ANN Model Predicted Values of Isolated Yield of Ester	132
23	Comparison of RSM and ANN	133
24	Actual and Predicted Values for Unseen Data	135
25	Optimum Conditions Derived Using Response Surface Methodology (RSM) and Artificial Neural Network (ANN)	136
26	Isolated Yield of 3-O-Acyl-Betulinic Acid Using Various Anhydrides Catalyzed by Lipase	138
27	Cytotoxicity Assay of Betulinic Acid and its 3-O-Acyl-Derivatives Against Human Lung Carcinoma (A549) and Human Ovarian (CAVO3) Cancer Cell Lines	141
28	¹ H-NMR Chemical Shift of Betulinic Acid	144
29	¹³ C-NMR Chemical Shifts of Betulinic Acid	147
30	Vibrational Data of Betulinic Acid	148
31	¹ H-NMR Chemical Shift of 3- <i>O</i> -Phthalyl-Betulinic Acid	149
32	¹³ C-NMR Chemical Shifts of 3-O-Phthalyl-Betulinic Acid	155
33	Vibrational Data of 3-O-Phthalyl-Betulinic Acid	156
34	¹ H-NMR Chemical Shift of 3-O-(3'-Methyl Phthalyl)-Betulinic Acid	163
35	¹³ C-NMR Chemical Shifts of 3-O-(3'-Methyl Phthalyl)-Betulinic Acid	166
36	Vibrational Data of 3-O-(3'-Methyl Phthalyl)-Betulinic Acid	167
37	¹ H-NMR Chemical Shift of 3-O-Acetyl-Betulinic Acid	174
38	¹ H, ¹³ C NMR, ¹ H- ¹ H COSY and HMBC Data of 3-O-Acetyl-Betulinic Acid	181
39	Vibrational data of 3-O-Acetyl-Betulinic Acid	182

40	¹ H-NMR Chemical Shift of 3-O-Succinyl-Betulinic Acid	189
41	¹³ C-NMR Chemical Shifts of 3-O-Succinyl-Betulinic Acid	192
42	Vibrational Data of 3-O-Succinyl-Betulinic Acid	193
43	¹ H-NMR Chemical Shift of 3-O-Maleyl-Betulinic Acid	200
44	¹³ C-NMR Chemical Shifts of 3-O-Maleyl-Betulinic Acid	202
45	Vibrational Data of 3-O-Maleyl-Betulinic Acid	203
46	¹ H-NMR Chemical Shift of 3-O-(3´,3´-dimethylglutrayl)-Betulinic Acid	210
47	¹³ C-NMR Chemical Shifts of 3-O-(3´,3´-dimethyglutaryl)-Betulinic Acid	212
48	Vibrational Data of 3-O-(3´,3´-Dimethylglutaryl)-Betulinic Acid	213
49	¹ H-NMR Chemical Shift of 3-O-Glutrayl-Betulinic Acid	218
50	¹³ C-NMR Chemical shifts of 3-O-glutaryl-betulinic acid	219
51	Vibrational Data of 3-O-Glutaryl-Betulinic Acid	220
52	¹ H-NMR Chemical Shift of 3- <i>O</i> -Butyryl-Betulinic Acid (64), 3- <i>O</i> -Isobutyryl-Betulinic Acid (65), and 3- <i>O</i> -Valeryl-Betulinic Acid (66)	222
53	Vibrational Data of 3-O-Butyryl-Betulinic Acid	223
54	¹³ C-NMR Chemical Shifts of Compounds 64-66 and Betulinic Acid	224
55	Vibrational Data of 3-O-Isobutyryl-Betulinic Acid	227
56	Vibrational Data of 3-O-Valeryl-Betulinic Acid	229
57	The Statistical Measures and Performances of Various Topologies Using Incremental Backpropagation Algorithm (IBP)	252
58	The Statistical Measures and Performances of Various Topologies Using Batch Backpropagation Algorithm (BBP)	253
59	The Statistical Measures and Performances of Various Topologies Using Quick Propagation Algorithm (QP)	254
60	The Statistical Measures and Performances of Various Topologies Using Levenberg-Marquardt Algorithm (LM)	255

LIST OF FIGURES

Figure		Page
1	Lock-and-Key Model of Enzyme-Substrate Binding	29
2	Induced-Fit Model of Enzyme-Substrate Binding	30
3	Configuration of Multi Layer Artificial Neural Network	42
4	Taxonomy of Neural Network Architecture	43
5	Feed-Forward Network	44
6	Different Types of Transfer Functions (a) Linear Transfer Function, (b) Hard Limit Transfer Function, (c) Tan-Sigmoid Transfer Function, and (d) Log-Sigmoid Transfer Function	45
7	Schematic of Neural Network Training by Back-Propagation Algorithm	47
8	The influence of Single Solvent System on the Enzymatic Acylation of Betulinic Acid with Phthalic Anhydride	80
9	The Influence of Chloroform Content on the Esterification Rate of Betulinic Acid by Immobilized Lipase in a Mixed Solvent System with n-Hexane as the Bulk Solvent	82
10	The Influence of Substrate Molar Ratio on Lipase-Catalyzed of Betulinic Acid with Phthalic Anhydride	83
11	The Influence of Reaction Time on the Esterification of Betulinic Acid by Novozym 435	84
12	The Influence of Amount of Enzyme on Lipase-Catalyzed of Betulinic Acid with Phthalic Anhydride	86
13	The Influence of Bases on Lipase-Catalyzed of Betulinic Acid with Phthalic Anhydride	87
14	The Effect of Addition of Celite on Enzymatic Synthesis Betulinic Acid	89
15	The Influence of Reaction Temperature on the Esterification of Betulinic Acid using Novozym 435	91
16	Response Surface Plot Showing the Effect of Time and Temperature on Percentage Yield of Ester (Enzyme Amount, 150 mg and Molar Ratio, 1:1.67)	102

17	Response Surface Plot Showing the Effect of Amount of Enzyme and Reaction Time on Percentage Yield of Ester (Temperature, 50°C and Substrate Molar Ratio, 1:1.67)	103
18	Response Surface Plot Showing the Effect Substrate Molar Ratio and Reaction Time on Percentage Yield of Ester (Temperature, 50°C and Enzyme Amount, 150 mg)	105
19	Response Surface Plot Showing the Effect of Amount of Enzyme and Temperature on Percentage Yield of Ester (Reaction Time, 16 h and Substrate Molar Ratio, 1:1.67)	106
20	Response Surface Plot Showing the Effect of Substrate Molar Ratio and Temperature on Percentage Yield of Ester (Reaction Time, 16 h and Enzyme Amount, 150 mg)	108
21	Response Surface Plot Showing the Effect of Substrate Molar Ratio and Amount of Enzyme on Percentage Yield of Ester (Temperature, 50°C and Reaction Time, 16 h)	109
22	Contour Plot of Temperature and Time at Fixed Molar Ratio (1:1.67) and Enzyme Amount (150 mg)	111
23	Contour Plot of Enzyme Amount and Time at Fixed Molar Ratio (1:1.67) and Temperature (50°C)	112
24	Contour Plot of Molar Ratio and Time at Fixed Temperature (50°C) and Enzyme Amount (150 mg)	112
25	Contour Plot of Temperature and Enzyme Amount at Fixed Molar Ratio (1:1.67) and Time (16 h)	113
26	Contour Plot of Temperature and Molar Ratio at Fixed Time (16 h) and Enzyme Amount (150 mg)	114
27	Contour Plot of Molar ratio and Enzyme Amount at Fixed Time (16 h) and Temperature (50°C)	114
28	The Performance of the Network at Different Hidden Neurons Using (a)Incremental Backpropagation (IBP), (b) Batch Backpropagation (BBP), and (c) Quick Propagation (QP) Algorithm	122
29	The Performance of the Network at Different Hidden Neurons Using Levenberg-Marquardt (LM) Backpropagation Algorithm	123
30	The Scatter Plots of ANN Predicted Yield <i>versus</i> Actual Yield from (a) Incremental Backpropagation (IBP), (b) Batch Backpropagation (BBP), (c) Quick Propagation (QP), and (d) Levenberg- Marquardt (LM) Backpropagation Algorithm for Training Data Set	126
31	The Scatter Plots of ANN Predicted Yield <i>versus</i> Actual Yield from (a) Incremental Backpropagation (IBP), (b) Batch Backpropagation	127

	(BBP), (c) Quick Propagation (QP), and (d) Levenberg- Marquardt (LM) Backpropagation Algorithm for Testing Data Set	
32	A Multilayer Feedforward Perceptron (MLP) Network Consisting of Four Inputs, One Hidden Layer with Nine Neurons and One Output	128
33	The Scatter Plot of ANN Predicted Yield versus Actual Yield for Validating Data	131
34	The Plot of RSM and ANN Model Predicted Yield <i>versus</i> Actual Yield for Central Rotatable Composite Design (CCRD)	133
35	Comparison of Observation Order with Residuals for CCRD Matrix	134
36	The Plot of RSM and ANN Model Predicted Yield versus Actual Yield for Unseen Data	135
37	¹ H-NMR Spectrum of Betulinic Acid	145
38	¹³ C-NMR Spectrum of Betulinic Acid	146
39	¹ H-NMR Spectrum of 3-O-Phthalyl-Betulinic Acid	150
40	Expanded ¹ H-NMR Spectrum of 3-O-Pthalyl-Betulinic Acid	151
41	¹³ C-NMR Spectrum of 3-O-Phthalyl-Betulinic acid	153
42	Expanded ¹³ C-NMR Spectrum of 3-O-Phthalyl-Betulinic Acid	154
43	Infrared Spectrum of 3-O-Phthalyl-Betulinic Acid	157
44	(a) Mass Spectrum of 3-O-Phthalyl-Betulinic Acid, (b) Expanded Mass Spectrum of 3-O-Phthalyl-Betulinic Acid	158
45	¹ H-NMR Spectrum of 3-O-(3'-methylpthalyl)-Betulinic Acid	161
46	Expanded ¹ H-NMR Spectrums of 3-O-(3'-methyl pthalyl)-Betulinic Acid	162
47	¹³ C-NMR Spectrum of 3-O-(3´-methyl phthalyl)-Betulinic acid	164
48	Expanded ¹³ C-NMR Spectrum of 3-O-(3'-methyl phthalyl)-Betulinic Acid	165
49	Infrared Spectrum of 3-O-(3'-methylphthalyl)-Betulinic Acid	168
50	(a) Mass Spectrum of 3- <i>O</i> -(3'-methyl phthalyl)-Betulinic Acid, (b) Expanded Mass Spectrum of 3- <i>O</i> -(3'-methyl phthalyl)-Betulinic Acid	169
51	¹ H-NMR Spectrum of 3-O-Acetyl-Betulinic Acid	172
52	Expanded ¹ H-NMR Spectrum of 3-O-Acetyl-Betulinic Acid	173

53	¹³ C-NMR Spectrum of 3-O-Acetyl-Betulinic Acid	175
54	Expanded ¹³ C-NMR Spectrum of 3-O-Acetyl-Betulinic Acid	176
55	HMBC Spectrum of 3-O-Acetyl-Betulinic Acid	178
56	HSQC Spectrum of 3-O-Acetyl-Betulinic Acid	179
57	COSY Spectrum of 3-O-Acetyl-Betulinic Acid	180
58	Infrared Spectrum of 3-O-Acetyl-Betulinic Acid	183
59	(a) Mass Spectrum of 3-O-Acetyl-Betulinic Acid, (b) Expanded Mass Spectrum of 3-O-Acetyl-Betulinic Acid	184
60	¹ H-NMR Spectrum of 3-O-Succinyl-Betulinic Acid	187
61	Expanded ¹ H-NMR Spectrum of 3-O-Succinyl-Betulinic Acid	188
62	¹³ C-NMR Spectrum of 3-O-Succinyl-Betulinic Acid	190
63	Expanded ¹³ C-NMR Spectrum of 3-O-Succinyl-Betulinic Acid	191
64	Infrared Spectrum of 3-O-Succinyl-Betulinic Acid	194
65	(a) Mass Spectrum of 3-O-Succinyl-Betulinic Acid, (b) Expanded Mass Spectrum of 3-O-Succinyl-Betulinic Acid	195
66	¹ H-NMR Spectrum of 3-O-Maleyl-Betulinic Acid	198
67	Expanded ¹ H-NMR Spectrum of 3-O-Maleyl-Betulinic Acid	199
68	¹³ C-NMR Spectrum of 3-O-Maleyl-Betulinic Acid	201
69	Infrared Spectrum of 3-O-Maleyl-Betulinic Acid	204
70	(a) Mass Spectrum of 3-O-Maleyl-Betulinic Acid, (b) Expanded Mass Spectrum of 3-O-Maleyl-Betulinic Acid	205
71	¹ H-NMR spectrum of 3-O-(3´,3´-dimethyglutaryl)-betulinic Acid	208
72	Expanded ¹ H-NMR spectrum of 3- <i>O</i> -(3´,3´-dimethyglutaryl)- betulinic Acid	209
73	¹³ C-NMR Spectrum of 3-O-(3´,3´-dimethyglutaryl)-Betulinic Acid	211
74	Infrared Spectrum of 3-O-(3',3'-dimethylglutaryl)-Betulinic Acid	214
75	 (a) Mass Spectrum of 3-O-(3',3'-dimethylglutaryl)-Betulinic Acid, (a) Expanded Mass Spectrum of 3-O-(3',3'-dimethylglutaryl)-Betulinic Acid 	215

76	Infrared Spectrum of 3-O-Glutaryl-Betulinic Acid	220
77	IR spectrum of (a) 3-O-Butyryl-Betulinic Acid, (b) 3-O-Isobutyryl-Betulinic Acid, and (c) 3-O-Valeryl-Betulinic Acid	225
78	(a) ¹ H-NMR Spectrum of 3- <i>O</i> -Glutaryl-Betulinic Acid, (b) Expanded ¹ H-NMR Spectrum of 3- <i>O</i> -Glutaryl-Betulinic Acid	256
79	(a) ¹³ C-NMR Spectrum of 3- <i>O</i> -Glutaryl-Betulinic Acid, (b) Expanded ¹³ C-NMR Spectrum of 3- <i>O</i> -Glutaryl-Betulinic Acid	257
80	(a) ¹ H-NMR Spectrum of 3- <i>O</i> -Butyryl-Betulinic Acid, (b) Expanded ¹ H-NMR Spectrum of 3- <i>O</i> -Butyryl-Betulinic Acid	258
81	(a) ¹³ C-NMR Spectrum of 3- <i>O</i> -Butyryl-Betulinic Acid, (b) Expanded ¹³ C-NMR Spectrum of 3- <i>O</i> -Butyryl-Betulinic Acid	259
82	(a) ¹ H-NMR Spectrum of 3- <i>O</i> -Isobutyryl-Betulinic Acid, (b) Expanded ¹ H-NMR Apectrum of 3- <i>O</i> -Isobutyryl-Betulinic Acid	260
83	(a) ¹³ C-NMR Spectrum of 3- <i>O</i> -Isobutyryl-Betulinic Acid, (b) Expanded ¹³ C-NMR Spectrum of 3- <i>O</i> -Isobutyryl-Betulinic Acid	261
84	(a) ¹ H-NMR Spectrum of 3- <i>O</i> -Valeryl-Betulinic Acid, (b) Expanded ¹ H-NMR Spectrum of 3- <i>O</i> -Valeryl-Betulinic Acid	262
85	(a) ¹³ C-NMR Spectrum of 3-O-Valeryl-Betulinic Acid, (b) Expanded	263

(a) ¹³C-NMR Spectrum of 3-O-Valeryl-Betulinic Acid, (b) Expanded 263
 ¹³C-NMR Spectrum of 3-O-Valeryl-Betulinic Acid

LIST OF SCHEMES

Scheme		Page
1	A Two-Step Synthesis of Betulinic Acid from Betulin	6
2	Five-Step Synthesis of Betulinic Bcid from Betulin	7
3	C-3 Modified Derivatives of Betullinic Acid and Dihydrobetulinic Acid	11
4	Synthesis of 3-O-Acyl-Derivatives of Betulinic Acid	12
5	Acylation of Betulinic Acid Using Phthalic Anhydride	13
6	Enzymatic Esterification of Betulinic acid Using Oleic Acid in Chloroform	14
7	Enzymatic Synthesis of 3-O-Acetyl-Betulinic Acid Using Novozym 435	14
8	Enzymatic Esterification of Betulinic Acid with 1-Decanol at C-28 Position	15
9	Enzymatic Estrification of Betulinic Acid using Benzoyl Chloride as Acylation Agent	15
10	Structures of Some Amide Derivatives of Betulinic Acid	16
11	Structures of O-Acyl Derivatives of Betulin	18
12	Structures of Four Isomeric 3, 28-di-O-(Dimethylsuccinyl) Betulin Derivatives	18
13	The Structures of C-3 Oxime Derivatives of Betulinic Acid	20
14	The Structures of Some 3-O-Phthalic Ester Derivatives of Betulinic Acid	21
15	The Structures of Peptide Derivatives of Betulinic Acid	22
16	The Structure of Betulonic Acid (2a) and Derivatives of Betulin (Compounds 46-49)	24
17	The Structures of Derivatives of Betulin and Betulinic Acid (Compounds 50-56)	26
18	Esterification Reaction Mechanism at the Active Site of a Lipase	34
19	Reaction of Betulinic Acid and Phthalic Anhydride Using Novozym 435 as a Biocatalyst	77

20	Main cleavages of 3-O-phthalyl-betulinic acid obtained under electron ionization conditions	159
21	Main cleavages of 3-O-(3'-methyl phthalyl)-betulinic acid obtained under electron ionization conditions	170
22	Main cleavages of 3-O-acetyl-betulinic acid obtained under electron ionization conditions	185
23	Main cleavages of 3-O-Succinyl-betulinic acid obtained under electron ionization conditions	196
24	Main cleavages of 3-O-maleyl-betulinic acid obtained under electron ionization conditions	206
25	Main cleavages of 3-O-(3´,3´-dimethylglutaryl)-betulinic acid obtained under electron ionization conditions	216

