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In recent years, due to inconsistency and sensitivity of the Maximum Likelihood 

Estimator (MLE) in the presence of high leverage points and residual outliers, 

diagnostic has become an essential part of logistic regression model. High 

leverage points and residual outliers have huge tendency to break the covariate 

pattern resulting in biased parameter estimates. The identification of high 

leverage points and residual outliers are believed to be vital in order to improve 

the performance of the MLE. 

 

The presence of high leverage points and the residual outliers give adverse effect 

on the inferences by inducing large values to the Influence Function (IF). For the 

identification of high leverage points, Imon (2006) proposed the Distance from 

the Mean (DM) diagnostic method. The weakness of the DM method is that it 

tends to swamp some low leverage points even though it can identify the high 
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leverage points correctly. Deleting the low leverage points may lead to a loss of 

efficiency and precision of the parameter estimates. 

 

The Robust Logistic Diagnostic (RLGD) is proposed as an alternative approach 

that performs well compared to the DM method. The RLGD method 

incorporates robust approaches and diagnostic procedures. Robust approach is 

firstly used to identify suspected high leverage points by computing the Robust 

Mahalanobis Distance (RMD) based on Minimum Volume Ellipsoid (MVE) 

estimator or Minimum Covariance Determinant (MCD) estimator. For 

confirmation, the diagnostic procedure is used to compute potential. The RLGD 

method ensures only correct high leverage points are identified and free from the 

swamping and masking effects. The performance of the RLGD method is 

investigated by real examples and the Monte Carlo simulation study. The real 

examples and the simulation results indicate that the RLGD method correctly 

identify the high leverage points (increase the probability of the Detection of 

Capability (DC)) and manage to reduce the number of swamping low leverage 

points (decrease the probability of the False Alarm Rate (FAR)). 

 

The Standardized Pearson Residual (SPR) only successful in identifying a single 

residual outlier. The SPR method is less effective when residual outliers are 

present in the covariates. The Generalized Standardized Pearson Residual 

(GSPR) proposed by Imon and Hadi (2008) is a successful method in identifying 

residual outliers. However, in the initial stage of the GSPR method utilizes the 

graphical methods which are based on the observation’s judgement and not 
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suitable for higher dimensional covariates. The Modified Standardized Pearson 

Residual (MSPR) based on the RLGD method is proposed which is more 

reliable. The MSPR method provides an alternative method to the GSPR method 

that produces similar result. The attractive feature of the MSPR method is that it 

is easier to apply. 

 

This research also utilizes the RLGD method in bootstrap procedures. The 

Classical Bootstrap (CB) procedure by Random-x Re-sampling is not robust to 

the high leverage points. To accommodate this problem, the newly develop 

bootstrap procedures based on the RLGD method which are called the 

Diagnostic Logistic Before Bootstrap (DLGBB) and the Weighted Logistic 

Bootstrap with Probability (WLGBP) are proposed.  In the DLGBB procedure, 

the high leverage points are excluded before applying the re-sampling process. 

Meanwhile in the WLGBP procedure, the high leverage points are attributed 

with low probabilities and consequently having low chances of being selected in 

the re-sampling process. Simulation results show that the DLGBB and the 

WLGBP procedures are more robust to the high leverage points compared to the 

CB procedure. 
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Dalam beberapa tahun kebelakangan ini, diagnostik memainkan peranan penting 

dalam regresi logistik berpunca daripada ketidakkonsisten dan sensitiviti 

Pengganggar Kebolehjadian Maksimum (MLE) dengan kehadiran titik tinggi 

tuasan dan titik terpencil. Titik tinggi tuasan dan titik terpencil mempunyai 

kecenderungan besar dalam merubah bentuk taburan kovariat menyebabkan 

kepincangan dalam anggaran parameter. Pengenalpastian titik tinggi tuasan dan 

titik terpencil dipercayai menjadi keutamaan dalam memperbaiki prestasi MLE. 

 

Kehadiran titik tinggi tuasan dan titik terpencil memburukkan pentakbiran 

dengan meningkatkan Fungsi Pengaruh (IF). Dalam pengenalpastian titik tinggi 

tuasan, Imon (2006) mencadangkan kaedah diagnostik Jarak dari Purata (DM). 

Kelemahan kaedah DM adalah cenderung memperlihatkan titik rendah tuasan 

sebagai titik tinggi tuasan walaupun kaedah ini boleh mengenalpasti titik tinggi 
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tuasan dengan tepat. Membuang titik rendah tuasan menyebabkan penganggaran 

parameter kurang jitu dan tepat. 

 

Kaedah Diagnostik Logistik Teguh (RLGD) dicadangkan sebagai alternatif yang 

menunjukkan prestasi lebih baik berbanding dengan kaedah DM. Kaedah RLGD 

menggabungkan aplikasi teguh dan prosedur diagnostik. Pertama, aplikasi teguh 

digunakan dalam mengenalpasti titik tinggi tuasan dengan mengira Jarak Teguh 

Mahalanobis (RMD) berdasarkan penganggar Saiz Minimum Ellipsoid (MVE) 

atau penganggar Penentu Kovariat Minimun (MCD). Bagi menentusahkan, 

prosedur diagnostik digunakan untuk mengira potensi. Kaedah RLGD 

memastikan hanya titik tinggi tuasan sebenar dikenalpasti dan bebas dari kesan 

“swamping” dan “masking”. Prestasi kaedah RLGD dikaji menggunakan data 

sebenar dan kajian simulasi Monte Carlo. Keputusan daripada data sebenar dan 

simulasi menunjukkan kaedah RLGD dapat mengenalpasti titik tinggi tuasan 

dengan tepat (peningkatan kepada kebarangkalian Keupayaan Pengenalpastian 

(DC)) dan berupaya mengurangkan bilangan titik rendah tuasan terpilih 

(penurunan kepada kebarangkalian Kadar Pengenalpastian Palsu (FAR)). 

  

Penetapan Ralat Pearson (SPR) hanya cemerlang dalam pengenalpastian satu 

titik terpencil. Kaedah SPR menjadi tidak cekap dengan kehadiran titik terpencil 

berganda dalam kovariat. Penetapan Ralat Pearson Teritlak (GSPR) dicadangkan 

oleh Imon dan Hadi (2008) merupakan kaedah cemerlang dalam pengenalpastian 

titik terpencil berganda. Walaubagaimanapun, peringkat awal kaedah GSPR 

menggunakan kaedah grafik yang berdasarkan penilaian secara pengamatan dan 
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tidak sesuai bagi dimensi kovariat yang lebih tinggi. Pengubahsuaian Penetapan 

Ralat Pearson (MSPR) berdasarkan kaedah RLGD dicadangkan dan lebih 

dipercayai. Kaedah MSPR
 
sebagai alternatif kepada kaedah GSPR yang 

memberikan keputusan yang sama. Kaedah MSPR juga mudah diaplikasikan.
 

 

Kajian ini juga menggunapakai kaedah RLGD dalam prosedur butstrap. Prosedur 

Butstrap Klasik (CB) seperti Persampelan Semula –x Secara Rawak tidak teguh 

dengan kehadiran titik tinggi tuasan. Bagi menyelesaikan masalah ini, prosedur 

butstrap baru berdasarkan kaedah RLGD dikenali sebagai Diagnostik Logistik 

Sebelum Butstrap (DLGBB) dan Butstrap Kebarangkalian Berpemberat Logistik 

(WLGBP) dicadangkan. Mengikut kaedah DLGBB, titik tinggi tuasan dibuang 

sebelum proses persampelan semula. Manakala bagi kaedah WLGBP, titik tinggi 

tuasan menerima kebarangkalian yang rendah dan mempunyai peluang yang tipis 

untuk terpilih dalam proses persampelan semula. Hasil simulasi menunjukkan 

prosedur DLGBB dan WLGBP lebih teguh dengan kehadiran titik tinggi tuasan 

berbanding dengan prosedur CB. 
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CHAPTER 1 

 

I�TRODUCTIO� 

 

1.1 Background and Motivation for this Research 

 

In recent years, the application of logistic regression model is widely use in 

researches. From its original acceptance in epidemiology, the model is now 

commonly employed in many fields including biomedical, business and finance, 

criminology, ecology, engineering, health policy, linguistic and wildlife biology. 

At the same time, statisticians continuously put efforts in research on all 

statistical aspects of logistic regression model. Prior to doing research on logistic 

regression model, it is important to understand that the objective of an analysis 

using this model is the same as that of any model building technique used in 

statistics. We would like to find the best fitting, cost-conscious and reasonable 

model to describe the relationship between an outcome (dependent or response) 

variable and a set of predictor (independent or explanatory) variables. The 

predictor variables are often called covariates. What distinguish logistic 

regression model from linear regression model is that the outcome variable in 

logistic regression model is binary or dichotomous �0,1�. For examples, doctor 

and pharmacist would like to determine the association between medical 

treatment with the survival or death of cancer patient after being discharge from 

hospital, to explore the relationship between age, weight, lifestyle and family 

medical history of patient with the presence or absence of coronary heart disease 

and to investigate the effect of economic crisis with the increase or decrease of 

fatal rate. The difference between logistic regression model and linear regression   
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model is reflected both in the choice of parametric model and in the assumptions. 

Once this difference is accounted for, the methods employed in an analysis using 

logistic regression model follow the same general principles used in linear 

regression model. Thus, the techniques used in linear regression model analysis 

will motivate our approach to logistic regression model (see Hosmer and 

Lemeshow, 2000). 

 

In any regression problem, the major quantity is the mean value of the response 

variable, given the value of the explanatory variables. This major quantity is 

called the conditional mean and will be expressed as ����|�� where � denotes 

the response variable and � denotes a value of the explanatory variables. In 

linear regression model, we assume that this mean maybe expressed as linear 

equation in �, such as. ����|�� = 	
 + 	��� + 	� + ⋯ + 	��� = �	.  This 

expression implies that it is possible for ����|�� to take on any value as �  

ranges between �−∞, +∞�. For binary response, the conditional mean lies 

between the ranges 0 ≤ ����|�� ≤ 1. The change in ����|�� per unit change in 

� become progressively smaller as the conditional mean gets closest to 0 or 1. It 

resembles a plot of a cumulative distribution of random variable. Therefore, the 

logistic regression model can be presented by curve with S shaped for two 

dimension and hyper plane in the case of higher dimensions. The logistic 

regression model can be written as: 

����|�� = ����. (1.1) 


