Provided by Universiti Putra Malaysia Institutional Repositor

UNIVERSITI PUTRA MALAYSIA

IMPLEMENTATION OF LEAN PROCESS MANAGEMENT THROUGH ENHANCED PROBLEM SOLVING CAPABILITIES

PUVANASVARAN A/L A.PERUMAL

FK 2009 24

IMPLEMENTATION OF LEAN PROCESS MANAGEMENT THROUGH ENHANCED PROBLEM SOLVING CAPABILITIES

By

PUVANASVARAN A/L A.PERUMAL

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia in Fulfilment of the Requirement for the degree of Doctor of Philosophy

UPM BE

DEDICATION

To my dear wife for her support and encouragement

To my children, Hari and Kishor for their love and support

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Doctor of Philosophy

IMPLEMENTATION OF LEAN PROCESS MANAGEMENT THROUGH ENHANCED PROBLEM SOLVING CAPABILITIES

By

PUVANASVARAN A/L A.PERUMAL

May 2009

Chairman

: Megat Mohamad Hamdan, PhD

Faculty

: Engineering

All Original Equipment Manufacturers (OEM) organizations in Aerospace,

Automotive and Electronics industries had to upgrade their functions. These

organizations including suppliers and solutions providers are duty bound to improve

their functions through strategic initiatives. One such initiative is Lean Process

Management. Lean Process Management has proven to aid organizations in

developing manufacturing and administrative management solutions and make the

organization a leaner at the same time a 'fitter' one, achieving World Class standards

in terms of production, quality, marketing, etc, etc.

The issue or problem is, although a number of authors, experts, researchers have

discussed the lean process management as part organization centric issues, they

failed to provide an effective lean process management system. Besides the need to

formulate an effective lean process as suggested by some authors, another important

iii

reason suggested is the employee's development aspect regarding how to unlock the infinite potential of their workforce. This employee's development is basically the problem solving capabilities of the employees while implementing the Lean through clear cutting protocols or processes of Lean Process Management. The employees need to be developed and equipped to contribute optimally to the process. Because of this scenario, the main objective of this study is to develop an employees development system which the author has acronym or trademark it as People Development System (PDS) to enhance problem solving capability among its employees while implementing the lean process management there. Although, the PDS can be implemented throughout the organization, if it is implemented in a particular department in an organization, it will be feasible to study and analyze its effectiveness in-depth. So, this study documents and analyzes the implementation of Lean process in the Kitting Department of the aerospace company, CTRM AC.

Qualitative and quantitative measures were also used to document the case study. The outcome of the people development system needs to be measured to understand its value in developing the problem solving capabilities among the employees. Only with developed and equipped employees, the Kitting Department can reduce its wastages, optimize its performance and thereby play a crucial role in making CTRM AC a world class organization. As pertinent results of the PDS implementation, in general Kitting Department successfully achieved to meet their Department Key Performance Indicator and particularly the employees' are also improve by practicing good lean behaviors and skill and knowledge in using lean tools which lead to better leanness level by improving employees' problem solving capabilities in eliminating waste. The study proposed a PDS framework and performance

measurement model for CTRM AC. This model could be replicated in any organization and also in various sectors. Also, it can be modified according to the industries in which it can be implemented. The study also has produced two PDS Manuals as a guide for the Management as well as the shop floor people to practice PDS concept optimally. This study provided a practical as well as theoretical knowledge about the successful PDS practices, which can be implemented in any industry. On the whole, the lean process management and the resultant PDS is having positive applications, and importantly could also have positive applications in the future as well.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doctor Falsafah

PELAKSANAAN SISTEM PROSES PENGURUSAN LANGSING MELALUI KEBOLEHAN PENYELESAIAN MASALAH

Oleh

PUVANASVARAN A/L A.PERUMAL

Jun 2009

Pengerusi

: Megat Mohamad Hamdan, PhD

Fakulti

: Kejuruteraan

Semua organisasi perusahaan OEM di dalam industri Aeroangkasa, Otomotif, dan

Elektronik harus meningkatkan fungsi kegiatan mereka. Organisasi- organisasi ini

adalah juga termasuk para pembekal dan penyelesai masalah yang bertanggungjawab

untuk meningkatkan fungsi kegiatan mereka melalui inisiatif terhadap strategi

perusahaan. Salah satu inisiatif tersebut adalah pengurusan proses langsing. Ini

kerana pengurusan proses langsing telah terbukti membantu organisasi- organisasi di

dalam membangunkan pemecahan masalah terhadap pengurusan pembuatan dan

pentadbiran, serta pada masa yang sama ia juga membuatkan organisasi tersebut

sebagai satu sistem pembelajar yang sesuai di dalam mencapai standard kelas dunia

di dalam bidang pengeluaran, mutu, pemasaran, dan sebagainya.

Di sini, isu atau masalahnya adalah, bahawa meskipun beberapa penulis, pakar,

peneliti telah membincangkan pengurusan proses langsing sebagai suatu bahagian

dari sudut isu- isu yang berpusat pada organisasi, ternyata mereka gagal

vi

menyediakan satu sistem pengurusan proses langsing yang berkesan. Seperti mana yang disarankan oleh beberapa penulis, selain keperluan terhadap formulasi dari satu proses langsing yang berkesan, juga adalah pentingnya aspek pembangunan pekerja. Ini adalah kerana pembangunan pekerja tersebut pada dasarnya tertakluk kepada kemampuan pemecahan masalah oleh para pekerja di dalam menerapkan proses langsing. Disebabkan perkara tersebut, maka para pekerja perlu dibangunkan dan dipersiapkan untuk menyumbang secara optimum terhadap pembangunan sesuatu proses. Terhadap usaha ini, maka kajian yang dilakukan adalah untuk membangunkan satu sistem pembangunan pekerja yang penulis dalam hal ini menyatakannya sebagai Sistem Pembangunan Manusia (PDS) untuk meningkatkan kemampuan pemecahan masalah di antara pekerja ketika menerapkan pengurusan proses langsing. Walaupun PDS dapat digunakan pada keseluruhan organisasi, apabila ia dapat dipraktikan pada suatu jabatan tertentu di organisasi, maka ia mudah dipelajari dan dianalisa secara berkesan dan mendalam. Oleh itu, apa yang terkandung di dalam kajian dan analisa ini adalah dari proses langsing yang dipraktikan di jabatan 'kitting' dari perusahaan aeorangkasa CTRM.

Kajian atau thesis ini dibuat secara sistematik ke dalam tujuh Bab dan diuraikan bahagian demi bahagian, di mana pengukuran kuantitaif dan kualitatif telah digunakan terhadap kajian masalah. Di dalam kajian ini, hasil dari sistem pembangunan manusia perlu diukur untuk memahami nilai dari pembangunan kemampuan pemecahan masalah di antara pekerja. Maka, hanya dengan pembangunan dan penyediaan keupayaan para pekerja di jabatan 'kitting', ia dapat mengurangkan pembaziran dengan mengoptimumkan keupayaannya. Oleh kerana itu, ia memainkan peranan penting di dalam menjadikan CTRM AC sebagai

organisasi kelas dunia. Hasil dari penerapan PDS, secara umumnya jabatan 'kitting' telah berjaya mencapai KPI jabatannya dan meningkatkan pekerjanya terhadap penerapan perilaku dan kemampuan langsing yang baik, serta pengetahuan di dalam menggunakan pengetahuan langsing untuk mencapai satu tahap kelangsingan yang lebih baik. Kajian ini juga telah menghasilkan satu kerangka kerja PDS dan model pengukuran keupayaan untuk CTRM AC. Model ini juga dapat digunakan di jabatan lain serta berbagai organisasi di sektor lainnya dengan syarat ia dapat diubahsuai menurut jenis industrinya. Di dalam kajian ini juga penulis telah menghasilkan dua manual PDS sebagai alat petunjuk untuk pengurusan mahupun penerapan daripada para pekerja di bahagian 'shop-floor' agar dapat mencapai penggunaan optimum. Kajian ini telah memberikan penambahan suatu pengetahuan praktikal dan juga teoritikal mengenai penerapan PDS yang baik supaya dapat digunakan di semua industri. Secara umum, dengan pengurusan proses langsing dan apa yang dihasilkan dari PDS dalam kajian ini telah memberikan sesuatu yang positif terhadap penggunaanya di masa depan.

ACKNOWLEDGEMENTS

The journey towards writing this thesis involved many individuals over the last few years. I especially thank Dr. Megat Mohamad Hamdan Megat Ahmad, Dr. Tang Sai Hong, Dr. Mohd. Razali Muhamad and Dr. Magid Hamouda who always gave the right advice on this topic. They were good friends and advisors throughout the period of my study in the field of Manufacturing.

I also wish to express my sincere appreciation to the company that I attached in, for providing me place to implement my developed system. CTRM AC (Composites Technology Research Malaysia Sdn Bhd), Malaysia' premier manufacturer of composite aero structures and provider of other Engineering services which is fully owned by the Government Lease Company (GLC) Malaysia. This made the participatory action research was more valuable with real application. In addition, I also would like to acknowledge the University Technical Malaysia Melaka for the scholarship granted.

I deeply thank my beloved wife, Shuba, who take care of the family when I am busy with my own PhD work. My appreciation also goes to my beloved sons, Hari Prahlad and Gaura Kishor for providing me comic relief and unconditional love. Last, but not least, I would like to dedicate this thesis to my beloved children.

I certify that a Thesis Examination Committee has met on 21 May 2009 to conduct the final examination of Puvanasvaran a/l A. Perumal on his thesis entitled "Implementation of Lean Process Management Through Enhanced Problem Solving Capabilities" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Shamsuddin Sulaiman, PhD

Professor Faculty of Engineering Universiti Putra Malaysia (Chairman)

Napsiah Ismail, PhD

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Internal Examiner)

Md. Yusof Ismail, PhD

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Internal Examiner)

Sha'ri Mohd Yusof, PhD

Professor
Faculty of Mechanical Engineering
Universiti Teknologi Malaysia
(External Examiner)

BUJANG KIM HUAT, PhD Professor and Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date: 13 July 2009

This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee are as follows:

Megat Mohamad Hamdan, PhD

Professor Faculty of Engineering University Putra Malaysia (Chairman)

Tang Sai Hong, PhD

Associate Professor Faculty of Engineering University Putra Malaysia (Member)

Mohd. Razali Muhamad, PhD

Professor Faculty of Manufacturing Engineering University Teknikal Malaysia Melaka (Member)

Magid Hamouda, PhD

Professor Faculty of Engineering Qatar University (Member)

HASANAH MOAL GHAZALI, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date: 17 July 2009

DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations, which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

PUVANASVARAN A/L A.PERUMAL

Date: 21 MAY 2009

TABLE OF CONTENTS

			Page
D	EDIC	CATION	ii
A	ABSTRACT		iii
	BSTI		vi
	ACKNOWLEGDEMENTS APPROVAL DECLARATION LIST OF TABLES LIST OF FIGURES LIST OF ABBREVIATIONS		ix
			xi
			xiii
			xvii xix
			XXIII
L	151	OF ADDREVIATIONS	XXV
C	НАР	TER	
1	INT	RODUCTION	1
	1.1	Background of the Study	1
		1.1.1 Origins of the process	3
		1.1.2 Lean process management – a characterization	6
		Problem Statement	8
		Objective of Study	12 13
		Scope of the Study Layout of Thesis	13
	1.3	Layout of Thesis	14
2	LIT	ERATURE REVIEW	15
	2.1	Introduction	15
	2.2	Lean Process Management	16
		2.2.1 The Trend of Competitive Manufacturing	17
		2.2.2 The System of World-Class Manufacturing	19
		2.2.3 Lean as Implementing Strategy to achieve Company Goals	24
		2.2.4 Implementation of Lean as Process	26
		2.2.5 Challenges in Lean Adoption	36
		2.2.6 Performance Measurement	43
		2.2.7 Improvement Needs towards New System	55
	2.2	2.2.8 Conclusion	58
	2.3	People Development System	59 63
		2.3.1 Proposed the People Development System Framework2.3.2 Development of People Development System's	03
		Measurement Model	68
		2.3.3 Ten Steps of People Development System Application	00
		Model	85
		2.3.4 Conclusion	101
			102

3	ME	THODOLOGY	103
	3.1	Introduction	103
	3.2	Description of CTRM AC Company	104
	3.3	Research Methodology	106
		3.3.1 Overview of Methodology	108
		3.3.2 Data Collection Procedure	113
		3.3.3 Method in Measurement Cycle	116
		3.3.4 Methods of data Analysis	122
		3.3.5 Value Stream Procedure	123
		3.3.6 Data Collection Limitation	132
	3.4	Conclusion	133
			133
4	A C	ASE STUDY OF AEROSPACE INDUSTRY	134
-	4.1		134
	4.2	Expert Suggestion	135
		Leanness Level and Top Management Commitment survey	136
		Conclusion	145
		4.4.1 Reflection on Research Question	146
		4.4.2 Validation of PDS manuals by Expert Group	147
	4.5	Kitting Pilot Team	147
	4.6	PDS Implementation	149
		4.6.1 Project Description	151
	4.7	Phase I (Waste Identification with Value Stream Mapping)	152
		4.7.1 Step 1 – Visualization of VM for each product	153
		4.7.2 Step 2 – Current Value Stream Mapping	155
		4.7.3 Step 3 – Future State Value Stream Mapping	158
		4.7.4 Kaizen Improvement on Future State Value Steam	
		Mapping	159
		4.7.5 Summary on continuous improvement	165
	4.8	Phase II Primary Measurement (Performance Metrics)	165
		4.8.1 Step 4 – Communication between to top, middle and bottom management	166
		4.8.2 Step 5 – Base on QCDAC principles (Primary and	
		Secondary Data)	167
		4.8.3 Step 6 – Visual Indicators	197
		4.8.4 Step 7 – Problem Solving Capability	199
		4.8.5 Step 8 – Implement Solutions	200
		4.8.6 Step 9 – Phase III Primary and Secondary Measurement	
		comparison with KPI	200
		4.8.7 Step 10 – Control and Monitor for Sustainability	203
	4.9	Discussion and Conclusion	210
			22
5	; (CONCLUSION AND RECOMMENDATIONS	222
	5.1	Conclusion	222
		5.1.1 Achievement of Objective	223
		5.1.2 Benefits and Positive Scenario Brought on in the Kitting	
		Department	224
	5.2	Novelty and Contribution of the research	224

5.3 Further application	226
5.3.1 Implementation of lean process and the resultant PDS in	
Service Industries	227
5.3.2 Important of benchmarking other companies' lean practice	
while implementing lean process	228
5.3.3 Further incorporation of Information Technology	229
5.3.4 Role of leaders for further optimization of lean process	230
REFERENCES	231
APPENDICES	249
BIODATA OF STUDENT	
LIST OF PUBLICATIONS	270
	2.72

LIST OF TABLES

Table		Page
2.1	The Need of New Performance Measurements by Authors	49
2.2	Comparison table of few authors on Performance Measurement metrics	53
2.3	Lean goals Measuring Mechanism impact to Quality, Cost and Delivery	75
2.4	An Analytical Framework for Measuring Problem Solving Capability in Lean Process Management	84
2.5	Definition of 11 wastages as per Case study practices	86
3.1	Main Steps of the research program	109
4.1	Inter-correlation for DOA and predictors variables (N=40)	137
4.2	Simultaneous Multiple Regression Analyses Summary for EW, CI, ZD, JIT, PULL, MFT, DEC, IF, and VIF (N=40)	137
4.3	Reliability analyses of DOA of lean manufacturing principles (N=40)	138
4.4	Mean and standard deviation of DOL and DOC (N=40)	138
4.5	Inter-correlation for management commitment and predictors variables (N=40)	140
4.6	Stepwise regression for Management commitment to 5's and General Visual Management with SMI (N=40)	141
4.7	Project Team	148
4.8	Current vs. Future State VSM values	165
4.9	Scrap Measuring Mechanism Data	171
4.10	Percentage of improvement for Scrap PM	171

4.11	WIP Packing Measuring Mechanism Before & After Data with improvement	181
4.12	Kitting Department KPI for the year 2007	202
4.13	Kaizen Activities with cost saving results	206
4.14	Mean values and standard deviation of degree of leanness and management commitment	209
4.15	Degree of Leanness and Degree of Management Commitment Survey results	210

LIST OF FIGURES

Figure		Page
2.1	The Lean House: An Integrated Framework of Lean Thinking	20
2.2	Integrating Principles for Manufacturing System (Source: Recardo & Peluso, 1992)	22
2.3	Linkage between performance measurements with organizational strategy (Source: Graham, 2005)	25
2.4	The tools and practices of lean management	31
2.5	The interaction of the tools and rules of lean management based on rules of the Toyota Production System (Source: Spear & Bowen, 1999)	35
2.6	Individual measures when integrated will developed a Performance Measurement System (Source: Neely et al., 2000)	45
2.7	Illustration of Lean Success Model	62
2.8	Framework for Enhancing the Problem Solving Capabilities of the Employees	65
2.9	PDS Performance Measurement Model	69
2.10	Relationship between the measurement mechanisms with each QCDAC elements	71
2.11	PDS Ten Steps Application model	85
2.12	Flow chart on Determine Measuring Mechanism for each wastage	87
2.13	Flow chart on Team Leader and members' selection	89
2.14	Flow chart on Team Leader and members' formation	90
2.15	Team Hierarchy and roles of Team Leader and members'	91

2.16	Individual roles of Team Leader and members'	91
2.17	Flow chart on How to communicate Top to Bottom	94
2.18	Flow chart on how to determine waste indicators	96
2.19	Classification of two different levels of visual indicators	97
2.20	Flow chart on how to develop V.I for Shop floor and Management level	97
2.21	Flow chart on how to develop solutions	98
2.22	Flow chart on how to interpret the obtained results to KPI	99
2.23	Flow chart on how to control & continue monitoring on wastages	100
3.1	Methodology flow chart	111
3.2	Flow Chart on methodology execution for PDS implementation	117
4.1	Process flow for the Performance Measurement in PDS Application Model	150
4.2	Typical products Airbus A320 undergo Phase I till Phase III	153
4.3	Process steps on how VSM are generated	155
4.4	Travel time wastages (Thawing to Cutting)	160
4.5	Travel time wastages (stacking to packing)	161
4.6	Travel time wastages (packing to paperwork)	163
4.7	Travel time wastages (packing to paperwork)	164
4.8	Flow map on how Performance Measurements linked to Organizational KPI	167
4.9	Scrap Measuring Mechanism Graph	170
4.10	Customer Complaint Measuring Mechanism Graph	172

4.11	OEE Measuring Mechanism Graphs and Data for each machine monitored	175
4.12	Overall Nesting Backlog Measuring Mechanism Graph and improvement	177
4.13	Overall Stacking Backlog Measuring Mechanism Graph and improvement	177
4.14	Overall Packing Backlog Measuring Mechanism Graph and improvement	178
4.15	WIP Packing Measuring Mechanism Graphs for DCS	180
4.16	WIP Stacking Measuring Mechanism Graphs for S91	181
4.17	Attendance Measuring Mechanism Data and Graph with improvement	183
4.18	Overtime Measuring Mechanism Data and Graph with improvement	185
4.19	Do it Right First Time Measuring Mechanism Data & Graphs	187
4.20	Stacking Area People Productivity Measuring Mechanism Graph and Data	188
4.21	Packing Area People Productivity Measuring Mechanism Graph and Data	189
4.22	Stacking Area Stock Turn Measuring Mechanism Graph and Data	190
4.23	Packing Area Stock Turn Measuring Mechanism Graph and Data	191
4.24	Delivery Schedule Achievement Measuring Mechanism Graph and data for nesting process	192
4.25	Delivery Schedule Achievement Measuring Mechanism Graph and data for stacking process	192
4.26	Delivery Schedule Achievement Measuring Mechanism Graph and Data for packing process	193

4.27	Value Added per Person Measuring Mechanism Graph and Data	195
4.28	Floor spaced freed for Value added activity	196
4.29	Ideas generated by various level of employees	205
4.30	Types of wastages of the Kitting Department eliminated	207
4.31	Lean Tools used in problem solving	208
4.32	Comparison Survey results for January and December 2007	209
4.33	Spider Chart shows Top Management commitment Before PDS Implementation	215
4.34	Spider Chart shows Top Management commitment After PDS Implementation	216
4.35	Incorporating 3 elements of PDS to Performance Measurement Model	220

ABBREVIATIONS

CI Continuous Improvement

CNC Computer Numeric Control

CRM Customer Relationship Management

CTRM AC Composites Technology Research Malaysia Sdn. Bhd

DEC Decentralized Responsibilities

DOA Degree of Adoption

DOC Degree of Management Commitment

DOL Degree of Leanness

DRFT Do it Right First Time

DSA Delivery Schedule Achievement

EI Employee Involvement

EW Elimination of Waste

FSU Floor Space Utilization

GLC Government Lease Company

GM General Manager

GR Goods Report

GROUP Group Involvement

GUI Graphical User Interface

HRD Human Resources Development

HRM Human Resource Management

IF Integrated Functions

IQC Incoming Quality Control

IT Information Technology

JIT Just In Time

KPI Key Performance Index

LPM Lean Process Management

MD Managing Director

MFT Multifunctional team

MIT Massachusetts Institute of Technology

MNC Multinational Company

MRN Material Review Number

MRP Material Requirement Planning

NDT Non Destructive Test

NRFT Not Right the First Time

NVA Non Value Added

OEE Overall Equipment Efficiency

OEM Original Equipment Manufacturers

PDCA Plan Do Check Action

PDS People Development System

PM Performance Measurement

PO List Purchasing Order List

PP People Productivity

PSC Problem Solving Capabilities

PULL Pull instead of Push

QA Quality Assurance

QC Quality Control

QCC Quality Control Circle

QCDAC Quality, Cost, Delivery, Accountability, and Continuous

Improvement

QLEAD Quality Leadership

R&D Research and Development

SCM Supply Chain Management

SD Standard Deviation

SDD Strategy Development Department

SMT Self Management Team

SPSS Statistical Package for Social Sciences

ST Stock Turns

TNA Training and Analysis

TPM Total Productive Maintenance

TQM Total Quality Management

TRAIN Training

UK United Kingdom

USA United State of America

VA Value Added

VAPP Value Added per Person

VCS Visual Control System

VI Visual Indicator

VIF Vertical Information Functions

VPC Visual Production Control

VSM Value Stream Mapping

VSM/FM Value Stream Manager/ Functional Manager

WEMP Workers Empowerment

WIP Work in Progress

ZD Zero Defects

