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Abstract of thesis presented to senate of Universiti Putra Malaysia in fulfillment of 
the requirement to the degree of Master of Science 

COMPUTATIONAL ANALYSIS OF INCOMPRESSmLE VISCOUS FLOW 
OVER SINGLE AND MULTI-ELEMENT AIRFOILS 

By 

OMER ALI EL-SAYED 

March 2003 

Chairman: Dr. Ashraf Ali Omar 

Faculty: Engineering 

The flow-field around a multi-element airfoil with leading-edge slat and 

trailing-edge flap in landing configuration was performed as well as the prediction of 

the time dependent flow over a NACA 0012 airfoil. 

The two dimensional incompressible Navier-Stokes equations with a 

numerical method based on the pseudo-compressibility approach was developed to 

simulate viscous turbulent flow around single and multi-element airfoils. The 

algorithm uses upwind-biased scheme of third order accuracy for the calculation of 

the inviscid fluxes, while a second order central differencing is used for viscous 

fluxes, the equations are solved using Lower-Upper Symmetric Gauss Seidel (LU-

SGS) scheme. The grids around multi-element airfoil are efficiently generated using 

a multi-block structure technique. 
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The Baldwin-Lomax algebraic turbulence model is used to consider the effect 

of turbulence. Computed results for the studied cases were compared with 

experimental data in terms of surface pressure and lift coefficients which show 

reasonable agreement. 

Key Words: Multi-Element Airfoil, Pseudo-Compressibility, Confluent Boundary 

Layer, Flow Separation, Baldwin-Lomax Turbulence Model 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 
memenuhi keperluan untuk ijazah Master Sains 

ANALISIS PERKOMPUTERAN UNTUK ALIRAN LIKAT TIDAK MAMPAT 
MENGELILINGI AEROFOIL TUNGGAL DAN BERBILANG ELEMEN 

Oleh 

OMER ALI EL-SAYED 

Mac 2003 

Pengerusi: Dr. Ashraf Ali Omar 

Fakulti: Kej uruteraan 

Kapal terbang pengangkut menggunakan sistem julang tinggi untuk 

memperolehi persembahan julangan yang maksima ketika pendaratan dan pecahan 

julangan kepada seretan yang optimum ketika fasa pelepasan. Lapagan aliran 

mengelilingi aero foil berbilang elemen yang dilengkapi dengan bidai bahagian depan 

dan kibas bahagian belakang dalam konfigurasi pendaratan akan dinilai. Dalam pada 

itu, simulasi aliran bersandarkan masa mengelilingi "NACA 0012" aerofoil juga 

disiasat. 

Persamaan "Navier-Stokes" tidak mampat dua dimensi dengan kaedah 

berangka berdasarkan cara kemampatan palsu akan dihasilkan untuk simulasi 

berangka bagi aliran likat gelora mengelilingi aerofoil tunggal dan berbilang elemen. 

Algoritma yang digunakan untuk perkiraan fluks tidak likat adalah berlandaskan 

kaedah berbentuk "upwind-biased" dengan tiga kali ketepatan. Sementara itu, 

"central-differencing" dengan dua kali ketepatan akan digunakan untuk fluks 

likatnya. Akhirnya, keseluruhan persamaan akan dise1esaikan dengan meggunakan 
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kaedah Lower-Upper Symmetric Gauss Seidel (LU-SGS). Selain itu, grid untuk 

airfoil berbilang elemen dihasilkan dengan menggunakan teknik struktur berbilang 

blok. 

Secara praktiks, padang aliran likat bagi aerofoil berbilang elemen adalah 

kompleks di mana alirannya beralih menjadi gelora. Dalam penyelidikan ini, model 

"Baldwin-Lomax algebraic turbulence" digunakan untuk menilai kesan-kesan 

fenomena gelora. Keputusan simulasi bagi kes-kes yang dikaji, dibandingkan dengan 

data eksperimen dari aspek tekanan di permukaan dan pekali julangan di mana satu 

persetujuan yang baik diperolehi. 
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CHAPTER 1 

INTRODUCTION 

1.1 Overview 

Many technologies must be successfully integrated in the design of the next 

generation advanced subsonic transport. Among these are wing design, propulsion 

integration, design methodology and advanced high-lift systems. As subsonic transport 

designs get larger an issue such as airport tempo and noise abatement procedures 

become more important, the design of efficient high-lift systems becomes increasingly 

more important for improving the take-off and landing phase of the overall airplane 

mission. Additionally, improvements made in the design of the cruise wings also impact 

the design of the high-lift system. Recently developed wing design technology allows 

designers to develop more efficient wings than those that exist on current subsonic 

transports. The performance benefits gained by this technology can be used to perform 

trade studies to improve the overall aircraft system. One way designers exploit these 

benefits is to reduce the size of the wing (which can help reduce the cost of the aircraft). 

This reduced wing area means the high-lift system must work even harder to achieve the 

necessary levels of lift to meet takeoff and landing requirements. More efficient high-lift 

systems would allow designers to take advantage of these new cruise wing designs. 

Therefore, the understanding of and ability to analyze these multi element high-lift 

systems is a problem that must be solved in order to allow the aircraft designer to 

develop a high-lift system which meets the required performance levels while still 

designing a wing which is easily integrated into the airplane configuration. 
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1.2 Multi-element Airfoil 

When an aircraft is landing or taking-off, high values of lift coefficient are 

required in order to maintain flight at the desired low speeds. It would be quite simple to 

design an airfoil with the much higher lift coefficient, for example by using much more 

camber than is commonly the case. Unfortunately, this would also greatly increase the 

drag of the airfoil, not only at high incidence (low speed), when extra drag is not 

necessarily a disadvantage, but also at low incidence (high speed), when it certainly is. 

The problem is solved by incorporating auxiliary devices which can be used to give 

increases in maximum lift coefficient when required at low speed operation, but which 

can be rendered ineffective at higher speed. These auxiliary devices fall broadly into two 

classes 

.:. Those which alter the geometry ofthe airfoil(slat and flaps) 

.:. Those which control the behavior of the boundary layer (boundary layer 

blowing, boundary layer suction . . .  etc.) 

1.2.1 Leading-edge Slat 

To appreciate qualitatively the effect of upstream element (the slat) on the 

immediate down stream element (the main airfoil) the former can be modeled by vortex. 

When one considers the component of velocity induced by vortex in the direction of the 

local tangent to the airfoil contour in the vicinity of the leading edge, the slat (vortex) 

acts to reduce the velocity along the edge of the boundary layer on the upper surface and 

has the opposite effects on the lower surface. Thus the effect of the slat is to reduce the 
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severity of the adverse pressure gradient on the mam airfoil and the consequent 

reduction of the pressure on the upper surface is counter balanced by the rise in pressure 

on the lower surface. For the well designed slat/main airfoil combination it can be 

arranged that the latter effect predominates resulting in slight rise in lift coefficient. 

Leading edge slat Configuration and nomenclature for a three-element airfoil are shown 

in figure 1.1. 

1 .2.2 Trailing-edge Flap 

Trailing edge flap control the behavior of the boundary layer by allowing the 

passage of air flow through the carefully designed gap from the high pressure region 

below the wing to the low pressure region above it. Thus energy is added to the 

boundary layer on the upper surface, and any tendency of separation of the flow is 

reduced. In other respects trailing edge flap alter the geometry of the aero foil by 

deflecting the air stream downwards to give an increase in the effective camber of the 

wing as well as sliding backwards which in turns increases the area of the airfoil. Thus 

the lift increases whenever this is required and returns to the neutral position when this 

lift increment is not needed. 

1.3 Multi-element Airfoil Problems 

An accurate calculation of the flow over multi-element airfoils designed for use 

on transport airplanes is presently an unsolved problem, even though much progress has 

been made by code developers in industry and research centers. This may come as a 

surprise, since the flow is two dimensional and free-stream Mach numbers are low, 
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typically ranging from 0. 1 to 0.4. Reynolds numbers of interest, based on velocity of an 

undisturbed uniform free-stream and airfoil reference chord, are usually between 

1 .  2 to 40 million. 

1 .3.1 Physical Aspect 

Butter and Williams (1980) studied the physics of multi-elements and showed 

the following list of flow features which are not found in cruise airfoils as in figure 1 .2. 

The flow region surrounding multi-elements slotted airfoils is multiply connected, which 

complicate the topological laws governing viscous separated flows and even makes the 

calculation of inviscid flow a difficult task. 

.:. Limited region of transonic flow may appear on the upper surface of the 

leading edge of highly loaded flapped airfoils, even though the free stream 

Reynolds number is low . 

• :. Wakes of upstream airfoil elements often merge with boundary layers on the 

surfaces of down stream elements. The resulting turbulent shear layer is 

referred to as a confluent boundary layer . 

• :. The region of viscous flow above the surface of trailing-edge flap is 

relatively thick, particularly in landing configurations, often resulting in flow 

separation even near normal operating conditions(i.e., well before maximum 

lift is attained) . 

• :. Stream line curvature and its effect on turbulent flow development are 

significant. 
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