

UNIVERSITI PUTRA MALAYSIA

DEVELOPMENT OF AN AUTOMATED BOOK CASING FOR IC INDUSTRY

CHONG KOK HEN

FK 2002 71

DEVELOPMENT OF AN AUTOMATED BOOK CASING FOR IC INDUSTRY

By

CHONG KOK HEN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia in Fulfilment of Requirements for the Degree of Master of Science

June 2002

Dedicated to my parents Chin Hwa and Choon Far, and my wife Kheng Siew

With Love

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Master Science

DEVELOPMENT OF AN AUTOMATED BOOK CASING FOR IC INDUSTRY

By

CHONG KOK HEN

June 2002

Chairman : Dr. Ishak Bin Aris

Faculty : Engineering

Today, most of the IC industries are using fully automatic machines to perform the process of placing the casing onto the IC. With high technology machines, daily production can be increased. However, the cost of those machines are extremely high. Therefore, the small and medium scale industries are unable to purchase these machines. In order to over come this problem, an inexpensive automatic book casing system is proposed and developed.

The main objective of this project is to design a low cost machine with safety features, fully automatic and a user-friendly. This machine should be able to perform the application such punching and stamping the casing of the Integrated Circuit (IC) as well as pick and place application.

The structure design of this project is separated into two parts. They are the hardware construction and the software development. The hardware part involves the design and construction of an input station, an output station, a conveyer station, a pick and place robotic arm, a punching station, a pressure faulty detection system, a power distribution module, a pneumatic control system and data logger module.

The software part involves the design and development of the system control software. The system control software is created by using FPSOFT PLC programming software. FPSOFT can create the PLC programming more effectively because it uses the graphic symbol to create the PLC ladder diagram. FPSOFT is also efficient in terms of trouble shooting and programming modification.

This project implements the Matsushita NAIS FP0 Programmable Logic Control (PLC) to control the overall system of the machine. FP0 is a simple and user friendly controller. FP0 can extend its I/O port to 128 units for large number of input and output devices control.

The proposed project was successfully designed, constructed and tested. It is also working and functioning accurately as planned in its design stage. This can be shown from the experimental results conducted on the system.

Abstrak tesis yang dikemukakan kepada Senat University Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Master Sains

PEMBINAAN PENUTUP AUTOMATIK UNTUK INDUSTRI LITAR BERSEPADU

Oleh

CHONG KOK HEN

Jun 2002

Pengerusi : Dr. Ishak Bin Aris

Fakulti : Kejureteraan

Pada masa kini, kebanyakan industri litar bersepadu menggunakan mesin automatik untuk melakukan proses meletakan penutup pada litar bersepadu. Degan mesin berteknologi tinggi ini, produktiviti harian dapat ditingkatkan. Walaubagaimanapun, kos untuk mesin terbut adalah terlalu tinggi. Oleh itu, industri yang kecil dan serdahana tidak mampu membeli mesin tersebut. Untuk mengatasi masalah ini, sebuah sistem penutup automatik kos rendah telah dicadang dan dibina.

Objektif utama projek ini ialah merekabentuk sebuah mesin yang berkos rendah, berciriciri keselamatan, automatik sepenuh dan mudah digunakan. Masin ini sepatutnya dapat melakukan applikasi seperti menubuk penutup pada litar bersepadu dan applikasi "pick dan place".

Struktur rakabentuk projek ini boleh dibahagikan kepada dua bahagian iaitu perkembangan perkakasan dan perkembangan perisisan. Bahagian perkembangan perkakasan meliputi rekabentuk dan pembinaan untuk stesen masukan, stasen keluaran, stesen konvayer, lengan robotik 'pick and place', stesen penebuk, sistem pengesan kecacatan kuasa penekanan, model penghantaran kuasa, sistem pengawal kuasa pneumatik dan model pencatitan data.

Bahagian pengembangan perisian meliputi rekabentuk dan pembangunan untuk perisian pengawalan sistem. Perisian pengawalan sistem ini dicipta dengan menggunakan FPSOFT. FPSOFT boleh mencipta perisian PLC dengan berkesan kerana ia menggunakan simbol grafik untuk mencipta diagram tangga PLC. FPSOFT juga berkesan dalam pengesanan masalah dan perubahan perisian PLC.

Projek ini menggunakan Pengaturcara Kawalan Logic (PLC) model Matsushita NAIS FPO untuk mengawal keseluruhan sistem bagi mesin ini. FPO adalah sebuah pengawal yang simple dan mudah dioperasi. FPO boleh menambahkan 'port' masukan and keluarannya (I/O port) sehingga 128 unit untuk pengawalan alatan masukan dan keluaran dalam jumlah yang lebih banyak.

Objektif bagi projek telah berjaya direkabentuk, dibina dan diuji. Ia juga berfungsi dengan tepat seperti yang dirancang. Ini dapat dilihat pada keputusan eksperimen yang dilakukan pada sistem tersebut.

ACKNOWLEDGEMENTS

I could not have accomplished this project without the help of God and many friends. Thank God that I can complete my project successfully.

First and foremost, I would like to express my gratitude to my project supervisor, Dr. Ishak Aris for his valuable advises, guidance and willingness to share his expertise knowledge.

I would also like to thank my project co-supervisor Prof Madya Ir. Dr. Norman Mariun and Dr Sinan for their valuable opinions and guidance and checking the accuracy of my entire project,

I have also indebted to the Faculty of Engineering staff for providing the equipment's, suggestions, and valuable aid to carry out this project.

Special thanks to my love ones, Chin Hwa and Choon Far, my beloved wife, Kheng Siew and my relative for their patience's, encouragement's and continuous support.

I certify that an Examination Committee met on 27th June 2002 to conduct the final examination of Chong Kok Hen on his Master of Science thesis entitled "Development of an Automated Book Casing for IC Industry" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulation 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the examination committee are as follow

SYED JAVAID IQBAL, Ph. D.

Lecturer Faculty of Engineering Universiti Putera Malaysia (Chairman)

ISHAK BIN ARIS, Ph. D.

Lecturer Faculty of Engineering Universiti Putra Malaysia (Member)

NORMAN BIN MARIUN, IR. Ph. D.

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Member)

SINAN MAHMUD BASHI, Ph. D.

Lecturer Faculty of Engineering Universiti Putra Malaysia (Member)

SHAMSHER MOHAMAD RAMADILI, Ph. D. Professor/Deputy Dean, School of Graduate Studies Universiti Putra Malaysia

Date: 2 4 AUG 2002

This thesis submitted to the Senate of Universiti Putra Malaysia has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the supervisory committee are as follows:

ISHAK BIN ARIS, Ph. D.

Lecturer Faculty of Engineering Universiti Putra Malaysia (Chairman)

NORMAN BIN MARIUN, IR. Ph. D.

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Member)

SINAN MAHMUD BASHI, Ph. D.

Lecturer Faculty of Engineering Universiti Putra Malaysia (Member)

AINI IDERIS, Ph. D. Professor/Dean,

School of Graduate Studies, Universiti Putra Malaysia

Date:

DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations, which have been dully acknowledged. I declare that this thesis has not been previously or concurrently submitted for any other degree at UPM or any other institutions.

CHONG KOK HEN

Date:

TABLE OF CONTENTS

Page

DEDICATION	11
ABSTRACT	ili
ABSTRAK	v
ACKNOWLEDGEMENTS	vii
APPROVEL SHEETS	viii
DECLARTION FORM	х
TABEL OF CONTENTS	xi
LIST OF TABELS	xiv
LIST OF FIGURES	XV
LIST OF ABBREVIATIONS	xviii

CHAPTER

1.	INTF	RODUCTION	1
	1.1	Introduction	1
	1.2	Objectives of the Project	5
	1.3	· · ·	6
2.	LITE	RATURE REVIEW	8
	2.1	Journal Review	8
		2.1.1 Pick and Place Robot	12
		2.1.2 Building Pick and Place Robot Arm in the Pneumatic	
		System Controlled by PLC	13
		2.1.3 Pick and Place Robot for Manufacturing Industries	14
		2.1.4 Pick and Place Robot Application	15
		2.1.5 A Flexible Robot to Take a Wrapper and Cartoner	16
		2.1.6 MAPS [®] Plus Semi-Automated Pad Printing System	18
		2.1.7 Auto Label Placer	22
		2.1.8 Connector Inserter Robot	24
		2.1.9 Automated Assembly Machine	26
	2.2	Machinery Design and Construction	28
		2.2.1 The Design and Build Project	29
		2.2.2 Concepting the Machine	30
		2.2.3 The Preliminary Design	30
		2.2.4 The Detail Design	30
		2.2.5 Machine Build	31
		2.2.6 Machine Control Requirements	31
		2.2.7 Adjustment Requirements	32
	2.3	Electrical Power Drives	33
		2.3.1 Motor Selection Criteria	34
		2.3.2 Motor Selection Analysis	34

		2.3.3 Relay		35
	2.4	Transducers ar	nd Sensors	37
		2.4.1 Proxim	ity and Range Sensors	38
		2.4.2 Photoel	lectric Sensors	39
	2.5	Pneumatic Pov	ver Drives	40
		2.5.1 Pneuma	atic Conditioners	42
		2.5.2 Pneuma	atic Valves	43
		2.5.3 5/2 Spr	ing Return Direction Control Valve	44
		2.5.4 Pneuma	atic Circuit Control Diagram	46
	2.6	Introduction to	PLC	48
		2.6.1 Historia	cal Background	49
		2.6.2 Why Us	se a PLC	52
		2.6.3 Selectin	ng a PLC	53
	2.7	Introduction to	FPSOFT	54
	2.8	Summary		57
3.	MET	łodology		58
	3.1	Introduction		62
	3.2	Hardware Imple	ementation	62
	3.3	Design and Cor	nstruction of Prototype Automated	
		Book Casing M	lachine	63
		3.3.1 Selectio	on of Material	63
		3.3.2 Input St	ation	64
		3.3.2.1	Input Station Working Envelope Limit Sensor	68
		3.3.2.2 I	Input Station Motor	69
		3.3.2.3 1	Input Station Motor Belt Drive Geometry	71
		3.3.3 Output \$		75
		3.3.3.1	Air Blowing System	76
		3.3.4 Convey	or Station	78
			Conveyer Station Motor	79
			Conveyer Station Sensor	81
			d Place Robotic Arm	83
			End Effector of the Pick and Place Robotic Arm	87
		3.3.6 Punchin	•	89
			Punching Station Limit Sensor	92
	3.4	-	Detection System	93
	3.5		struction of the Control Panel	94
			Distributor Module	95
		3.5.2 DC Mot		96
			tic System Control Module	99
		3.5.4 Data Log		102
	3.6	Software Develo	-	107
		3.6.1 Flow Ch		108
			Diagram Construction	112
			gramming Development Software	115
		-	and Editing Program	117
		3.6.5 Compili	ng a Program	118

		3.6.6 The Input and Output Port Indication	119
4.	RESU	JLT AND DISCUSSION	120
	4.1	Introduction	120
	4.2	Input Station	121
		4.2.1 The Motor and the Lead Screw Test	121
		4.2.2 The Magazine Detection Sensor Test	126
		4.2.3 The Upper and Lower Limitation Sensor Test	128
		4.2.4 The Pusher and the Magazine Holder Test	130
	4.3	Output Station	133
		4.3.1 The Air Blowing System Test	133
	4.4	Conveyer Station	136
		4.4.1 The Motor and the Conveyer Station Shaft Test	136
		4.4.2 The Conveyer Station Sensors Test	141
	4.5	Pick and Place Robotic Arm	144
		4.5.1 The Rodless Cylinder Test	144
		4.5.2 The Double Acting Cylinder Test	145
		4.5.3 The Gripper Test	146
	4.6	Punching Station	149
		4.6.1 The Punching Cylinder Test	149
		4.6.2 The Punching Station Limitation Sensor Test	150
	4.7	Pressure Faulty Detection System Test	151
	4.8	DC Motor Driver	155
	4.9	Pneumatic Control System	157
	4.10	Data Logger Module	159
	4.11	System Control Software	159
	4.12	Reliability and Precision Test	170
	4.13	Safety Features	171
	4.14	Cost Analysis	172
5.	CONC	CLUSION AND SUGGESTION	173
	5.1	Conclusion	173
	5.2	Suggestion for Future Work	174
REF	ERENCE	S	175
APP	ENDIX A	A PLC Ladder Diagram and Boolean Code	178
	ENDIX E	8	192
APP	ENDIX (FP0 Software Manual	204
	ENDIX I		216
	ENDIX E		266
BIOI		F THE OTHER	277

LIST OF TABLES

Table		Page
3.1	Main Component in each Control Module	96
3.2	The Function of the Relay	98
3.3	Type of Device to be Controlled by the Pneumatic Control Valve	101
3.4	The Types and Applications of the Sensors	105
3.5	Input and Output Mapping of the System	119
4.1	The Data of the Terminal Voltage (V_T) and Load Current (l_L) of the	
	Input Station Motor	123
4.2	The Speed of the Input Station Motor	125
4.3	The Data of the Terminal Voltage (V_T) and Load Current (l_L) of the	
	Conveyer Station Motor	137
4.4	The Speed of the Conveyer Station Motor	140
4.5	The Operation Status of the Punching Cylinder Limitation Sensor	152
4.6	The Operation Status of the Air Pressure Sensor	154
4.7	The Testing Result of the DC Motor Driver	156
4.8	Type and Function of the Relay	159
4.9	The I/O Mapping of FP0 PLC	160
4.10	Reliability and Precision Test Result	170
4.11	Cost Analysis	172

LIST OF FIGURES

Figur	e	Page
1.1	Block Diagram of the Proposed System	2
1.2	IC Fabrication Process	2
1.3	Project Overview	4
1.4	Basic Structure of the Proposed System	5
2.1	Pick and Place System	15
2.2	The four-axis robot picks up cooked spring rolls and places them	
	single-file on the infeed conveyor of the flowrapper	16
2.3	ABS automotive control knobs	18
2.4	Automated system including full safety guarding and optional PC station	19
2.5	Overview of Printing Area	20
2.6	Detail of Fixtures at Printing Station	21
2.7	Detail View of Thermodiffusion Curing Unit	21
2.8	Auto Label Placer (APL)	22
2.9	Connector Inserter Robot	24
2.10	Automated Assemble Machine	26
2.11	The Basic Concept of Machine Design and Build	29
2.12	Relay Schematic Diagram	36
2.13	Schematic Diagram of DC Motor Control Circuit	37
2.14	Diffuse Optical Sensing	40
2.15	Scheme of the Pneumatic Power Supply	41
2.16	Combination Filter-Regulator-Lubricator (F-R-L)	42
2.17	Pneumatic Check Valve (a) Forward Air Flow (b) Reverse Air Flow	43
2.18	Flow Control Valve (a) Free Flow of Air (b) Controlled Flow of Air	44
2.19	(a) 5/2 Spring Return Direction Control Valve (b) Schematic Diagram	
	for 5/2 Spring Return Direction Control Valve	45
2.20	Pneumatic Control Chain	47
3.1	The Flow of the Hardware Construction and Software Development	62
3.2	The Sample of the IC Die	64
3.3	The Magazine that Consists of the IC Dies	65
3.4	The Location of the Input Station	66
3.5	The Input Station of the Proposed System	67
3.6	The Input Station Working Envelope	68
3.7	The Input Station Working Envelope Limit Sensor	69
3.8	The Input Station Motor	7 0
3.9	The Block Diagram of the Input Station Motor	70
3.10	Belt Drive Geometry	71
3.11	The Belt Drive	74
3.12	The Location of the Output Station	75
3.13	The Output Station of the Proposed System	76

3.14	The Structure of the Conveyer Station	78
3.15	The Cushion-Type Flexible Coupling	80
3.16	The Block Diagram of the Conveyer Station Motor Driver	80
3.17	The Multi Voltage Optical Sensor	82
3.18	The Structure of the Pick and Place Robotic Arm	83
3.19	The Pick and Place Robotic Arm	84
3.20	The Clip	85
3.21	The Schematic Diagram of the Pick and Place Robotic Arm Pneumatic	
	Cylinder Pneumatic Control Valve System	86
3.22	The Pneumatic Gripper of the System	87
3.23	The Location of the Punching Station	89
3.24	The Punching Station	90
3.25	The Schematic Diagram of the Punching Station Cylinder Pneumatic	
	Control Valve System	91
3.26	The Structure of the Punching Cylinder	92
3.27	Wiring Diagram of Pressure Sensor	93
3.28	The Control Panel	94
3.29	The Block Diagram of the Power Distributor Module	95
3.30	The Schematic Diagram of the DC Motor Driver	97
3.31	The Block Diagram of the Pneumatic System Control Module	99
3.33	The Pneumatic System Control System	100
3.34	The NAIS FP0 PLC	103
3.35	The Block Diagram of the Data Logger Module	105
3.36	Wiring Diagram for Connection of Photoelectric Sensor to the PLC	106
3.37	The Flow Chart of the System Operation Process	111
3.38	The FPSOFT Programming Edit Windows	116
3.39	Edit Windows of FPSOFT	118
4.1	The Testing of the Input Station Motor	121
4.2	The Input Station and the Lead Screw	122
4.3	The Correlation of the Terminal Voltage (V_T) and Load Current (I_L)	
	of the Input Station Motor	123
4.4	The Testing of the Magazine Detection Sensor	126
4.5	The Magazine Detection Sensor	127
4.6	The Correlation of the Output Voltage and the Sensing Distance of the	
	Amplifier Built in Optical Fiber Sensor	127
4.7	The Testing of Limitation Sensor	128
4.8	Input Station Limitation Sensor	129
4.9	The Correlation of the Output Voltage and the Sensing Distance of the	
	Amplifier Built in Fixed-Focus Limitation Sensor	130
4.10	The Testing of the Pusher and the Magazine Holder	131
4.11	The Input Station Pusher	131
4.12	The Testing of the Air Blowing System	134
4.13	The Output Station Blowing System	134
4.14	The Testing of the Conveyer Station Motor	136
4.15	The Correlation of the Terminal Voltage (V_T) and Load Current (I_L)	
	of the Conveyer Station Motor	138

4.16	The Testing of the Conveyer Station Sensor	141
4.17	The Conveyer Station Sensor	142
4.18	The Correlation of the Output Voltage and the Sensing Distance of the	
	Multi Voltage Optical Sensor	143
4.19	The Testing of the Rodless Cylinder	144
4.20	The Testing of the Double Acting Cylinder	146
4.21	The Testing of the Gripper	147
4.22	The Pick and Place Robotic Arm	148
4.23	The Testing of the Punching Cylinder	149
4.24	The Testing of the Punching Cylinder Limitation Sensor	150
4.25	The Punching Station Limitation Sensor	151
4.26	The Testing of the Pressure Sensor	153
4.27	The Testing of the DC Motor Driver	155
4.28	The Testing of the Pneumatic Control Valve	157
4.29	Start and Reset Function	160
4.30	Pressure Faulty Detection Function	161
4.31	Inter Lock Function	161
4.32	The Input Station Homing Function	162
4.33	The Output Station Homing Function	162
4.34	The Input Magazine Holding Function	162
4.35	The Input Station Turn ON Function	163
4.36	The Output Magazine Holding Function	163
4.37	The Output Station Motor Turn ON Function	163
4.38	The Input Pusher Function	164
4.39	The Middle and Side 1 Holding Function	164
4.40	Pick and Place Function	166
4.41	The Middle and Side 2 Holding Function	166
4.42	Punching Function	167
4.43	Counter Function	168
4.44	The Completed Design and Structure of the Automated Bookcasing	
	System	169

LIST OF ABBREVIATIONS

- C Center Distance
- CAD Computer Aid Design
- CAM Computer Aid Manufacturing
- CPU Central Processing Unit
- CRT Cathode Ray Tube
- D Pitch Diameter
- DC Direct Current
- EMR Electromagnetic Radiation
- F Force
- FRL Filter Regulator Lubricator
- F_{th} Theoretical Piston Force
- g Gravitation Acceleration
- GUI Graphic User Interface
- I Current
- I_A Motor Armature Current
- IC Integrated Circuit
- I_F Motor Field Current
- I_L Motor Load Current
- I/O Input and Output
- L Belt Length
- LED Light Emitting Diode
- m Mass

- mA Miliampere
- n₁ Number of teeth on driving sprocket
- n₂ Number of teeth on driven sprocket
- N₁ rpm of driving shaft
- N₂ rpm of driven shaft
- NC Normally Close
- NO Normally Open
- PC Personal Computer
- P_{CM} Conveyer Motor Power Consumption
- P_{CONV} Power Converted
- Pi Input Power
- PIMFL Full Load Input Motor Power Consumption
- PIMNL No Load Input Motor Power Consumption
- P_L Dissipated Power
- PLC Programmable Logic Control
- P_o Output Power
- P_T Total Power Consumption
- P_{TFL} Full Load Total Power Consumption
- P_{TNL} No Load Total Power Consumption
- r Distance
- R_{adj} Motor Armature Resistance
- R_h Motor Terminal Resistance
- R_F Motor Field Resistance
- ROM Read Only Memory

- RPM Renovate Per Minute
- V Voltage
- VAC Alternative Current Voltage
- VDC Direct Current Voltage
- T Torque
- τ_{ind} Induce Motor Torque
- T_o Motor Output Torque
- μ Coefficient Friction
- VR Velocity Ration
- ω Speed
- w Weight
- θ Angle Subtended with the Horizontal

CHAPTER 1 INTRODUCTION

1.1 Introduction

Today, most of the IC industries are using fully automatic machines to perform the process of placing the casing onto the IC. With the high technology machines, daily productivity can be increased. However, the costs of these machines are extremely high. As a result, the small and medium scale industries are unable to purchase these machines. In order to overcome this problem, an inexpensive automatic book casing system is proposed and developed. This system consists of electrical and mechanical components. The block diagram of the system is shown in Figure 1.1. It uses PLC as its main controller to control the operation of the entire system. Other main components used in this system includes conveyer belts, DC motor, pneumatic valve, sensors, counter, air cylinder, limit switches, air compressor, and a power distributor module.

Figure 1.1: Block Diagram of the Proposed System

The process involved in the fabrication of the IC is depicted in Figure 1.2. The process can be divided into six steps. The first step deals with the layout design of the IC. The layout design of the IC is then transferred to the wafer in the second step. The third step is a process that separates the individual die from the wafer. The wire bonding process of the die is conducted in the fourth step. The fifth step involves the process of putting the case onto the die of the IC. The encryption process is conducted in the final step

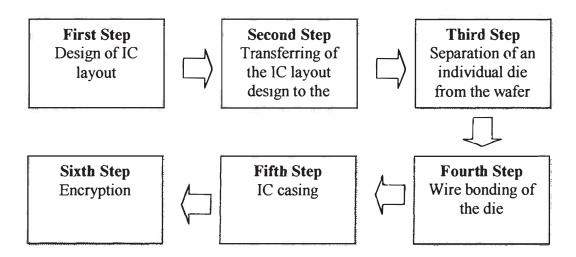


Figure 1.2: IC Fabrication Process

The proposed system involves the fifth step of the fabrication of the IC The function of this system is to put the case onto the die automatically after the wire bonding process

This project used the concept of Computer Integrated Manufacturing (CIM) in terms of monitoring, controlling as well as data collecting CIM is commonly thought of as an integrated system that encompasses all the activities in the production system, from the planning to the designing of a product through the manufacturing system

Briefly, the project consists of hardware design, construction, testing and software development

As shown in Figure 13, the configuration of the project can be divided into two parts – the hardware and the software. The hardware part constitutes two modules, namely the control panel and the basic structure of the project. The control panel consists of PLC, power supply and pneumatic control valves. The function of the control panel is used to control the overall system. The basic structure of the project comprises of up and down loading system, cylinders and various types of sensors.

The software part includes the PLC programming language As shown in Figure 1 3, the PLC programming emphasizes the configuration of the ladder diagram, I/O mapping and serial communication interface Figure 1 4 illustrates the basic structure of the proposed system

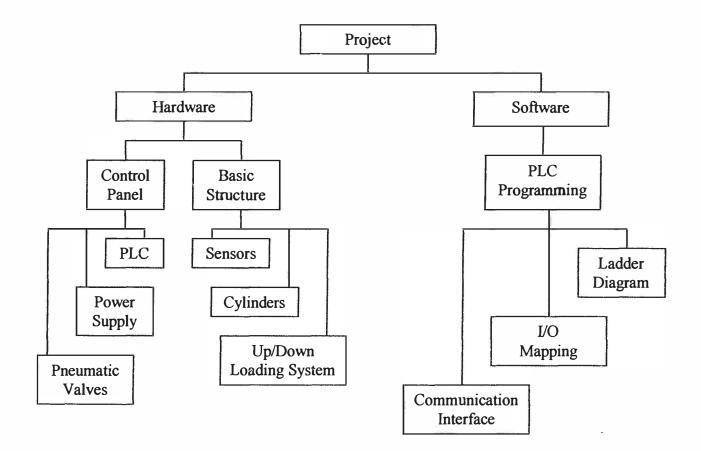


Figure 1.3: Project Overview

